Skip to main content

Microwave Analysis of MgB\(_2\) and YBa\(_2\)Cu\(_3\)O\(_{7-x}\) Thin Films

  • Chapter
  • First Online:
Microwave Analysis of Unconventional Superconductors with Coplanar-Resonator Techniques

Abstract

In this Chapter we show how we investigated the microwave properties of MgB\(_2\) and YBa\(_2\)Cu\(_3\)O\(_{7-x}\) thin films by the analysis of CPWRs made from the films themselves. Concerning MgB\(_2\), the experimental results were interpreted within the framework of a two-band model in the presence of impurity scattering. We also showed that disorder, enhancing interband scattering, can induce a counterintuitive reduction of the surface resistance. Then, different nonlinear mechanisms limiting the performance of MgB\(_2\) films in microwave applications were analyzed. One is magnetic flux penetration via dendritic avalanches, that determines abrupt jumps in the resonance curves. From the analysis of a robust statistics based on CPWR response, the avalanche-size distribution was derived and found to be consistent with the thermomagnetic-instability picture. Another jumpwise behavior is generated by weak-link switching, leading to local-heating-induced thermal bistability. A model based on the heat balance equation was able to account for the thermal bistability regime and reproduced the temperature dependence of the limiting currents. Concerning YBa\(_2\)Cu\(_3\)O\(_{7-x}\) (YBCO), we studied the penetration depth of the superconducting thin film, and the power handling capability of the CPWR devices. Vortex motion is one of the sources of nonlinearity and dissipation, thus we analyzed this mechanism, and the possibility to limit performance-degradation by proper introduction of artificial defects, acting as flux-pinning centers. Columnar defects induced by 4.2-GeV Au irradiation confirmed to be effective as pinning centers even at microwave frequencies, and a distribution of defects suitable to prevent nonlinearity while keeping low dissipation is discussed. The possibility to tune the YBCO CPWR response by means of micro-channels with modified superconductivity was investigated, where the channels were defined nondestructively by micro-collimated swift heavy-ion irradiation at high fluences: the superconducting properties are locally suppressed without physical removal of material. We found that a highly dissipative and nonlinear regime can be locally created, an hot spot for the generation of intermodulation distortion. Thus, a locally applied external control signal can tune the response of the resonators, when properly biased. Inductive and resistive components of nonlinearity can also be distinguished, which is useful to address the potential of the technique for microwave nonlinear applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.A. Golubov, A. Brinkman, O.V. Dolgov, J. Kortus, O. Jepsen, Multiband model for penetration depth in MgB\(_2\). Phys. Rev. B 66, 054524 (2002)

    Google Scholar 

  2. A. Gurevich, Enhancement of the upper critical field by nonmagnetic impurities in dirty two-gap superconductors. Phys. Rev. B 67, 184515 (2003)

    Google Scholar 

  3. L. Gozzelino, B. Minetti, G.A. Ummarino, R. Gerbaldo, G. Ghigo, F. Laviano, G. Lopardo, G. Giunchi, E. Perini, E. Mezzetti, Intraband scattering rate and electronic diffusivity study in MgB\(_2\) bulk samples. Supercond. Sci. Technol. 22, 065007 (2009)

    Google Scholar 

  4. J. Kortus, Current progress in the theoretical understanding of MgB\(_2\). Physica C: Supercond. 456, 54–62 (2007)

    Article  Google Scholar 

  5. M. Putti, M. Affronte, C. Ferdeghini, P. Manfrinetti, C. Tarantini, E. Lehmann, Observation of the crossover from two-gap to single-gap superconductivity through specific heat measurements in neutron-irradiated MgB\(_2\). Phys. Rev. Lett. 96, 077003 (2006)

    Google Scholar 

  6. G. Ghigo, D. Botta, A. Chiodoni, L. Gozzelino, R. Gerbaldo, F. Laviano, E. Mezzetti, E. Monticone, C. Portesi, Effective gap at microwave frequencies in MgB\(_2\) thin films with strong interband scattering. Phys. Rev. B 71, 214522 (2005)

    Google Scholar 

  7. V.G. Kogan, N.V. Zhelezina, Penetration-depth anisotropy in two-band superconductors. Phys. Rev. B 69, 132506 (2004)

    Google Scholar 

  8. G.A. Ummarino, R.S. Gonnelli, S. Massidda, A. Bianconi, Two-band Eliashberg equations and the experimental T\(_c\) of the diboride Mg\(_{1-x}\)Al\(_x\)B\(_2\). Physica C 407, 121 (2004)

    Article  Google Scholar 

  9. A.A. Golubov, A. Brinkman, O.V. Dolgov, J. Kortus, O. Jepsen, Multiband model for penetration depth in MgB\(_2\). Phys. Rev. B 66, 054524 (2002)

    Google Scholar 

  10. G. Ghigo, G.A. Ummarino, R. Gerbaldo, L. Gozzelino, F. Laviano, E. Mezzetti, Effects of disorder on the microwave properties of MgB\(_2\) polycrystalline films. Phys. Rev. B 74, 184518 (2006)

    Google Scholar 

  11. I.I. Mazin, O.K. Andersen, O. Jepsen, O.V. Dolgov, J. Kortus, A.A. Golubov, A.B. Kuz’menko, D. van der Marel, Superconductivity in MgB\(_2\): clean or dirty? Phys. Rev. Lett. 89, 107002 (2002)

    Google Scholar 

  12. B.B. Jin, T. Dahm, A.I. Gubin, E.-M. Choi, H.J. Kim, S.-I. Lee, W.N. Kang, N. Klein, Anomalous coherence peak in the microwave conductivity of \(c\)-axis oriented MgB\(_2\) thin films. Phys. Rev. Lett. 91, 127006 (2003)

    Google Scholar 

  13. J.P. Turneaure, J. Halbritter, H.A. Schwettman, The surface impedance of superconductors and normal conductors: the Mattis-Bardeen theory. J. Supercond. 4, 341 (1991)

    Article  Google Scholar 

  14. M. Putti, M. Affronte, C. Ferdeghini, P. Manfrinetti, C. Tarantini, E. Lehmann, Observation of the crossover from two-gap to single-gap superconductivity through specific heat measurements in neutron-irradiated MgB\(_2\). Phys. Rev. Lett. 96, 077003 (2006)

    Google Scholar 

  15. D.E. Oates, S.H. Park, G. Koren, Observation of the nonlinear meissner effect in YBCO thin films: evidence for a \(d\)-wave order parameter in the bulk of the cuprate superconductors. Phys. Rev. Lett. 93, 197001 (2004)

    Google Scholar 

  16. T. Dahm, D.J. Scalapino, Nonlinear current response of a \(d\)-wave superfluid. Phys. Rev. B 60, 13125 (1999)

    Article  Google Scholar 

  17. A.P. Zhuravel, S. Bae, S.N. Shevchenko, A.N. Omelyanchouk, A.V. Lukashenko, A.V. Ustinov, S.M. Anlage, Imaging the paramagnetic nonlinear Meissner effect in nodal gap superconductors. Phys. Rev. B 97, 054504 (2018)

    Google Scholar 

  18. M. Fogelstrom, D. Rainer, J.A. Sauls, Tunneling into current-carrying surface states of high-T\(_c\) superconductors. Phys. Rev. Lett. 79, 2754 (1997)

    Google Scholar 

  19. B. Avenhaus, A. Porch, M.J. Lancaster, S. Hensen et al., Microwave properties of YBCO thin films. IEEE Trans. Appl. Supercond. 5, 1737 (1995)

    Article  Google Scholar 

  20. G. Ghigo, D. Andreone, R. Gerbaldo, L. Gozzelino, F. Laviano, G. Lopardo, B. Minetti, E. Monticone, G.A. Ummarino, Enrica Mezzetti: effects of disorder on the performance of magnesium diboride microwave resonators. IEEE Trans. Appl. Supercond. 17, 3644 (2007)

    Article  Google Scholar 

  21. L. Gozzelino, F. Laviano, D. Botta, A. Chiodoni, R. Gerbaldo, G. Ghigo, E. Monticone, C. Portesi, E. Mezzetti, Quantitative magneto-optical analysis of macroscopic supercurrent flow in MgB\(_2\). Supercond. Sci. Technol. 16, 199 (2003)

    Article  Google Scholar 

  22. P. Lahal, R. Wördenweber, Nonlinear microwave properties of HTS thin film coplanar devices. IEEE Trans Appl. Supercond. 13, 2917 (2003)

    Article  Google Scholar 

  23. Y.M. Habib, D.E. Oates, G. Dresselhaus, M.S. Dresselhaus, Microwave power handling in engineered grain boundaries. Appl. Phys. Lett. 73, 2200 (1998)

    Article  Google Scholar 

  24. F. Laviano, Vortex avalanches in superconductors visualized by magneto-optical imaging, in Vortices and Nanostructured Superconductors, ed. by A. Crisan. Springer Series in Materials Science, vol. 261 (Springer, Cham, 2017)

    Google Scholar 

  25. F. Laviano, D. Botta, C. Ferdeghini, V. Ferrando, L. Gozzelino, E. Mezzetti, Thermo-magnetic instability as limiting mechanism for electrical current density in MgB\(_2\) thin films, in Magneto-Optical Imaging, ed. by T.H. Johansen, D.V. Shantsev (Kluwer Academic Publishers, Dordrecht, 2004), p. 237

    Google Scholar 

  26. G. Ghigo, F. Laviano, L. Gozzelino, R. Gerbaldo, E. Mezzetti, E. Monticone, C. Portesi, Evidence of rf-driven dendritic vortex avalanches in MgB\(_2\) microwave resonators. J. Appl. Phys. 102, 113901 (2007)

    Google Scholar 

  27. F. Laviano, D. Botta, A. Chiodoni, R. Gerbaldo, G. Ghigo, L. Gozzelino, S. Zannella, E. Mezzetti, An improved method for quantitative magneto-optical analysis of superconductors. Supercond. Sci. Technol. 16, 71 (2002)

    Article  Google Scholar 

  28. G. Ghigo, R. Gerbaldo, L. Gozzelino, F. Laviano, B. Minetti, E. Monticone, C. Portesi, E. Mezzetti, Mechanisms limiting the performance of MgB\(_2\) polycrystalline thin film microwave resonators. IEEE Trans. Appl. Supercond. 21, 579 (2011)

    Google Scholar 

  29. J. Albrecht, A.T. Matveev, J. Strempfer, H.-U. Habermeier, D.V. Shantsev, Y.M. Galperin, T.H. Johansen, Dramatic role of critical current anisotropy on flux avalanches in MgB\(_2\) Films. Phys. Rev. Lett. 98, 117001 (2007)

    Google Scholar 

  30. C.J. Olson, C. Reichhardt, F. Nori, Superconducting vortex avalanches, voltage bursts, and vortex plastic flow: effect of the microscopic pinning landscape on the macroscopic properties. Phys. Rev. B 56, 6175 (1997)

    Article  Google Scholar 

  31. J. Wosik, L.-. Xie, R. Grabovickic, T. Hogan, S.A. Long, Microwave power handling capability of HTS superconducting thin films: weak links and thermal effects induced limitation. IEEE Trans. Appl. Supercond. 9 2456 (1999)

    Google Scholar 

  32. H. Courtois, M. Meschke, J.T. Peltonen, J.P. Pekola, Origin of hysteresis in a proximity Josephson junction. Phys. Rev. Lett. 101, 067002 (2008)

    Google Scholar 

  33. A.V. Gurevich, R.G. Mints, Self-heating in normal metals and superconductors. Rev. Mod. Phys. 59, 941 (1987)

    Article  Google Scholar 

  34. G. Ghigo, R. Gerbaldo, L. Gozzelino, F. Laviano, E. Mezzetti, Switching response of MgB\(_2\) thin-film microwave resonators due to local nonlinear Joule heating. Phys. Rev. B 82, 054520 (2010)

    Google Scholar 

  35. D. Bothner, T. Gaber, M. Kemmler, D. Koelle, R. Kleiner, S. Wünsch, M. Siegel, Magnetic hysteresis effects in superconducting coplanar microwave resonators. Phys. Rev. B 86, 014517 (2012)

    Google Scholar 

  36. M. Giura, R. Marcon, R. Fastampa, E. Silva, Flux-creep dissipation in Y-Ba-Cu-O superconductors at microwave frequencies. Phys. Rev. B 45, 7387 (1992)

    Article  Google Scholar 

  37. E.H. Brandt, M. Indenbom, Type-II-superconductor strip with current in a perpendicular magnetic field. Phys. Rev. B 48, 12893 (1993)

    Article  Google Scholar 

  38. V.M. Pan, D.A. Luzhbin, A.A. Kalenyuk, A.L. Kasatkin, V.A. KomashkoA, V. Velichko, M. Lancaster, Microwave impedance of high-temperature superconductor films in a YBa\(_2\)Cu\(_3\)O\(_{7-\delta }\) magnetic field. Low Temp. Phys. 31, 254 (2005)

    Article  Google Scholar 

  39. G. Ghigo, R. Gerbaldo, L. Gozzelino, F. Laviano, G. Lopardo, E. Monticone, C. Portesi, E. Mezzetti, Local thermal bistability in MgB\(_2\) microwave coplanar resonators: opposite jumpwise response to weak-link switching and to vortex avalanches. Appl. Phys. Lett. 94, 052505 (2009)

    Google Scholar 

  40. L. Civale, A.D. Marwick, T.K. Worthington, M.A. Kirk, J.R. Thompson, L. Krusin-Elbaum, Y. Sun, J.R. Clem, F. Holtzberg, Vortex confinement by columnar defects in YBa\(_2\)Cu\(_3\)O\(_7\) crystals: enhanced pinning at high fields and temperatures. Phys. Rev. Lett. 67, 648 (1991)

    Article  Google Scholar 

  41. E. Silva, R. Marcon, R. Fastampa, M. Giura, S. Sarti, G. Ghigo, Field dependent microwave resistivity in YBa\(_2\)Cu\(_3\)O\(_{7-\delta }\). J. Low Temp. Phys. 131, 871 (2003)

    Article  Google Scholar 

  42. G. Ghigo, D. Botta, A. Chiodoni, R. Gerbaldo, L. Gozzelino, F. Laviano, B. Minetti, E. Mezzetti, D. Andreone, Microwave dissipation in YBCO coplanar resonators with uniform and non-uniform columnar defect distribution. Supercond. Sci. Technol. 17, 977 (2004)

    Article  Google Scholar 

  43. G. Ghigo, D. Andreone, D. Botta, A. Chiodoni, R. Gerbaldo, L. Gozzelino, F. Laviano, B. Minetti, E. Mezzetti, Non-uniform columnar defect implantation in YBCO coplanar resonators for the control of vortex-induced microwave dissipation and nonlinearity. Supercond. Sci. Technol. 18, 193 (2005)

    Article  Google Scholar 

  44. P.P. Nguyen, D.E. Oates, G. Dresselhaus, M.S. Dresselhaus, A.C. Anderson, Microwave hysteretic losses in YBa\(_2\)Cu\(_3\)O\(_{7-x}\) and NbN thin films. Phys. Rev. B 51, 6686 (1995)

    Article  Google Scholar 

  45. G. Ghigo, L. Gozzelino, F. Laviano, D. Andreone, E. Mezzetti, Effects of non-uniform columnar defect distribution on the microwave properties of Y-Ba-Cu-O coplanar resonators. IEEE Trans. Appl. Supercond. 15, 3604 (2005)

    Article  Google Scholar 

  46. A. Rovelli, A. Amato, D. Botta, A. Chiodoni, R. Gerbaldo, G. Ghigo, L. Gozzelino, F. Laviano, B. Minetti, E. Mezzetti, A new apparatus for deep patterning of beam sensitive targets by means of high-energy ion beam. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Inter. Mater. Atoms 240, 842 (2005)

    Google Scholar 

  47. G. Ghigo, F. Laviano, R. Gerbaldo, L. Gozzelino, Tuning the response of YBCO microwave resonators by heavy-ion patterned micro-channels. Supercond. Sci. Technol. 25, 115007 (2012)

    Google Scholar 

  48. A.P. Zhuravel, A.V. Ustinov, D. Abraimov, S.M. Anlage, Imaging local sources of intermodulation in superconducting microwave devices. IEEE Trans. Appl. Supercond. 13, 340 (2003)

    Article  Google Scholar 

  49. S.K. Remillard, D. Kirkendall, G. Ghigo, R. Gerbaldo, L. Gozzelino, F. Laviano, Z. Yang, N.A. Mendelsohn, B.G. Ghamsari, B. Friedman, P. Jung, S.M. Anlage, Microwave nonlinearity and photoresponse of superconducting resonators with columnar defect micro-channels. Supercond. Sci. Technol. 27, 095006 (2014)

    Google Scholar 

  50. S. Remillard, A. Wormmeester, G. Ghigo, Near-field scanning of intermodulation distortion in superconducting resonators, in IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Ann Arbor, MI, USA (2018), pp. 1–3

    Google Scholar 

  51. A.R. Medema, G. Ghigo, S.K. Remillard, Influence of columnar defects on magnetic relaxation of microwave nonlinearity in superconducting YBCO resonator devices. Physica C: Supercond. Appl. 583, 1353849 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Ghigo .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghigo, G., Torsello, D. (2022). Microwave Analysis of MgB\(_2\) and YBa\(_2\)Cu\(_3\)O\(_{7-x}\) Thin Films. In: Microwave Analysis of Unconventional Superconductors with Coplanar-Resonator Techniques. PoliTO Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-030-93910-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93910-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93909-0

  • Online ISBN: 978-3-030-93910-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics