Skip to main content

Waste Management in Indian Pharmaceutical Industries

  • Chapter
  • First Online:
Environmental Management in India: Waste to Wealth

Abstract

In recent years, the Indian pharmaceutical industry has gradually evolved witnessing a major development in this sector. India has become the third largest API (Active pharmaceutical ingredient) merchant and is likely to be among the top three pharmaceutical markets by 2020. Though this will strengthen the economic growth of the country but subsequently it is fuelling the major environmental crisis such as waste generation. The unwanted materials produced at the time of manufacturing can turn out to be hazardous to the environment. Like the ash produced from the boiler furnace, impurities from the extraction unit and chemical waste from the processing unit. Today waste management practices become an integrated approach of waste reduction and recycling in order to enhance sustainable development. Common management practices employed by the pharmaceutical industries in India are Incineration, autoclaving, coagulation, constructed wetlands, and vermicomposting. Also, owing to the lack of proper disposal technique, some manufacturing industries often sell the hazardous/solid waste to the authorized re-processor or end user. This chapter elucidates the possible route of waste generation from pharmaceutical industries. It also shed some light on the current waste management technique used in India and also defines its shortcoming and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dora, K. N., Kumari, K., Srivatsava, M., & Dalai, N. (2020). A review on various techniques for municipality waste management and product development. Materials Today: Proceedings.

    Google Scholar 

  2. Schnapf, D. (1981). State Hazardous waste programs under the federal resource conservation and recovery act. Environmental Law, 12, 679.

    Google Scholar 

  3. Goodman, L. S. (1996). Goodman and Gilman's the pharmacological basis of therapeutics (Vol. 1549). McGraw-Hill.

    Google Scholar 

  4. Reynolds, J. (1989). Sodium cromoglycate and related anti-allergic agents, the extra pharmacopoeia, 29th edn.

    Google Scholar 

  5. Fick, J., Söderström, H., Lindberg, R. H., Phan, C., Tysklind, M., & Larsson, D. J. (2009). Contamination of surface, ground, and drinking water from pharmaceutical production. Environmental Toxicology and Chemistry, 28(12), 2522–2527.

    Article  CAS  Google Scholar 

  6. Baldigo, B. P., George, S. D., Phillips, P. J., Hemming, J. D., Denslow, N. D., & Kroll, K. J. (2015). Potential estrogenic effects of wastewaters on gene expression in Pimephales promelas and fish assemblages in streams of southeastern New York. Environmental Toxicology and Chemistry, 34(12), 2803–2815.

    Article  CAS  Google Scholar 

  7. Berninger, J. P., LaLone, C. A., Villeneuve, D. L., & Ankley, G. T. (2016). Prioritization of pharmaceuticals for potential environmental hazard through leveraging a large-scale mammalian pharmacological dataset. Environmental Toxicology and Chemistry, 35(4), 1007–1020.

    Article  CAS  Google Scholar 

  8. Wilkinson, J., Hooda, P. S., Barker, J., Barton, S., & Swinden, J. (2017). Occurrence, fate and transformation of emerging contaminants in water: An overarching review of the field. Environmental Pollution, 231, 954–970.

    Article  CAS  Google Scholar 

  9. Khan, H. K., Rehman, M. Y. A., & Malik, R. N. (2020). Fate and toxicity of pharmaceuticals in water environment: An insight on their occurrence in South Asia. Journal of Environmental Management, 271, 111030.

    Google Scholar 

  10. Bhangale, V. (2008). Pharma marketing in India: Opportunities, challenges and the way forward. Journal of Medical Marketing, 8(3), 205–210.

    Article  Google Scholar 

  11. Patneedi, C. B., & Prasadu, K. D. (2015). Impact of pharmaceutical wastes on human life and environment. Rasayan Journal of Chemistry, 8(1), 67–70.

    CAS  Google Scholar 

  12. Singh, D., & Suthar, S. (2012). Vermicomposting of herbal pharmaceutical industry solid wastes. Ecological Engineering, 39, 1–6.

    Article  Google Scholar 

  13. Suthar, S. (2011). Utilizing livestock waste solids as bioresource for socio-economic sustainability: A report from rural India. Reviews in Environmental Science and Biotechnology. https://doi.org/10.1007/s1157-011-92240-0

    Article  Google Scholar 

  14. Brandon, G. M., Lazcano, C., Lores, M., & Dominguez, J. (2011). Short-term stabilization of grape marc through earthworms. Journal of Hazardous Materials, 187, 291–295.

    Article  Google Scholar 

  15. Hait, S., & Tare, V. (2011). Vermistabilization of primary sewage sludge. Bioresource Technology, 102, 2812–2820.

    Article  CAS  Google Scholar 

  16. Dominguez, J., & Edwards, C. A. (2004) Vermicomposting organic wastes: A review. In S. H. S. Hanna, & W. Z. A. Milkhail (Eds.), Soil zoology for sustainable development in the 21st century.

    Google Scholar 

  17. Cheng, H., Xu, W., Liu, J., Wang, H., He, Y., & Chen, G. (2007). Pretreatment of wastewater from triazine manufacturing by coagulation, electrolysis, and internal microelectrolysis. The Journal of Hazardous Materials, 146, 385–392.

    Article  CAS  Google Scholar 

  18. Zorita, S., Martensson, L., & Mathiasson, L. (2009). Occurrence and removal of pharmaceuticals in a municipal sewage treatment system in the south of Sweden. Science of the Total Environment, 407, 2760–3277.

    Article  CAS  Google Scholar 

  19. Batt, A. L., Kim, S., & Aga, D. S. (2007). Comparison of the occurrence of antibiotics in four full-scale wastewater treatment plants with varying designs and operations. Chemosphere, 68, 428–435.

    Article  CAS  Google Scholar 

  20. Ridder, D., Verberk, D. J., Amya, H. J. Q. J. C., VanDijk, G. L., & JC,. (2012). Zeolites for nitrosamine and pharmaceutical removal from demineralised and surface water: Mechanisms and efficacy. Separation and Purification Technology, 89, 71–77.

    Article  Google Scholar 

  21. Ghauch, A., Tuqan, A., & Assi, H. A. (2009). Antibiotic removal from water: Elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles. Environmental Pollution, 157, 1626–1635.

    Article  CAS  Google Scholar 

  22. Grisales-Cifuentes, C. M., Galvis, E. A. S., Porras, J., Flórez, E., Torres-Palma, R. A., & Acelas, N. (2021). Kinetics, isotherms, effect of structure, and computational analysis during the removal of three representative pharmaceuticals from water by adsorption using a biochar obtained from oil palm fiber. Bioresource Technology, 124753.

    Google Scholar 

  23. Hounfodji, J. W., Kanhounnon, W. G., Kpotin, G., Atohoun, G. S., Lainé, J., Foucaud, Y., & Badawi, M. (2021). Molecular insights on the adsorption of some pharmaceutical residues from wastewater on kaolinite surfaces. Chemical Engineering Journal, 407, 127176.

    Google Scholar 

  24. Ashraf, M. I., Ateeb, M., Khan, M. H., Ahmed, N., & Mahmood, Q. (2016). Integrated treatment of pharmaceutical effluents by chemical coagulation and ozonation. Separation and Purification Technology, 158, 383–386.

    Article  CAS  Google Scholar 

  25. Hassan, S. S., Abdel-Shafy, H. I., & Mansour, M. S. (2019). Removal of pharmaceutical compounds from urine via chemical coagulation by green synthesized ZnO-nanoparticles followed by microfiltration for safe reuse. Arabian Journal of Chemistry, 12(8), 4074–4083.

    Article  CAS  Google Scholar 

  26. Kooijman, G., de Kreuk, M. K., Houtman, C., & van Lier, J. B. (2020). Perspectives of coagulation/flocculation for the removal of pharmaceuticals from domestic wastewater: A critical view at experimental procedures. Journal of Water Process Engineering, 34, 101161.

    Google Scholar 

  27. Pal, P., & Thakura, R. (2017). Pharmaceutical waste treatment and disposal of concentrated rejects: A review. International Journal of Engineering Technology Science and Research, 4(9), 2394–3386.

    Google Scholar 

  28. Zaidi, S., Chaabane, T., Sivasankar, V., Darchen, A., Maachi, R., & Msagati, T. A. M. (2019). Electro-coagulation coupled electro-flotation process: Feasible choice in doxycycline removal from pharmaceutical effluents. Arabian Journal of Chemistry, 12(8), 2798–2809.

    Article  CAS  Google Scholar 

  29. Dindaş, G. B., Çalışkan, Y., Celebi, E. E., Tekbaş, M., Bektaş, N., & Yatmaz, H. C. (2020). Treatment of pharmaceutical wastewater by combination of electrocoagulation, electro-fenton and photocatalytic oxidation processes. Journal of Environmental Chemical Engineering, 8(3), 103777.

    Google Scholar 

  30. Karthikeyan, K. G., & Meyer, M. T. (2006). Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Science of the Total Environment, 361, 196–207.

    Article  CAS  Google Scholar 

  31. Ávila, C., García-Galán, M. J., Uggetti, E., Montemurro, N., García-Vara, M., Pérez, S., & Postigo, C. (2021). Boosting pharmaceutical removal through aeration in constructed wetlands. Journal of Hazardous Materials, 125231.

    Google Scholar 

  32. Hu, B., Hu, S., Chen, Z., & Vymazal, J. (2020). Employ of arbuscular mycorrhizal fungi for pharmaceuticals ibuprofen and diclofenac removal in mesocosm-scale constructed wetlands. Journal of Hazardous Materials, 124524.

    Google Scholar 

  33. Delgado, N., Bermeo, L., Hoyos, D. A., Peñuela, G. A., Capparelli, A., Marino, D., & Casas-Zapata, J. C. (2020). Occurrence and removal of pharmaceutical and personal care products using subsurface horizontal flow constructed wetlands. Water Research, 187, 116448.

    Google Scholar 

  34. Buonomenna, M. G., & Bae, J. (2015). Organic Solvent Nanofiltration in Pharmaceutical Industry. Separation and Purification Reviews, 44(2), 157–182.

    Article  CAS  Google Scholar 

  35. Serna-Galvis, E. A., Silva-Agredo, J., Botero-Coy, A. M., Moncayo-Lasso, A., Hernández, F., & Torres-Palma, R. A. (2019). Effective elimination of fifteen relevant pharmaceuticals in hospital wastewater from Colombia by combination of a biological system with a sonochemical process. Science of the Total Environment, 670, 623–632.

    Article  CAS  Google Scholar 

  36. Wang, G., Wang, D., Xu, Y., Li, Z., & Huang, L. (2020). Study on optimization and performance of biological enhanced activated sludge process for pharmaceutical wastewater treatment. Science of The Total Environment, 739, 140166.

    Google Scholar 

  37. Ferrer-Polonio, E., Fernández-Navarro, J., Iborra-Clar, M. I., Alcaina-Miranda, M. I., & Mendoza-Roca, J. A. (2020). Removal of pharmaceutical compounds commonly-found in wastewater through a hybrid biological and adsorption process. Journal of Environmental Management, 263, 110368.

    Google Scholar 

  38. Chakrabortty, S., Pal, M., Roy, M., & Pal, P. (2015). Water treatment in a new flux-enhancing, continuous forward osmosis design: Transport modelling and economic evaluation towards scale up. Desalination, 365, 329–342.

    Article  CAS  Google Scholar 

  39. Radjenovic, J., Petrovic, M., & Barcelo, D. (2009). Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Research, 43, 831–884.

    Article  CAS  Google Scholar 

  40. Sipma, J., Osuna, B., Collado, N., Monclús, H., Ferrero, G., Comas, J., & Roda, I. R. (2010). Comparison of removal of pharmaceuticals in MBR and activated sludge systems. Desalination, 250, 653–659.

    Article  CAS  Google Scholar 

  41. Homayoonfal, M., & Mehrnia, M. R. (2014). Amoxicillin separation from pharmaceutical solution by pH sensitive nanofiltration membranes. Separation and Purification Technology, 130, 74–83.

    Article  CAS  Google Scholar 

  42. Basu, S., & Balakrishnan, M. (2017). Polyamide thin film composite membranes containing ZIF-8 for the separation of pharmaceutical compounds from aqueous streams. Separation and Purification Technology, 179, 118–125.

    Article  CAS  Google Scholar 

  43. Chakrabortty, S., Nayak, J., Pal, P., Kumar, R., & Chakraborty, P. (2020). Separation of COD, sulphate and chloride from pharmaceutical wastewater using membrane integrated system: Transport modeling towards scale-up. Journal of Environmental Chemical Engineering, 8(5), 104275.

    Google Scholar 

  44. Balakrishnan, B. A., & Gurtoo, A. (2015). Environmental practices in the indian pharmaceutical SMEs: An assessment. Review of Integrative Business and Economics Research, 4(4), 205–224.

    Google Scholar 

  45. Campos-Castillo, C. (2012). Co-presence in virtual environments. Social Compass, 6(5), 425–433.

    Article  Google Scholar 

  46. Singh, M., Brueckner, M., & Padhy, P. K. (2014). Insights into the state of ISO 14001 certification in both small and medium enterprise and industry best companies in India: The case of Delhi and Noida. Journal of Cleaner Production, 69, 225–236.

    Article  Google Scholar 

  47. Sing, N. J., & Bagchi, S. (2013). Applied ecology in India: Scope of science and policy to meet contemporary environmental and socio-ecological challenges. Journal of Applied Ecology, 50, 4–14.

    Article  Google Scholar 

  48. Brahmbhatt, N. C., & Pandya, K. Y. (2015). Performance evaluation of effluent treatment plant and hazardous waste management of pharmaceutical industry of Ankleshwar. Advances in Applied Science Research, 6(4), 157–161.

    CAS  Google Scholar 

  49. Tekin, H., Bilkay, O., Ataberk, S. S., Balta, T. H., Ceribasi, I. H., Sanin, F. D., Dilek, F. B., & Yetis, U. (2006). Use of Fenton oxidation to improve the biodegradability of a pharmaceutical wastewater. Journal of Hazardous Materials, 136(2), 258–265.

    Article  CAS  Google Scholar 

  50. Chelliapan, S., Wilby, T., & Sallis, P. J. (2006). Performance of an up-flow anaerobic stage reactor (UASR) in the treatment of pharmaceutical wastewater containing macrolide antibiotics. Water Research, 40, 507–516.

    Article  CAS  Google Scholar 

  51. Melero, J. A., Botas, J. A., Molina, R., Pariente, M. I., & Mart, F. (2009). Heterogeneous catalytic wet peroxide oxidation systems for the treatment of an industrial pharmaceutical wastewater. Water Research, 43(16), 4010–4018.

    Article  CAS  Google Scholar 

  52. Kulik, N., Trapido, M., Goi, A., Veressinina, Y., & Munter, R. (2008). Combined chemical treatment of pharmaceutical effluents from medical ointment production. Chemosphere, 70(8), 1525–1531.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Sinha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Upadhyay, S., Sinha, A. (2022). Waste Management in Indian Pharmaceutical Industries. In: Yadav, S., Negm, A.M., Yadava, R.N. (eds) Environmental Management in India: Waste to Wealth. Springer, Cham. https://doi.org/10.1007/978-3-030-93897-0_5

Download citation

Publish with us

Policies and ethics