Skip to main content

Pharmacological Therapies for Concussions

  • Chapter
  • First Online:
Tackling the Concussion Epidemic

Abstract

The pharmacological approach to concussion can be framed as targeting secondary injury mechanisms and/or targeting symptoms associated with concussion and persistent concussion syndrome (PCS). As we understand concussion and PCS better, and the role of comorbidities that are either pre-existent or precipitated, the approach also includes the active identification of clinical entities that are amenable to evidence-based interventions. Of course, the goal is to achieve a clinical pathological correlation, as well as an understanding of the pathophysiology and its precision mitigation in concussion. Unfortunately, there is generally a lack of evidence-based direction to guide treatments. Furthermore, while there is evidence following concussions/mild traumatic brain injury (mTBI) of persisting cellular changes from laboratory-supported research, this is largely in the context of the absence of evident anatomical injury or lesions by basic clinical imaging adding to the challenges of clinical research. This chapter, therefore, provides a description of recent history of the development of a pharmacologic approach to the secondary cellular mechanisms, largely in the context of moderate or severe TBI. This narrative arises from the assumption that the traumatic etiology in concussion points to a shared pathophysiology and pharmacologic potential. The chapter ends with a brief survey of the pharmacological approaches for treating symptoms of neurotransmitter dysfunction and concussion-related co-morbidities, while recognizing the importance of a multi-dimensional approach, as discussed in many chapters of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCrory P, Meeuwisse W, Dvorak J, et al. Consensus statement on concussion in sport-the 5(th) international conference on concussion in sport held in Berlin, October 2016. Br J Sports Med. 2017;51:838–47.

    PubMed  Google Scholar 

  2. Comper P, Bisschop SM, Carnide N, Tricco A. A systematic review of treatments for mild traumatic brain injury. Brain Inj. 2005;19:863–80.

    Article  CAS  PubMed  Google Scholar 

  3. Marshall S, Bayley M, McCullagh S, et al. Updated clinical practice guidelines for concussion/mild traumatic brain injury and persistent symptoms. Brain Inj. 2015;29:688–700.

    Article  PubMed  Google Scholar 

  4. Kamins J, Giza CC. Concussion-mild traumatic brain injury: recoverable injury with potential for serious sequelae. Neurosurg Clin N Am. 2016;27:441–52.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Giza C, Greco T, Prins ML. Concussion: pathophysiology and clinical translation. Handb Clin Neurol. 2018;158:51–61.

    Article  PubMed  Google Scholar 

  6. Barkhoudarian G, Hovda DA, Giza CC. The molecular pathophysiology of concussive brain injury – an update. Phys Med Rehabil Clin N Am. 2016;27:373–93.

    Article  PubMed  Google Scholar 

  7. Monyer H, Hartley DM, Choi DW. 21-Aminosteroids attenuate excitotoxic neuronal injury in cortical cell cultures. Neuron. 1990;5:121–6.

    Article  CAS  PubMed  Google Scholar 

  8. Pellegrini-Giampietro DE, Cherici G, Alesiani M, Carla V, Moroni F. Excitatory amino acid release and free radical formation may cooperate in the genesis of ischemia-induced neuronal damage. J Neurosci. 1990;10:1035–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nicholls DG. Mitochondrial calcium function and dysfunction in the central nervous system. Biochim Biophys Acta. 2009;1787:1416–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nicholls DG. Brain mitochondrial calcium transport: origins of the set-point concept and its application to physiology and pathology. Neurochem Int. 2017;109:5–12.

    Article  CAS  PubMed  Google Scholar 

  11. Miller DM, Singh IN, Wang JA, Hall ED. Administration of the Nrf2-ARE activators sulforaphane and carnosic acid attenuates 4-hydroxy-2-nonenal-induced mitochondrial dysfunction ex vivo. Free Radic Biol Med. 2013;57:1–9.

    Article  CAS  PubMed  Google Scholar 

  12. Singh IN, Sullivan PG, Deng Y, Mbye LH, Hall ED. Time course of post-traumatic mitochondrial oxidative damage and dysfunction in a mouse model of focal traumatic brain injury: implications for neuroprotective therapy. J Cereb Blood Flow Metab. 2006;26:1407–18.

    Article  CAS  PubMed  Google Scholar 

  13. Hill RL, Kulbe JR, Singh IN, Wang JA, Hall ED. Synaptic mitochondria are more susceptible to traumatic brain injury-induced oxidative damage and respiratory dysfunction than non-synaptic mitochondria. Neuroscience. 2018;386:265–83.

    Article  CAS  PubMed  Google Scholar 

  14. Hill RL, Singh IN, Wang JA, Hall ED. Time courses of post-injury mitochondrial oxidative damage and respiratory dysfunction and neuronal cytoskeletal degradation in a rat model of focal traumatic brain injury. Neurochem Int. 2017;111:45–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bains M, Hall ED. Antioxidant therapies in traumatic brain and spinal cord injury. Biochim Biophys Acta. 2012;1822:675–84.

    Article  CAS  PubMed  Google Scholar 

  16. Hall ED, Vaishnav RA, Mustafa AG. Antioxidant therapies for traumatic brain injury. Neurotherapeutics. 2010;7:51–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gutteridge JM. Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem. 1995;41:1819–28.

    Article  CAS  PubMed  Google Scholar 

  18. Hamann K, Shi R. Acrolein scavenging: a potential novel mechanism of attenuating oxidative stress following spinal cord injury. J Neurochem. 2009;111:1348–56.

    Article  CAS  PubMed  Google Scholar 

  19. Rohn TT, Hinds TR, Vincenzi FF. Ion transport ATPases as targets for free radical damage. Protection by an aminosteroid of the Ca2+ pump ATPase and Na+/K+ pump ATPase of human red blood cell membranes. Biochem Pharmacol. 1993;46:525–34.

    Article  CAS  PubMed  Google Scholar 

  20. Rohn TT, Hinds TR, Vincenzi FF. Inhibition of Ca2+-pump ATPase and the Na+/K+-pump ATPase by iron-generated free radicals. Protection by 6,7-dimethyl-2,4-DI-1- pyrrolidinyl-7H-pyrrolo[2,3-d] pyrimidine sulfate (U-89843D), a potent, novel, antioxidant/free radical scavenger. Biochem Pharmacol. 1996;51:471–6.

    Article  CAS  PubMed  Google Scholar 

  21. Sullivan PG, Krishnamurthy S, Patel SP, Pandya JD, Rabchevsky AG. Temporal characterization of mitochondrial bioenergetics after spinal cord injury. J Neurotrauma. 2007;24:991–9.

    Article  PubMed  Google Scholar 

  22. Keller JN, Mark RJ, Bruce AJ, et al. 4-Hydroxynonenal, an aldehydic product of membrane lipid peroxidation, impairs glutamate transport and mitochondrial function in synaptosomes. Neuroscience. 1997;80:685–96.

    Article  CAS  PubMed  Google Scholar 

  23. Keller JN, Pang Z, Geddes JW, et al. Impairment of glucose and glutamate transport and induction of mitochondrial oxidative stress and dysfunction in synaptosomes by amyloid beta-peptide: role of the lipid peroxidation product 4-hydroxynonenal. J Neurochem. 1997;69:273–84.

    Article  CAS  PubMed  Google Scholar 

  24. Lovell MA, Xie C, Markesbery WR. Acrolein, a product of lipid peroxidation, inhibits glucose and glutamate uptake in primary neuronal cultures. Free Radic Biol Med. 2000;29:714–20.

    Article  CAS  PubMed  Google Scholar 

  25. Springer JE, Azbill RD, Mark RJ, Begley JG, Waeg G, Mattson MP. 4-hydroxynonenal, a lipid peroxidation product, rapidly accumulates following traumatic spinal cord injury and inhibits glutamate uptake. J Neurochem. 1997;68:2469–76.

    Article  CAS  PubMed  Google Scholar 

  26. Kontos HA. Oxygen radicals in CNS damage. Chem Biol Interact. 1989;72:229–55.

    Article  CAS  PubMed  Google Scholar 

  27. Kontos HA, Povlishock JT. Oxygen radicals in brain injury. Cent Nerv Syst Trauma. 1986;3:257–63.

    Article  CAS  PubMed  Google Scholar 

  28. Kontos HA, Wei EP. Superoxide production in experimental brain injury. J Neurosurg. 1986;64:803–7.

    Article  CAS  PubMed  Google Scholar 

  29. Muizelaar JP. Clinical trials with Dismutec (pegorgotein; polyethylene glycol-conjugated superoxide dismutase; PEG-SOD) in the treatment of severe closed head injury. Adv Exp Med Biol. 1994;366:389–400.

    Article  CAS  PubMed  Google Scholar 

  30. Muizelaar JP, Marmarou A, Young HF, et al. Improving the outcome of severe head injury with the oxygen radical scavenger polyethylene glycol-conjugated superoxide dismutase: a phase II trial. J Neurosurg. 1993;78:375–82.

    Article  CAS  PubMed  Google Scholar 

  31. Muizelaar JP, Kupiec JW, Rapp LA. PEG-SOD after head injury. J Neurosurg. 1995;83:942.

    CAS  PubMed  Google Scholar 

  32. Chan PH, Epstein CJ, Li Y, et al. Transgenic mice and knockout mutants in the study of oxidative stress in brain injury. J Neurotrauma. 1995;12:815–24.

    Article  CAS  PubMed  Google Scholar 

  33. Gladstone DJ, Black SE, Hakim AM, Heart, Stroke Foundation of Ontario Centre of Excellence in Stroke Recovery. Toward wisdom from failure: lessons from neuroprotective stroke trials and new therapeutic directions. Stroke. 2002;33:2123–36.

    Article  PubMed  Google Scholar 

  34. Lewen A, Matz P, Chan PH. Free radical pathways in CNS injury. J Neurotrauma. 2000;17:871–90.

    Article  CAS  PubMed  Google Scholar 

  35. Mikawa S, Kinouchi H, Kamii H, et al. Attenuation of acute and chronic damage following traumatic brain injury in copper, zinc-superoxide dismutase transgenic mice. J Neurosurg. 1996;85:885–91.

    Article  CAS  PubMed  Google Scholar 

  36. Xiong Y, Shie FS, Zhang J, Lee CP, Ho YS. Prevention of mitochondrial dysfunction in post-traumatic mouse brain by superoxide dismutase. J Neurochem. 2005;95:732–44.

    Article  CAS  PubMed  Google Scholar 

  37. Hall ED, McCall JM, Means ED. Therapeutic potential of the lazaroids (21-aminosteroids) in acute central nervous system trauma, ischemia and subarachnoid hemorrhage. Adv Pharmacol. 1994;28:221–68.

    Article  CAS  PubMed  Google Scholar 

  38. Hall ED, Yonkers PA, McCall JM, Braughler JM. Effects of the 21-aminosteroid U74006F on experimental head injury in mice. J Neurosurg. 1988;68:456–61.

    Article  CAS  PubMed  Google Scholar 

  39. McIntosh TK, Thomas M, Smith D, Banbury M. The novel 21-aminosteroid U74006F attenuates cerebral edema and improves survival after brain injury in the rat. J Neurotrauma. 1992;9:33–46.

    Article  CAS  PubMed  Google Scholar 

  40. Dimlich RV, Tornheim PA, Kindel RM, Hall ED, Braughler JM, McCall JM. Effects of a 21-aminosteroid (U-74006F) on cerebral metabolites and edema after severe experimental head trauma. Adv Neurol. 1990;52:365–75.

    CAS  PubMed  Google Scholar 

  41. Hall ED, Yonkers PA, Andrus PK, Cox JW, Anderson DK. Biochemistry and pharmacology of lipid antioxidants in acute brain and spinal cord injury. J Neurotrauma. 1992;9(Suppl 2):S425–42.

    PubMed  Google Scholar 

  42. Smith SL, Andrus PK, Zhang JR, Hall ED. Direct measurement of hydroxyl radicals, lipid peroxidation, and blood-brain barrier disruption following unilateral cortical impact head injury in the rat. J Neurotrauma. 1994;11:393–404.

    Article  CAS  PubMed  Google Scholar 

  43. Marshall LF, Maas AI, Marshall SB, et al. A multicenter trial on the efficacy of using tirilazad mesylate in cases of head injury. J Neurosurg. 1998;89:519–25.

    Article  CAS  PubMed  Google Scholar 

  44. Kassell NF, Haley EC Jr, Apperson-Hansen C, Alves WM. Randomized, double-blind, vehicle-controlled trial of tirilazad mesylate in patients with aneurysmal subarachnoid hemorrhage: a cooperative study in Europe, Australia, and New Zealand. J Neurosurg. 1996;84:221–8.

    Article  CAS  PubMed  Google Scholar 

  45. Lanzino G, Kassell NF. Double-blind, randomized, vehicle-controlled study of high-dose tirilazad mesylate in women with aneurysmal subarachnoid hemorrhage. Part II. A cooperative study in North America. J Neurosurg. 1999;90:1018–24.

    Article  CAS  PubMed  Google Scholar 

  46. Kim K, Priefer R. Evaluation of current post-concussion protocols. Biomed Pharmacother. 2020;129:110406.

    Article  CAS  PubMed  Google Scholar 

  47. Di Pietro V, Yakoub KM, Caruso G, et al. Antioxidant therapies in traumatic brain injury. Antioxidants (Basel). 2020;9(3):260.

    Article  CAS  Google Scholar 

  48. Hall ED, Detloff MR, Johnson K, Kupina NC. Peroxynitrite-mediated protein nitration and lipid peroxidation in a mouse model of traumatic brain injury. J Neurotrauma. 2004;21:9–20.

    Article  PubMed  Google Scholar 

  49. Oliver JM, Jones MT, Kirk KM, et al. Effect of docosahexaenoic acid on a biomarker of head trauma in American football. Med Sci Sports Exerc. 2016;48:974–82.

    Article  CAS  PubMed  Google Scholar 

  50. Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol. 2007;47:89–116.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang DD. Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab Rev. 2006;38:769–89.

    Article  CAS  PubMed  Google Scholar 

  52. Miller DM, Wang JA, Buchanan AK, Hall ED. Temporal and spatial dynamics of nrf2-antioxidant response elements mediated gene targets in cortex and hippocampus after controlled cortical impact traumatic brain injury in mice. J Neurotrauma. 2014;31:1194–201.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wang X, de Rivero Vaccari JP, Wang H, et al. Activation of the nuclear factor E2-related factor 2/antioxidant response element pathway is neuroprotective after spinal cord injury. J Neurotrauma. 2012;29:936–45.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Yan W, Wang HD, Hu ZG, Wang QF, Yin HX. Activation of Nrf2-ARE pathway in brain after traumatic brain injury. Neurosci Lett. 2008;431:150–4.

    Article  CAS  PubMed  Google Scholar 

  55. Hong SC, Goto Y, Lanzino G, Soleau S, Kassell NF, Lee KS. Neuroprotection with a calpain inhibitor in a model of focal cerebral ischemia. Stroke. 1994;25:663–9.

    Article  CAS  PubMed  Google Scholar 

  56. Dash PK, Zhao J, Orsi SA, Zhang M, Moore AN. Sulforaphane improves cognitive function administered following traumatic brain injury. Neurosci Lett. 2009;460:103–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen G, Fang Q, Zhang J, Zhou D, Wang Z. Role of the Nrf2-ARE pathway in early brain injury after experimental subarachnoid hemorrhage. J Neurosci Res. 2011;89:515–23.

    Article  CAS  PubMed  Google Scholar 

  58. Satoh T, Kosaka K, Itoh K, et al. Carnosic acid, a catechol-type electrophilic compound, protects neurons both in vitro and in vivo through activation of the Keap1/Nrf2 pathway via S-alkylation of targeted cysteines on Keap1. J Neurochem. 2008;104:1116–31.

    Article  CAS  PubMed  Google Scholar 

  59. Miller DM, Singh IN, Wang JA, Hall ED. Nrf2-ARE activator carnosic acid decreases mitochondrial dysfunction, oxidative damage and neuronal cytoskeletal degradation following traumatic brain injury in mice. Exp Neurol. 2015;264:103–10.

    Article  CAS  PubMed  Google Scholar 

  60. Maynard ME, Underwood EL, Redell JB, et al. Carnosic acid improves outcome after repetitive mild traumatic brain injury. J Neurotrauma. 2019;36:2147–52.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Althaus JS, Oien TT, Fici GJ, Scherch HM, Sethy VH, VonVoigtlander PF. Structure activity relationships of peroxynitrite scavengers an approach to nitric oxide neurotoxicity. Res Commun Chem Pathol Pharmacol. 1994;83:243–54.

    CAS  PubMed  Google Scholar 

  62. Singh IN, Sullivan PG, Hall ED. Peroxynitrite-mediated oxidative damage to brain mitochondria: protective effects of peroxynitrite scavengers. J Neurosci Res. 2007;85:2216–23.

    Article  CAS  PubMed  Google Scholar 

  63. Wood PL, Khan MA, Moskal JR. Mechanism of action of the disease-modifying anti-arthritic thiol agents D-penicillamine and sodium aurothiomalate: restoration of cellular free thiols and sequestration of reactive aldehydes. Eur J Pharmacol. 2008;580:48–54.

    Article  CAS  PubMed  Google Scholar 

  64. Hall ED, Kupina NC, Althaus JS. Peroxynitrite scavengers for the acute treatment of traumatic brain injury. Ann N Y Acad Sci. 1999;890:462–8.

    Article  CAS  PubMed  Google Scholar 

  65. Chen Z, Park J, Butler B, et al. Mitigation of sensory and motor deficits by acrolein scavenger phenelzine in a rat model of spinal cord contusive injury. J Neurochem. 2016;138:328–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wood PL, Khan MA, Moskal JR, Todd KG, Tanay VA, Baker G. Aldehyde load in ischemia-reperfusion brain injury: neuroprotection by neutralization of reactive aldehydes with phenelzine. Brain Res. 2006;1122:184–90.

    Article  CAS  PubMed  Google Scholar 

  67. Singh IN, Gilmer LK, Miller DM, Cebak JE, Wang JA, Hall ED. Phenelzine mitochondrial functional preservation and neuroprotection after traumatic brain injury related to scavenging of the lipid peroxidation-derived aldehyde 4-hydroxy-2-nonenal. J Cereb Blood Flow Metab. 2013;33:593–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cebak JE, Singh IN, Hill RL, Wang JA, Hall ED. Phenelzine protects brain mitochondrial function in vitro and in vivo following traumatic brain injury by scavenging the reactive carbonyls 4-hydroxynonenal and acrolein leading to cortical histological neuroprotection. J Neurotrauma. 2017;34:1302–17.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hill RL, Singh IN, Wang JA, Hall ED. Effects of phenelzine administration on mitochondrial function, calcium handling, and cytoskeletal degradation after experimental traumatic brain injury. J Neurotrauma. 2019;36:1231–51.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Galvani S, Coatrieux C, Elbaz M, et al. Carbonyl scavenger and antiatherogenic effects of hydrazine derivatives. Free Radic Biol Med. 2008;45:1457–67.

    Article  CAS  PubMed  Google Scholar 

  71. Hamann K, Nehrt G, Ouyang H, Duerstock B, Shi R. Hydralazine inhibits compression and acrolein-mediated injuries in ex vivo spinal cord. J Neurochem. 2008;104:708–18.

    CAS  PubMed  Google Scholar 

  72. Park J, Zheng L, Marquis A, et al. Neuroprotective role of hydralazine in rat spinal cord injury-attenuation of acrolein-mediated damage. J Neurochem. 2014;129:339–49.

    Article  CAS  PubMed  Google Scholar 

  73. Kmieciak-Kolada K, Felinska W, Stachura Z, Majchrzak H, Herman ZS. Concentration of biogenic amines and their metabolites in different parts of brain after experimental cerebral concussion. Pol J Pharmacol Pharm. 1987;39:47–53.

    CAS  PubMed  Google Scholar 

  74. Kline AE, Yu J, Massucci JL, Zafonte RD, Dixon CE. Protective effects of the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin against traumatic brain injury-induced cognitive deficits and neuropathology in adult male rats. Neurosci Lett. 2002;333:179–82.

    Article  CAS  PubMed  Google Scholar 

  75. Kosari-Nasab M, Shokouhi G, Azarfarin M, Bannazadeh Amirkhiz M, Mesgari Abbasi M, Salari AA. Serotonin 5-HT1A receptors modulate depression-related symptoms following mild traumatic brain injury in male adult mice. Metab Brain Dis. 2019;34:575–82.

    Article  CAS  PubMed  Google Scholar 

  76. Trujillo P, van Wouwe NC, Lin YC, et al. Dopamine effects on frontal cortical blood flow and motor inhibition in Parkinson's disease. Cortex. 2019;115:99–111.

    Article  PubMed  PubMed Central  Google Scholar 

  77. McNamara CG, Dupret D. Two sources of dopamine for the hippocampus. Trends Neurosci. 2017;40:383–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Howe MW, Tierney PL, Sandberg SG, Phillips PE, Graybiel AM. Prolonged dopamine signalling in striatum signals proximity and value of distant rewards. Nature. 2013;500:575–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sawaguchi T, Goldman-Rakic PS. D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science. 1991;251:947–50.

    Article  CAS  PubMed  Google Scholar 

  80. Levey AI, Hersch SM, Rye DB, et al. Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies. Proc Natl Acad Sci U S A. 1993;90:8861–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lan YL, Li S, Lou JC, Ma XC, Zhang B. The potential roles of dopamine in traumatic brain injury: a preclinical and clinical update. Am J Transl Res. 2019;11:2616–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Abrahams S, McFie S, Lacerda M, et al. Unravelling the interaction between the DRD2 and DRD4 genes, personality traits and concussion risk. BMJ Open Sport Exerc Med. 2019;5(1):e000465.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Bales JW, Kline AE, Wagner AK, Dixon CE. Targeting dopamine in acute traumatic brain injury. Open Drug Discov J. 2010;2:119–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Flashman LA, McDonald BC, Ford JC, et al. Differential effects of pergolide and bromocriptine on working memory performance and brain activation after mild traumatic brain injury. J Neurotrauma. 2021;38:225–34.

    PubMed  Google Scholar 

  85. Reddy CC, Collins M, Lovell M, Kontos AP. Efficacy of amantadine treatment on symptoms and neurocognitive performance among adolescents following sports-related concussion. J Head Trauma Rehabil. 2013;28:260–5.

    Article  PubMed  Google Scholar 

  86. Farnebo LO, Fuxe K, Goldstein M, Hamberger B, Ungerstedt U. Dopamine and noradrenaline releasing action of amantadine in the central and peripheral nervous system: a possible mode of action in Parkinson's disease. Eur J Pharmacol. 1971;16:27–38.

    Article  CAS  PubMed  Google Scholar 

  87. Mizoguchi K, Yokoo H, Yoshida M, Tanaka T, Tanaka M. Amantadine increases the extracellular dopamine levels in the striatum by re-uptake inhibition and by N-methyl-D-aspartate antagonism. Brain Res. 1994;662:255–8.

    Article  CAS  PubMed  Google Scholar 

  88. Seifert TD, Evans RW. Posttraumatic headache: a review. Curr Pain Headache Rep. 2010;14:292–8.

    Article  PubMed  Google Scholar 

  89. Blume HK, Vavilala MS, Jaffe KM, et al. Headache after pediatric traumatic brain injury: a cohort study. Pediatrics. 2012;129:e31–9.

    Article  PubMed  Google Scholar 

  90. Faux S, Sheedy J. A prospective controlled study in the prevalence of posttraumatic headache following mild traumatic brain injury. Pain Med. 2008;9:1001–11.

    Article  CAS  PubMed  Google Scholar 

  91. Bresee N, Aglipay M, Dubrovsky AS, et al. No association between metoclopramide treatment in ED and reduced risk of post-concussion headache. Am J Emerg Med. 2018;36:2225–31.

    Article  PubMed  Google Scholar 

  92. Friedman BW, Babbush K, Irizarry E, White D, John GE. An exploratory study of IV metoclopramide+diphenhydramine for acute post-traumatic headache. Am J Emerg Med. 2018;36:285–9.

    Article  PubMed  Google Scholar 

  93. Minces V, Pinto L, Dan Y, Chiba AA. Cholinergic shaping of neural correlations. Proc Natl Acad Sci U S A. 2017;114:5725–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sarter M, Hasselmo ME, Bruno JP, Givens B. Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection. Brain Res Brain Res Rev. 2005;48:98–111.

    Article  CAS  PubMed  Google Scholar 

  95. Xu M, Chung S, Zhang S, et al. Basal forebrain circuit for sleep-wake control. Nat Neurosci. 2015;18:1641–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Szymusiak R. Magnocellular nuclei of the basal forebrain: substrates of sleep and arousal regulation. Sleep. 1995;18:478–500.

    Article  CAS  PubMed  Google Scholar 

  97. Bertrand D, Wallace TL. A review of the cholinergic system and therapeutic approaches to treat brain disorders. Curr Top Behav Neurosci. 2020;45:1–28.

    Article  CAS  PubMed  Google Scholar 

  98. McAllister TW, Zafonte R, Jain S, et al. Randomized placebo-controlled trial of methylphenidate or galantamine for persistent emotional and cognitive symptoms associated with PTSD and/or traumatic brain injury. Neuropsychopharmacology. 2016;41:1191–8.

    Article  CAS  PubMed  Google Scholar 

  99. Tenovuo O. Central acetylcholinesterase inhibitors in the treatment of chronic traumatic brain injury-clinical experience in 111 patients. Prog Neuro-Psychopharmacol Biol Psychiatry. 2005;29:61–7.

    Article  CAS  Google Scholar 

  100. Razay G, Wilcock GK. Galantamine in Alzheimer's disease. Expert Rev Neurother. 2008;8:9–17.

    Article  CAS  PubMed  Google Scholar 

  101. Bjorklund A, Dunnett SB. Dopamine neuron systems in the brain: an update. Trends Neurosci. 2007;30:194–202.

    Article  PubMed  CAS  Google Scholar 

  102. Li X, Yu B, Sun Q, et al. Generation of a whole-brain atlas for the cholinergic system and mesoscopic projectome analysis of basal forebrain cholinergic neurons. Proc Natl Acad Sci U S A. 2018;115:415–20.

    Article  CAS  PubMed  Google Scholar 

  103. Abikoff H, Hechtman L, Klein RG, et al. Symptomatic improvement in children with ADHD treated with long-term methylphenidate and multimodal psychosocial treatment. J Am Acad Child Adolesc Psychiatry. 2004;43:802–11.

    Article  PubMed  Google Scholar 

  104. Volkow ND, Ding YS, Fowler JS, et al. Is methylphenidate like cocaine? Studies on their pharmacokinetics and distribution in the human brain. Arch Gen Psychiatry. 1995;52:456–63.

    Article  CAS  PubMed  Google Scholar 

  105. Al-Adawi S, Al-Naamani A, Jaju S, et al. Methylphenidate improves executive functions in patients with traumatic brain injuries: a feasibility trial via the idiographic approach. BMC Neurol. 2020;20:103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mostert JP, Koch MW, Heerings M, Heersema DJ, De Keyser J. Therapeutic potential of fluoxetine in neurological disorders. CNS Neurosci Ther. 2008;14:153–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Fann JR, Uomoto JM, Katon WJ. Sertraline in the treatment of major depression following mild traumatic brain injury. J Neuropsychiatry Clin Neurosci. 2000;12:226–32.

    Article  CAS  PubMed  Google Scholar 

  108. Ashman TA, Cantor JB, Gordon WA, et al. A randomized controlled trial of sertraline for the treatment of depression in persons with traumatic brain injury. Arch Phys Med Rehabil. 2009;90:733–40.

    Article  PubMed  Google Scholar 

  109. Rapoport MJ, Chan F, Lanctot K, Herrmann N, McCullagh S, Feinstein A. An open-label study of citalopram for major depression following traumatic brain injury. J Psychopharmacol. 2008;22:860–4.

    Article  CAS  PubMed  Google Scholar 

  110. Yan L, Xu X, He Z, et al. Antidepressant-like effects and cognitive enhancement of coadministration of Chaihu Shugan San and fluoxetine: dependent on the BDNF-ERK-CREB signaling pathway in the hippocampus and frontal cortex. Biomed Res Int. 2020;2020:2794263.

    PubMed  PubMed Central  Google Scholar 

  111. Levy MJF, Boulle F, Emerit MB, et al. 5-HTT independent effects of fluoxetine on neuroplasticity. Sci Rep. 2019;9:6311.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Kosari-Nasab M, Shokouhi G, Ghorbanihaghjo A, Abbasi MM, Salari AA. Anxiolytic- and antidepressant-like effects of Silymarin compared to diazepam and fluoxetine in a mouse model of mild traumatic brain injury. Toxicol Appl Pharmacol. 2018;338:159–73.

    Article  CAS  PubMed  Google Scholar 

  113. Ebert SE, Jensen P, Ozenne B, et al. Molecular imaging of neuroinflammation in patients after mild traumatic brain injury: a longitudinal (123) I-CLINDE single photon emission computed tomography study. Eur J Neurol. 2019;26:1426–32.

    Article  CAS  PubMed  Google Scholar 

  114. Lawrence DW, Foster E, Comper P, et al. Cannabis, alcohol and cigarette use during the acute post-concussion period. Brain Inj. 2020;34:42–51.

    Article  PubMed  Google Scholar 

  115. Mackie K. Cannabinoid receptors: where they are and what they do. J Neuroendocrinol. 2008;20(Suppl 1):10–4.

    Article  CAS  PubMed  Google Scholar 

  116. Cabral GA, Raborn ES, Griffin L, Dennis J, Marciano-Cabral F. CB2 receptors in the brain: role in central immune function. Br J Pharmacol. 2008;153:240–51.

    Article  CAS  PubMed  Google Scholar 

  117. Singh J, Neary JP. Neuroprotection following concussion: the potential role for cannabidiol. Can J Neurol Sci. 2020;47:289–300.

    Article  PubMed  Google Scholar 

  118. Elliott MB, Ward SJ, Abood ME, Tuma RF, Jallo JI. Understanding the endocannabinoid system as a modulator of the trigeminal pain response to concussion. Concussion. 2017;2:CNC49.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Benitez-Angeles M, Morales-Lazaro SL, Juarez-Gonzalez E, Rosenbaum T. TRPV1: structure, endogenous agonists, and mechanisms. Int J Mol Sci. 2020;21:3421.

    Article  CAS  PubMed Central  Google Scholar 

  120. Hammond FM, Sherer M, Malec JF, et al. Amantadine effect on perceptions of irritability after traumatic brain injury: results of the amantadine irritability multisite study. J Neurotrauma. 2015;32:1230–8.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Silver JM, Koumaras B, Chen M, et al. Effects of rivastigmine on cognitive function in patients with traumatic brain injury. Neurology. 2006;67:748–55.

    Article  CAS  PubMed  Google Scholar 

  122. Polich G, Iaccarino MA, Kaptchuk TJ, Morales-Quezada L, Zafonte R. Placebo effects in traumatic brain injury. J Neurotrauma. 2018;35:1205–12.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Hall ED, Wang JA, Miller DM, et al. Newer pharmacological approaches for antioxidant neuroprotection in traumatic brain injury. Neuropharmacology. 2019;145(B):247–58.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward D. Hall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hall, E.D., Park, E., Baker, A.J. (2022). Pharmacological Therapies for Concussions. In: Schweizer, T.A., Baker, A.J. (eds) Tackling the Concussion Epidemic. Springer, Cham. https://doi.org/10.1007/978-3-030-93813-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93813-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93812-3

  • Online ISBN: 978-3-030-93813-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics