Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1014))

Abstract

Powerful deep learning algorithms open an opportunity for solving non-image Machine Learning (ML) problems by transforming these problems into the image recognition problems. The CPC-R algorithm presented in this chapter converts non-image data into images by visualizing non-image data. Then deep learning CNN algorithms solve the learning problems on these images. The design of the CPC-R algorithm allows preserving all high-dimensional information in 2-D images. The use of pair values mapping instead of single value mapping used in the alternative approaches allows encoding each n-D point with 2 times fewer visual elements. The attributes of an n-D point are divided into pairs of its values and each pair is visualized as 2-D points in the same 2-D Cartesian coordinates. Next, grey scale or color intensity values are assigned to each pair to encode the order of pairs. This is resulted in the heatmap image. The computational experiments with CPC-R are conducted for different CNN architectures, and methods to optimize the CPC-R images showing that the combined CPC-R and deep learning CNN algorithms are able to solve non-image ML problems reaching high accuracy on the benchmark datasets. This chapter expands our prior work by adding more experiments to test accuracy of classification, exploring saliency and informativeness of discovered features to test their interpretability, and generalizing the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dovhalets, D., Kovalerchuk, B., Vajda, S., Andonie, R.: Deep learning of 2-D images representing n-D data in general line coordinates. In: Intern. Symp. on Affective Science and Engineering, pp. 1–6 (2018). https://www.jstage.jst.go.jp/article/isase/ISASE2018/0/ISASE2018_1_18/_pdf

  2. Sharma, A., Vans, E., Shigemizu, D., Boroevich, K.A., Tsunoda, T.: Deep insight: a methodology to transform a non-image data to an image for convolution neural network architecture. Nat. Sci. Rep. 9(1), 1–7 (2019)

    Google Scholar 

  3. Kovalerchuk, B., Agrawal, B., Kalla, D.: Solving non-image learning problems by mapping to images, 24th International Conference Information Visualisation, Melbourne, Victoria, Australia (2020), pp. 264–269, IEEE. https://doi.org/10.1109/IV51561.2020.00050

  4. van der Maaten, L.: Dos and don'ts of using t-SNE to understand vision models, CVPR 2018, Tutorial

    Google Scholar 

  5. Rodrigues, N.M., Batista, J.E., Trujillo, L., Duarte, B., Giacobini, M., Vanneschi, L., Silva, S.: Plotting time: on the usage of CNNs for time series classification (2021). arXiv:2102.04179

  6. Sharma, A., Kumar, D.: Non-image data classification with convolutional neural networks (2020). arXiv:2007.03218

  7. Kovalerchuk, B.: Visual knowledge discovery and machine learning. Springer (2018)

    Google Scholar 

  8. Wolberg, W., Mangasarian, O.: UCI ML repository: Breast Cancer Wisconsin Data Set (1991). https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+%28original%29

  9. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: 31st AAAI Conference on Artificial Intelligence (2017), https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/viewPDFInterstitial/14806/14311

  10. LeCun, Y., Bottou, L., Bengio, Y.: Gradient-based learning applied to document recognition. IEEE Proc. 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  11. Balasubramanian, M., Schwartz, E.L.: The isomap algorithm and topological stability. Science 295(5552), 7–7 (2002)

    Article  Google Scholar 

  12. Asuncion, A., Newman, D.: Ionosphere data set (2007). https://archive.ics.uci.edu/ml/datasets/Ionosphere

  13. Spiehler, V.: Glass identification data set (1987). https://archive.ics.uci.edu/ml/datasets/Glass+Identification

  14. Bohanec, M., Zupan, B.: UCI machine learning repository: car evaluation data set (1997). https://archive.ics.uci.edu/ml/datasets/car+evaluation

  15. Ernst, N.: Saliency map. Scholarpedia 2(8), 2675 (2007)

    Article  Google Scholar 

  16. Radhakrishna, A., Sabine, S.: Saliency detection for content-aware image resizing. In: 2009 16th IEEE International Conference on Image Processing (ICIP), pp. 1005–1008. IEEE (2009)

    Google Scholar 

  17. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps (2013). arXiv:1312.6034

  18. Seunghoon, H., Tackgeun, Y., Suha, K., Bohyung, H.: Online tracking by learning discriminative saliency map with convolutional neural network. In: International on Conference on Machine Learning, pp. 597–606. PMLR (2015)

    Google Scholar 

  19. Kotikalapudi, Raghavendra and contributors, Keras-vis (2017). https://github.com/raghakot/keras-vis

  20. Selvaraju Ramprasaath, R., Michael, C., Abhishek, D., Ramakrishna, V., Devi, P., Dhruv, B.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  21. Schreiber, A.: Saliency maps for deep learning, Part 1: Vanilla Gradient (2019). https://andrewschrbr.medium.com/saliency-maps-for-deep-learning-part-1-vanilla-gradient-1d0665de3284

  22. Kim, B., Seo, J., Jeon, S., Koo, J., Choe, J., Jeon, T.: Why are saliency maps noisy? Cause of and solution to noisy saliency maps. In: IEEE CVF International Conference on Computer Vision Workshop, pp. 4149–4157 (2019)

    Google Scholar 

  23. He, S., Lau, R.W., Liu, W., Huang, Z., Yang, Q.: SuperCNN: a superpixelwise convolutional neural network for salient object detection. Int. J. Comput. Vision 115(3), 330–344 (2015)

    Article  MathSciNet  Google Scholar 

  24. Kovalerchuk, B., Gharawi, A.: Decreasing occlusion and increasing explanation in interactive visual knowledge discovery. In: International Conference on Human Interface and the Management of Information, pp. 505–526. Springer (2018)

    Google Scholar 

  25. Van Der Maaten, L., Postma, E., Van den Herik, J.: Dimensionality reduction: a comparative. J Mach Learn Res. 10(66–71), 13 (2009)

    Google Scholar 

  26. Smilkov, D., Carter, S., Sculley, D., Viégas, F.B., Wattenberg, M.: Direct-manipulation visualization of deep networks (2017). arXiv:1708.03788

  27. Aldayel, M.S.: K-Nearest Neighbor classification for glass identification problem. In: 2012 International Conference on Computer Systems and Industrial Informatics, pp. 1–5. IEEE (2012)

    Google Scholar 

  28. Khan, M.M., Arif, R.B., Siddique, M.A., Oishe, M.R.: Study and observation of the variation of accuracies of KNN, SVM, LMNN, ENN algorithms on eleven different datasets from UCI machine learning repository. In: 2018 4th International Conference on iCEEiCT, pp. 124–129. IEEE (2018)

    Google Scholar 

  29. Mohit, R.R., Katoch, S., Vanjare, A., Omkar, S.N.: Classification of complex UCI datasets using machine learning algorithms using hadoop. In: IJCSSE, vol. 4, pp. 190–198 (2015)

    Google Scholar 

  30. Prachuabsupakij, W., Soonthornphisaj, N.: Clustering and combined sampling approaches for multi-class imbalanced data classification. In: Advances in IT and Industry Applications, pp. 717–724. Springer (2012)

    Google Scholar 

  31. Becker, S., Marcon, M., Ghafoor, S., Wurnig, C., Frauenfelder, T., Boss, A.: Deep learning in mammography: diagnostic accuracy of a multipurpose image analysis software in the detection of breast cancer. Invest. Radiol. 52(7), 434–440 (2017)

    Article  Google Scholar 

  32. Junbao, L., Tingting, W., Huayou, S.: Dws-mkl: Depth-width-scaling multiple kernel learning for data classification. Neurocomputing 411, 455–467 (2020)

    Article  Google Scholar 

  33. Eklund, P., Hoang, A.: A performance survey of public domain supervised machine learning algorithms. Austr. J. Intell. Inform. Syst. 9(1), 1–47 (2002)

    Google Scholar 

  34. Ding, S., Zhang, N., Xu, X., Guo, L., Zhang, J.: Deep extreme learning machine and its application in EEG classification. Math. Probl. Eng. (2015)

    Google Scholar 

  35. El-Khatib, M.J., Abu-Nasser, B.S., Abu-Naser, S.S.: Glass Classification using Artificial Neural Network (2019). http://dstore.alazhar.edu.ps/xmlui/bitstream/handle/123456789/144/ELKGCUv1.pdf?sequence=1&isAllowed=y

  36. Arora, R.: Comparative analysis of classification algorithms on different datasets using Weka. Int. J. Comp. Appl. 54(13) (2012)

    Google Scholar 

  37. Awwalu, J., Ghazvini, A., Bakar, A.A.: Performance comparison of data mining algorithms: a case study on car evaluation dataset. Int. J. Comput. Trends Technol. 13(2) (2014)

    Google Scholar 

  38. Yang, L., Luo, P., Change Loy, C., Tang, X.: A large-scale car dataset for fine-grained categorization and verification. In: Proceedings of the IEEE CVPR Conference, pp. 3973–3981 (2015)

    Google Scholar 

  39. Braun J.: On Kolmogorov's Superposition Theorem and its Applications, p. 192. SVH Verlag (2010)

    Google Scholar 

  40. Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: 19th SIGKDD, pp. 623–631. ACM (2013)

    Google Scholar 

  41. Kovalerchuk, B., Phan, H.: Full interpretable machine learning in 2D with inline coordinates. In: 25th International Conference Information Visualisation, Australia (2021) Vol. 1, pp. 189-196, IEEE, https://doi.org/10.1109/IV53921.2021.00038

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Kovalerchuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kovalerchuk, B., Kalla, D.C., Agarwal, B. (2022). Deep Learning Image Recognition for Non-images. In: Kovalerchuk, B., Nazemi, K., Andonie, R., Datia, N., Banissi, E. (eds) Integrating Artificial Intelligence and Visualization for Visual Knowledge Discovery. Studies in Computational Intelligence, vol 1014. Springer, Cham. https://doi.org/10.1007/978-3-030-93119-3_3

Download citation

Publish with us

Policies and ethics