Skip to main content

Using Hybrid Scatterplots for Visualizing Multi-dimensional Data

  • Chapter
  • First Online:
Integrating Artificial Intelligence and Visualization for Visual Knowledge Discovery

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1014))

  • 591 Accesses

Abstract

Scatterplot visualization techniques are known as a useful method that shows the correlations of variables on the axes, as well as revealing patterns or abnormalities in the multidimensional data sets. They are often used in the early stage of the exploratory analysis. Scatterplot techniques have the drawback that they are not quite effective in showing a high number of dimensions where each plot in two-dimensional space can only present a pair-wise of two variables on the x-axis and y-axis. Scatterplot matrices and multiple scatterplots provide more plots that show more pair-wise variables, yet also compromise the space due to the space division for the plots. This chapter presents a comprehensive review of multi-dimensional visualization methods. We introduce a hybrid model to support multidimensional data visualization from which we present a hybrid scatterplots visualization to enable the greater capability of individual scatterplots in showing more information. Particularly, we integrate star plots with scatterplots for showing the selected attributes on each item for better comparison among and within individual items, while using scatterplots to show the correlation among the data items. We also demonstrate the effectiveness of this hybrid method through two case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dzemyda, G., Kurasova, O., Zilinskas, J.: Multidimensional Data Visualization: Methods and Applications. Springer, Berlin (2012)

    Google Scholar 

  2. Ward, M.O.: A taxonomy of glyph placement strategies for multidimensional data visualization. Inf. Vis. 1, 194–210 (2002)

    Article  Google Scholar 

  3. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7, 179–188 (1936)

    Article  Google Scholar 

  4. Konstorum, A., Jekel, N., Vidal, E., Laubenbacher, R.: Comparative analysis of linear and nonlinear dimension reduction techniques on mass cytometry data. bioRxiv, 273862 (2018). https://doi.org/10.1101/273862

  5. Schölkopf, B., Smola, A., Müller, K.R.: Kernel principal component analysis. In: Artificial Neural Networks—ICANN‘97, (1997)

    Google Scholar 

  6. Borg, I., Groenen, P.J.F.: Modern Multidimensional Scaling: Theory and Applications. Springer, New York (2005)

    MATH  Google Scholar 

  7. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15, 373–1396 (2003)

    Article  Google Scholar 

  8. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  9. Van der Maaten L, Hinton G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    Google Scholar 

  10. McInnes, L., Healy, J., Melville, J.: UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv:1802.03426 (2018). [stat.ML]

  11. Sumithra, V., Surendran, S.: A review of various linear and non linear dimensionality reduction techniques. Int. J. Comput. Sci. Inf. Technol. 6, 2354–2360 (2015)

    Google Scholar 

  12. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20, 832–844 (1998)

    Article  Google Scholar 

  13. Trutschl, M., Cvek, U., Grinstein, G.: Intelligently resolving Point Occlusion. In: IEEE Symposium On Infomation Visualization, pp. 131–136. Seattle, WA (2003)

    Google Scholar 

  14. Liu, S., Maljovec, D., Wang, W., Bremer, P.T., Pascucci, V.: Visualizing high-dimensional data: advances in the past decade. IEEE Trans. Vis. Comput. Graph. 23, 1249–1268 (2017)

    Article  Google Scholar 

  15. Ward, M.O.: XmdvTool: integrating multiple methods for visualizing multivariate data. In: Proceedings of the Conference on Visualization. Los Alamitos, CA (1994)

    Google Scholar 

  16. Becker, R.A., Cleveland, W.S., Shyu, M.J.: The design and control of trellis display. J. Comput. Stat. Graph. 5, 123–155 (1996)

    Google Scholar 

  17. Steed, C.A., Ricciuto, D.M., Shipman, G., Smith, B., Thornton, P.E., Wang, D., Shi, X., Williams, D.N.: Big data visual analytics for exploratory earth system simulation analysis. Comput. Geosci. 61, 71–82 (2013)

    Article  Google Scholar 

  18. Chambers, J., Cleveland, W., Kleiner, B., Tukey, P.: Graphical Methods for Data Analysis. Wadsworth (1983)

    Google Scholar 

  19. Sangli, S., Kaur, G., Karki, B.B.: Star plot visualization of ultrahigh dimensional multivariate data. In: International Conference on Advances in Big Data Analytics, pp. 91–97 (2016)

    Google Scholar 

  20. Chernoff, H.: The use of faces to represent points in k-dimensional space graphically. J. Am. Stat. Assoc. 68, 361–368 (1973)

    Article  Google Scholar 

  21. Chambers, J.M.: Graphical Methods for Data Analysis (Statistics). Chapman & Hall, CRC (1983)

    Google Scholar 

  22. Nguyen, Q.V., Huang, M.L., Simoff, S.: Enhancing scatter plots with Start-plots for visualising multi-dimensional data. In: 24th International Conference on Information Visualisation, pp. 80–85 (2020)

    Google Scholar 

  23. Burch, M., Bott, F., Beck, F., Diehl, S.: Cartesian versus radial—a comparative evaluation of two visualization tools. In: International Symposium on Visual Computing, pp. 151–160 (2008)

    Google Scholar 

  24. Packham, I.S.J., Rafiq, M.Y., Borthwick, M.F., Denham, S.L.: Interactive visualisation for decision support and evaluation of robustness—in theory and in practice. Adv. Eng. Inform. 19, 263–280 (2005)

    Article  Google Scholar 

  25. Friendly, M., Denis, D.: The early origins and development of the scatter plot. J. Hist. Behav. Sci. 41, 103–130 (2005)

    Article  Google Scholar 

  26. Sedlmair, M., Munzner, T., Tory, M.: Empirical guidance on scatterplot and dimension reduction technique choices. IEEE Trans. Vis. Comput. Graph. 19, 2634–2643 (2013)

    Article  Google Scholar 

  27. Tory, M., Sprague, D., Wu, F., So, W.Y., Munzner, T.: Spatialization design: comparing points and landscape. IEEE Trans. Vis. Comput. Graph. 13, 1262–1269 (2007)

    Article  Google Scholar 

  28. Tory, M., Swindells, C., Dreezer, R.: Comparing dot and landscape spatialization for visual memory differences. IEEE Trans. Vis. Comput. Graph. 15, 1033–1039 (2009)

    Article  Google Scholar 

  29. Rensink, R.A., Baldridge, G.: The perception of correlation in scatter plot. Comput. Graph. Forum 29, 1203–1210 (2010)

    Article  Google Scholar 

  30. Cleveland, W.S., McGill, R.: The many faces of a scatterplot. J. Am. Stat. Assoc. 79, 807–822 (1984)

    Article  MathSciNet  Google Scholar 

  31. Cui, Q., Ward, M.O., Rundensteiner, E.A.: Enhancing scatterplot matrices for data with ordering or spatial attributes. In: Visualization and Data Analysis (2006)

    Google Scholar 

  32. Nguyen, Q.V., Simoff, S., Qian, Y., Huang, M.L.: Deep exploration of multidimensional data with linkable scatterplots. In: 9th International Symposium on Visual Information Communication and Interaction, pp. 43–50. Dallas, Texas (2016)

    Google Scholar 

  33. Nguyen, Q.V., Qian, Y., Huang, M.L., Zhang, J.: TabuVis: a tool for visual analytics multidimensional datasets. Sci. China Inf. Sci. 052105(12), (2013)

    Google Scholar 

  34. Nguyen, Q.V., Qian, Y., Huang, M.L., Zhang, J.: TabuVis: a light weight visual analytics system for multidimensional data. In: International Symposium on Visual Information Communication and Interaction, pp. 61–64 (2012). https://doi.org/10.1145/2397696.2397705

  35. Nguyen, Q.V., Miller, N., Arness, D., Huang, W., Huang, M.L., Simoff, S.: Evaluation on interactive visualization data with scatterplots. Vis. Inf. (2020). https://doi.org/10.1016/j.visinf.2020.09.004

  36. Huang, M.L., Nguyen, Q.V., Zhang, K. (eds.): Visual Information Communication. Springer, Berlin (2010)

    Google Scholar 

  37. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  38. Bommert, A., Sun, X., Bischl, B., Rahnenführer, J., Lang, M.: Benchmark for filter methods for feature selection in high-dimensional classification data. Comput. Stat. Data Anal. 143, 106839 (2020)

    Google Scholar 

  39. Schölkopf, B., Smola, A., Müller, K.-R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10, 1299–1319 (1998)

    Article  Google Scholar 

  40. Yin, H.: Learning nonlinear principal manifolds by self-organising maps. In: Principal Manifolds for Data Visualization and Dimension Reduction. Lecture Notes in Computer Science and Engineering (LNCSE), vol. 58, pp. 68–95. Springer, Berlin (2007)

    Google Scholar 

  41. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. Adv. Neural. Inf. Process. Syst. 14, 586–691 (2001)

    Google Scholar 

  42. Van der Maaten L, Hinton G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)

    Google Scholar 

  43. McInnes, L., Healy, J., Melville, J.: UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv:180203426 (2018). [stat.ML]

  44. Shneiderman B.: The eyes have it: a task by data type taxonomy for information visualization. In: 1996 IEEE Symposium on Visual Languages, pp. 336–343 (1996)

    Google Scholar 

  45. Nguyen, Q.V., Nelmes, G., Huang, M.L., Simoff, S., Catchpoole, D.: Interactive visualization for patient-to-patient comparison. Genomics Inform. 12, 263–276 (2014)

    Article  Google Scholar 

  46. Nguyen, Q.V., Gleeson, A., Ho, N., Huang, M.L., Simoff, S., Catchpoole, D.: Visual analytics of clinical and genetic datasets of acute lymphoblastic leukaemia. In: 2011 International Conference on Neural Information Processing (ICONIP 2011), pp. 113–120. Shanghai, China (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quang Vinh Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nguyen, Q.V., Huang, M.L., Simoff, S. (2022). Using Hybrid Scatterplots for Visualizing Multi-dimensional Data. In: Kovalerchuk, B., Nazemi, K., Andonie, R., Datia, N., Banissi, E. (eds) Integrating Artificial Intelligence and Visualization for Visual Knowledge Discovery. Studies in Computational Intelligence, vol 1014. Springer, Cham. https://doi.org/10.1007/978-3-030-93119-3_20

Download citation

Publish with us

Policies and ethics