Skip to main content

Implementation of Elliptic Solvers Within ParCS Parallel Framework

  • Conference paper
  • First Online:
Supercomputing (RuSCDays 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1510))

Included in the following conference series:

  • 709 Accesses

Abstract

One of the most important aspects that determine the efficiency of an atmospheric dynamics numerical model is the time integration scheme. It is common to apply semi-implicit integrators, which allow to use larger time steps, but requires solution of a linear elliptic equation at the every time step of a model. We present implementation of linear solvers (geometric multigrid and BICGstab) within ParCS parallel framework, which is used for development of the new non-hydrostatic global atmospheric model at INM RAS and Hydrometcentre of Russia. The efficiency and parallel scalability of the implemented algorithms have been tested for the elliptic problem typical for numerical weather prediction models using semi-implicit discretization at the cubed sphere grid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arakawa, A., Lamb, V.: Computational design of the basic dynamical processes of the UCLA general circulation model, vol. 17, pp. 173–265. Academic Press, New York (1977)

    Google Scholar 

  2. Buckeridge, S., Scheichl, R.: Parallel geometric multigrid for global weather prediction. Numer. Linear Algebra Appl. 17(2–3), 325–342 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Cools, S., Vanroose, W.: The communication-hiding pipelined biCGSTAB method for the parallel solution of large unsymmetric linear systems. Parallel Comput. 65, 1–20 (2017)

    MathSciNet  Google Scholar 

  4. Deconinck, W., et al.: Atlas : a library for numerical weather prediction and climate modelling. Comput. Phys. Commun. 220, 188–204 (2017). https://doi.org/10.1016/j.cpc.2017.07.006

    Google Scholar 

  5. Fedorenko, R.P.: A relaxation method for solving elliptic difference equations. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki 1(5), 922–927 (1961)

    Google Scholar 

  6. Hess, R., Joppich, W.: A comparison of parallel multigrid and a fast fourier transform algorithm for the solution of the helmholtz equation in numerical weather prediction. Parallel Comput. 22(11), 1503–1512 (1997)

    MATH  Google Scholar 

  7. Leslie, L.M., McAVANEY, B.J.: Comparative test of direct and iterative methods for solving helmholtz-type equations. Mon. Weather Rev. 101(3), 235–239 (1973)

    Google Scholar 

  8. Maynard, C., Melvin, T., Müller, E.H.: Multigrid preconditioners for the mixed finite element dynamical core of the lfric atmospheric model. Q. J. R. Meteorol. Soc. 146(733), 3917–3936 (2020)

    Google Scholar 

  9. Müller, E.H., Scheichl, R.: Massively parallel solvers for elliptic partial differential equations in numerical weather and climate prediction. Q. J. R. Meteorol. Soc. 140(685), 2608–2624 (2014)

    Google Scholar 

  10. Rančić, M., Purser, R., Mesinger, F.: A global shallow-water model using an expanded spherical cube: gnomonic versus conformal coordinates. Q. J. R. Meteorol. Soc. 122(532), 959–982 (1996)

    Google Scholar 

  11. Robert, A., Yee, T., Ritchie, H.: A semi-lagrangian and semi-implicit numerical integration scheme for multilevel atmospheric models. Mon. Weather Rev. 113, 388–394 (1985). https://doi.org/10.1175/1520-0493

    Google Scholar 

  12. Sadourny, R.: Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids. Mon. Weather Rev. 100(2), 136–144 (1972). https://doi.org/10.1175/1520-0493

    Google Scholar 

  13. Sandbach, S., Thuburn, J., Vassilev, D., Duda, M.G.: A semi-implicit version of the MPAS-atmosphere dynamical core. Mon. Weather Rev. 143(9), 3838–3855 (2015)

    Google Scholar 

  14. Shashkin, V., Goyman, G.: Parallel efficiency of time-integration strategies for the next generation global weather prediction model. In: Voevodin, V., Sobolev, S. (eds.) Supercomputing, pp. 285–296. Springer International Publishing, Cham (2020)

    Google Scholar 

  15. Shashkin, V.V., Goyman, G.S.: Semi-lagrangian exponential time-integration method for the shallow water equations on the cubed sphere grid. Russ. J. Numer. Anal. Math. Model. 35(6), 355–366 (2020)

    MathSciNet  MATH  Google Scholar 

  16. Tolstykh, M., Goyman, G., Fadeev, R., Shashkin, V.: Structure and algorithms of SL-AV atmosphere model parallel program complex. Lobachevskii J. Math. 39(4), 587–595 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Trottenberg, U., Oosterlee, C.W., Schuller, A.: Multigrid. Elsevier, Amsterdam (2000)

    MATH  Google Scholar 

  18. Van der Vorst, H.A.: Bi-CGSTAB: a fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear systems. SIAM J. sci. Stat. Comput. 13(2), 631–644 (1992)

    MathSciNet  MATH  Google Scholar 

  19. Yang, C., Xue, W., Fu, H., You, H., Wang, X., Ao, Y., Liu, F., Gan, L., Xu, P., Wang, L., et al.: 10m-core scalable fully-implicit solver for nonhydrostatic atmospheric dynamics. In: SC 2016: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 57–68. IEEE (2016)

    Google Scholar 

  20. Yang, L.T., Brent, R.P.: The improved bicgstab method for large and sparse unsymmetric linear systems on parallel distributed memory architectures. In: Fifth International Conference on Algorithms and Architectures for Parallel Processing, pp. 324–328. IEEE (2002)

    Google Scholar 

  21. Yi, T.H.: Time integration of unsteady nonhydrostatic equations with dual time stepping and multigrid methods. J. Comput. Phys. 374, 873–892 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The study was performed at Institute of Numerical Mathematics and supported by the Russian Science Foundation (project 21-71-30023).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goyman, G., Shashkin, V. (2021). Implementation of Elliptic Solvers Within ParCS Parallel Framework. In: Voevodin, V., Sobolev, S. (eds) Supercomputing. RuSCDays 2021. Communications in Computer and Information Science, vol 1510. Springer, Cham. https://doi.org/10.1007/978-3-030-92864-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92864-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92863-6

  • Online ISBN: 978-3-030-92864-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics