Skip to main content

Aerosol Jet Printing of Polymer Optical Waveguides

  • Chapter
  • First Online:
Optical Polymer Waveguides

Abstract

This research presents an advanced fabrication process of aerosol jet printed polymer optical waveguides onto 2D and 3D surfaces. The key advantage of the aerosol printed polymer optical waveguides is the capability of the process to print directly on desired surfaces, which significantly reduced the cost for new/customization production. Comprehensive studies of the optical material selection, printing strategies, printing process optimization and quality characterization of the printed polymer optical waveguide are successfully conducted. With the optimum printing process, the desired aspect ratio of the polymer optical waveguides is obtained at the height to width ratio of ~ 1:5 and contact angle of ~ 45° to 60°. Optical analysis of the printed polymer optical waveguide samples record attenuation rates up to 0.2 dB/cm and transmission rates of 10 Gbit/s. These significant achievements are likely to become a game-changer to the existing metallic conductor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IPC International, Inc.: 2015 IPC International Technology Roadmap for Electronic Interconnections: Part D – Interconnections and Substrates. Section 6 - Electrical and Optical Performance (2015)

    Google Scholar 

  2. Lorenz, L., Ott, L., Nieweglowski, K., Bock, K.: Influence of Temperature Cycling on Asymmetric Optical Bus Couplers. In: IEEE Electronics System-Integration Technology Conference (ESTC)

    Google Scholar 

  3. Eldada, L., Zhu, N., Ruberto, M.N., Levy, M., Scarmozzino, R., Osgood, R.M.: Rapid direct fabrication of active electro-optic modulators in GaAs. J. Lightwave Technol. 12(9), 1588–1596 (1994). https://doi.org/10.1109/50.320941

    Article  Google Scholar 

  4. Chandross, E.A., Pryde, C.A., Tomlinson, W.J., Weber, H.P.: Photolocking-A new technique for fabricating optical waveguide circuits. Appl. Phys. Lett. 24(2), 72–74 (1974). https://doi.org/10.1063/1.1655099

    Article  Google Scholar 

  5. Tian, L., et al.: Polymer/silica hybrid waveguide bragg grating fabricated by UV-photobleaching. IEEE Photon. Technol. Lett. 30(7), 603–606 (2018). https://doi.org/10.1109/LPT.2018.2805843

    Article  Google Scholar 

  6. Verschuren, C.A., Harmsma, P.J., Oei, Y.S., Leys, M.R., Vonk, H., Wolter, J.H.: Butt-coupling loss of 0.1dB/interface in InP/InGaAs MQW waveguide-waveguide structures grown by selective area chemical beam epitaxy. J. Cryst. Growth 188(1–4), 288–294 (1998). https://doi.org/10.1016/S0022-0248(98)00068-2

    Article  Google Scholar 

  7. Ou, H.: Reactive ion etching in silica-on-silicon planar waveguide technology. In: Proc. ECIO (2003)

    Google Scholar 

  8. Vu, K.T., Madden, S.J.: Reactive ion etching of tellurite and chalcogenide waveguides using hydrogen, methane, and argon. J. Vac. Sci. Technol., A: Vac., Surf. Films 29(1), 11023 (2011). https://doi.org/10.1116/1.3528248

    Article  Google Scholar 

  9. van Steenberge, G., Hendrickx, N., Bosman, E., van Erps, J., Thienpont, H., van Daele, P.: Laser ablation of parallel optical interconnect waveguides. IEEE Photon. Technol. Lett. 18(9), 1106–1108 (2006). https://doi.org/10.1109/LPT.2006.873357

    Article  Google Scholar 

  10. Nseowo Udofia, E., Zhou, W.: 3D printed optics with a soft and stretchable optical material. Addit. Manuf. 31, 100912 (2020) https://doi.org/10.1016/j.addma.2019.100912

  11. Saito, Y., Fukagata, K., Ishigure, T.: Fabrication for low-loss polymer optical waveguide with graded-index perfect circular core using the Mosquito method. In: 2016 IEEE CPMT Symposium Japan (ICSJ), Kyoto, 07-Nov-16–09-Nov-16, pp. 147–148

    Google Scholar 

  12. Ishigure, T.: Multimode/single-mode polymer optical waveguide circuit for high-bandwidth-density on-board interconnects. In: Optical Interconnects XV, p. 936802. California, United States, San Francisco (2015)

    Google Scholar 

  13. Ishigure, T., Suganuma, D., Soma, K.: Three-dimensional high density channel integration of polymer optical waveguide using the mosquito method. In: 2014 IEEE 64th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 27-May-14–30-May-14, pp. 1042–1047

    Google Scholar 

  14. Takahashi, A., Ishigure, T.: Fabrication for low-loss polymer optical waveguides with 90° bending using the Mosquito method. In: IEEE CPMT Symposium Japan 2014, Kyoto, Japan, 04-Nov-14–06-Nov-14, pp. 162–165

    Google Scholar 

  15. Kinoshita, R., Suganuma, D., Ishigure, T.: Accurate interchannel pitch control in graded-index circular-core polymer parallel optical waveguide using the mosquito method. Opt. Express 22(7), 8426–8437 (2014). https://doi.org/10.1364/OE.22.008426

    Article  Google Scholar 

  16. Soma, K., Ishigure, T.: Fabrication of a graded-index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board. IEEE J. Select. Topics Quantum Electron. 19(2), 3600310 (2013). https://doi.org/10.1109/JSTQE.2012.2227688

    Article  Google Scholar 

  17. Parekh, D.P., Cormier, D., Dickey, M.D.: Chapter 8: Multifunctional printing: Incorporating electronics into 3D parts made by additive manufacturing. In: Additive manufacturing: Multifunctional Printing: Incorporating Electronics into 3D Parts Made by Additive Manufacturing, A. Bandyopadhyay and S. Bose, Eds., pp. 215–258.

    Google Scholar 

  18. Chappell, J., Hutt, D.A., Conway, P.P.: Variation in the line stability of an inkjet printed optical waveguide-applicable material. In: 2008 2nd Electronics Systemintegration Technology Conference, Greenwich, 01-Sep-08–04-Sep-08, pp. 1267–1272

    Google Scholar 

  19. Klestova, A., Cheplagin, N., Keller, K., Slabov, V., Zaretskaya, G., Vinogradov, A.V.: Inkjet printing of optical waveguides for single-mode operation. Advanced Optical Materials 7(2), 1801113 (2019). https://doi.org/10.1002/adom.201801113

    Article  Google Scholar 

  20. Reitberger, T.: Additive Fertigung polymerer optischer Wellenleiter im Aerosol-Jet-Verfahren. PhD, Lehrstuhl für Fertigungsautomatisierung und Produktionssystematik (FAPS), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen (2020)

    Google Scholar 

  21. Ma, H., Jen, A.K.-Y., Dalton, L.R.: Polymer-based optical waveguides: materials, processing, and devices. Adv. Mater. 14(19), 1339–1365 (2002). https://doi.org/10.1002/1521-4095(20021002)14:19%3c1339::AID-ADMA1339%3e3.0.CO;2-O

    Article  Google Scholar 

  22. Reitberger, T., Hoffmann, G.-A., Wolfer, T., Overmeyer, L., Franke, J.: Printing polymer optical waveguides on conditioned transparent flexible foils by using the aerosol jet technology In: Printed Memory and Circuits II, San Diego, California, United States, 99450G (2016)

    Google Scholar 

  23. Lorenz, L., et al.: Additive waveguide manufacturing for optical bus couplers by aerosol jet printing using conditioned flexible substrates. In: 2017 21st European Microelectronics and Packaging Conference (EMPC) & Exhibition, Warsaw, 10-Sep-17–13-Sep-17, pp. 1–5

    Google Scholar 

  24. OPTOMEC, Aerosol Jet®: Print Engine. User Manual (2018)

    Google Scholar 

  25. Hoffmann, G.-A., Reitberger, T., Franke, J., Overmeyer, L.: Conditioning of surface energy and spray application of optical waveguides for integrated intelligent systems. Procedia Technol. 26, 169–176 (2016). https://doi.org/10.1016/j.protcy.2016.08.023

    Article  Google Scholar 

  26. Harris, J., Stöcker, H.: Handbook of mathematics and computational science. Springer, New York, London (1998)

    Book  MATH  Google Scholar 

  27. Reitberger, T., Loosen, F., Schrauf, A., Lindlein, N., Franke, J.: Important parameters of printed polymer optical waveguides (POWs) in simulation and fabrication. In: Physics and simulation of optoelectronic devices XXV, p. 100981B. California, United States, San Francisco (2017)

    Google Scholar 

  28. Schröder, H., Ebling, F., Starke, E., Himmler, A.: Heißgeprägte Polymerwellenleiter für elektrisch-optische Schaltungsträger (EOCB)‐Technologie und Charakterisierung. In: Proc. DVS/GMM‐Conference, pp. 6–7 (2002)

    Google Scholar 

  29. Bierhoff, T., Sönmez, Y., Schrage, J., Himmler, A., Griese, E., Mrozynski, G.: Influence of the cross sectional shape of board-integrated optical waveguides on the propagation characteristics. In: 6th IEEE-SPI Workshop (2002)

    Google Scholar 

  30. Elson, J.M.: Propagation in planar waveguides and the effects of wall roughness. Opt. Express 9(9), 461–475 (2001). https://doi.org/10.1364/OE.9.000461

    Article  Google Scholar 

  31. Hamjah, M.K., et al.: Manufacturing of polymer optical waveguides for 3D-Opto-MID: Review of the OPTAVER process. In: 14th International Congress MID (2021)

    Google Scholar 

  32. Chen, G., Gu, Y., Tsang, H., Hines, D.R., Das, S.: The effect of droplet sizes on overspray in aerosol-jet printing. Adv. Eng. Mater. 20(8), 1701084 (2018). https://doi.org/10.1002/adem.201701084

    Article  Google Scholar 

  33. Lorenz, L., et al.: Aerosol jet printed optical waveguides for short range communication. J. Lightwave Technol. 38(13), 3478–3484 (2020). https://doi.org/10.1109/JLT.2020.2983792

    Article  Google Scholar 

  34. Wolfer, T., Bollgruen, P., Mager, D., Overmeyer, L., Korvink, J.G.: Printing and preparation of integrated optical waveguides for optronic sensor networks. Mechatronics 34, 119–127 (2016). https://doi.org/10.1016/j.mechatronics.2015.05.004

    Article  Google Scholar 

Download references

Acknowledgement

This research work is funded by the German Research Foundation (DFG) of the research group “Optical integrated circuit packaging for module-integrated bus systems (OPTAVER)” (FOR 1660).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd-Khairulamzari Hamjah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hamjah, MK., Reitberger, T., Lorenz, L., Franke, J. (2022). Aerosol Jet Printing of Polymer Optical Waveguides. In: Franke, J., et al. Optical Polymer Waveguides. Springer, Cham. https://doi.org/10.1007/978-3-030-92854-4_5

Download citation

Publish with us

Policies and ethics