Skip to main content

Geological and Tectonic Setting of Austria

  • Chapter
  • First Online:
Landscapes and Landforms of Austria

Part of the book series: World Geomorphological Landscapes ((WGLC))

Abstract

The landforms of Austria are the direct consequence of a continuous interplay between tectonic and climatic forces that have built, destroyed and reshaped the surface of the most iconic mountain belt on Earth for almost 40 Million years. As such, landforms can only be understood with a thorough geological background. This paper gives an overview of the tectonic evolution, the geological build up and the landscape evolution in the Austrian territory. The tectonic evolution of the rocks forming the major tectonic units of Austria can be traced back to some 500 Million years when they were located at different ancient continents including Gondwana, Avalonia and Laurasia. In the late Palaeozoic, the basement rocks were affected by the Variscan tectonometamorphic event during amalgamation of the supercontinent Pangaea and by a Permian extensional event. The latter is responsible for and was followed by a long-lived phase of thermal subsidence triggering the deposition of the Mesozoic sedimentary pile of the Northern Calcareous Alps. The formation and later subduction of the Neotethys and Penninic oceans began in Triassic and Jurassic times, respectively. The Alpine orogen as we know it today is largely the consequence of the head-on collision between the Adriatic and European plates once subduction had terminated around 40 Ma. The geological build up of Austria includes the Alps and its northern foreland. The foreland is composed of Variscan gneisses in the Bohemian Massif, their Mesozoic cover and Cenozoic sediments in the Molasse Basin. The Alps are made up of tectonic units derived from the European and Adriatic continents and the Neotethys and Penninic oceans that are covered by some intramontane and marginal basins that are filled with Neogene sediments. The landscape evolution evolved since the Oligocene and is highly influenced by processes in the mantle. It involved the interplay of many kilometres of rock uplift and simultaneous erosion so that few rocks at the surface today can be traced back to this time. Nevertheless, low-temperature geochronology, a series of fossil relict surfaces and enigmatic deposits like the Augenstein Formation on the plateaus of the Northern Calcareous Alps testify of a stepwise formation of the landscape over the last 25 Million years. Current research shows that up to 500 m of surface uplift may have occurred in the last 5 Million years alone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • AlpArray Seismic Network (2015) AlpArray seismic network (AASN) temporary component. AlpArray working group. Other/Seismic Network. https://doi.org/10.12686/alparray/z3_2015

  • Bada G, Horvath F, Dövenyi P, Szafian P, Windhoffer G, Cloetingh S (2007) Present-day stress field and tectonic inversion in the Pannonian basin. Glob Planet Change 58:165–180

    Google Scholar 

  • Baran R, Friedrich AM, Schlunegger F (2014) The late miocene to holocene erosion pattern of the Alpine foreland basin reflects Eurasian slab unloading beneath the western Alps rather than global climate change. Lithosphere 6(2):124–131. https://doi.org/10.1130/L307.1

    Article  Google Scholar 

  • Bartosch T, Stüwe K, Robl J (2017) Topographic evolution of the Eastern Alps: the influence of strike-slip faulting activity. Lithosphere 9(3):384–398

    Google Scholar 

  • Baumann S, Robl J, Prasicek G, Salcher B, Keil M (2018) The effects of lithology and base level on topography in the northern alpine foreland. Geomorphology 313:13–26

    Google Scholar 

  • Brückl E, Bleibinhaus F, Gosar A, Grad M, Guterch A, Hrubcová P, Keller GR, Majdanski M, Sumanovac F, Tiira T, Yliniemi J, Hegedüs E, Thybo H (2007) Crustal structure due to collisional and escape tectonics in the Eastern Alps region based on profiles Alp01 and Alp02 from the ALP 2002 seismic experiment. J Geophys Res 112:B06308. https://doi.org/10.1029/2006JB004687

    Article  Google Scholar 

  • Davies JH, von Blanckenburg F (1995) Slab breakoff: a model of lithospheric detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet Sci Lett 129:85–102

    Google Scholar 

  • Decker K (1990) Plate tectonics and pelagic facies: late Jurassic to early cretaceous deep-sea sediments of the Ybbsitz ophiolite unit (Eastern Alps, Austria). Sed Geol 67:85–99

    Google Scholar 

  • Decker K, Peresson H, Hinsch R (2005) Active tectonics and quaternary basin formation along the Vienna basin transform fault. Quaternary Sci Rev 24:305–320

    Google Scholar 

  • Dertnig F, Stüwe K, Woodhead J, Stuart FM, Spötl C (2017) Constraints on the Miocene landscape evolution of the eastern Alps from the Kalkspitze region, Niedere Tauern (Austria). Geomorphology 299:24–38

    Google Scholar 

  • Dixon JL, von Blanckenburg F, Stüwe K, Christl M (2016) Glaciation’s topographic control on Holocene erosion at the eastern edge of the Alps. Earth Surf Dynam 4:895–909. https://doi.org/10.5194/esurf-4-895-2016

    Article  Google Scholar 

  • Ebner F, Sachsenhofer RF (1995) Paleogeography, subsidence and thermal history of the Neogene Styrian basin (Pannonian basin system, Austria). Tectonophysics 242:133–150

    Google Scholar 

  • Faccenna C, Becker TW, Auer L, Billi A, Boschi L, Brun JP, Capitanio FA, Funiciello F, Horvàth F, Jolivet L, Piromallo C, Royden L, Rossetti F, Piromallo C (2014) Mantle dynamics in the Mediterranean. Rev Geophys 52(3):283–332

    Google Scholar 

  • Faupl P, Wagreich M (1992) Cretaceous flysch and pelagic sequences of the Eastern Alps: correlations, heavy minerals, and paleogeographic implications. Cretaceous Res 13:387–403

    Google Scholar 

  • Faupl P, Wagreich M (2000) Late Jurassic to Eocene palaeogeography and geodynamic evolution of the eastern Alps. Mitt Österr Geol Ges 92:79–94

    Google Scholar 

  • Finger F, Schubert G (2015) Die Böhmische Masse in Österreich: was gibt es Neues? Abh Geol BA 64:167–179

    Google Scholar 

  • Finger F, Hanžl P, Pin C, Von Quadt A, Steyrer HP (2000) The Brunovistulian: avalonian precambrian sequence at the eastern end of the central European variscides? Geol Soc Lon Spec Pub 179(1):103–112

    Google Scholar 

  • Fodor LI, Gerdes A, Dunkl I, Koroknai B, Pècskay Z, Trajanova M, Horwàth P, Vrabec M, Jelen B, Balogh K, Frisch W (2008) Miocene emplacement and rapid cooling of the Pohorje pluton at the Alpine-Pannonian-Dinaric junction, Slovenia. Swiss J Earth Sci 101:255–271

    Google Scholar 

  • Fox M, Herman F, Willett SD, Schmid SM (2016) The exhumation history of the European Alps Inferred from linear inversion of thermochronometric data. Am J Sci 316(6):505–541. https://doi.org/10.2475/06.2016.01

    Article  Google Scholar 

  • Franke W (2000) The mid-European segment of the variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. Geol Soc Lond Spec Pub 179:35–61. https://doi.org/10.1144/GSL.SP.2000.179.01.05

    Article  Google Scholar 

  • Friedrich AM, Bunge HP, Rieger SM, Colli L, Ghelichkhan S, Nerlich R (2018) Stratigraphic framework for the plume mode of mantle convection and the analysis of interregional unconformities on geological maps. Gondwana Res 53:159–188. https://doi.org/10.1016/j.gr.2017.06.003

    Article  Google Scholar 

  • Frisch W (1979) Tectonic progradation and plate tectonic evolution of the Alps. Tectonophysics 60:121–139

    Google Scholar 

  • Frisch W, Kuhlemann J, Dunkl I, Brügel A (1998) Palinspastic reconstruction and topographic evolution of the Eastern Alps during late tertiary tectonic extrusion. Tectonophysics 297:1–15. https://doi.org/10.1016/S0040-1951(98)00160-7

    Article  Google Scholar 

  • Frisch W, Székely B, Kuhlemann J, Dunkl I (2000) Geomorphological evolution of the eastern Alps in response to miocene tectonics. Z Geomorph 44(1):103–138

    Google Scholar 

  • Frisch W, Kuhlemann J, Dunkl I (2001) The Dachstein paleosurface and the Augenstein formation in the northern Calcareous Alps—a mosaic stone in the geomorphological evolution of the eastern Alps. Int J Earth Sci 90:500–518

    Google Scholar 

  • Fritz H, Dallmeyer RD, Neubauer F (1996) Thick-skinned versus thin-skinned thrusting: rheology controlled thrust propagation in the variscan collisional belt (The southeastern Bohemian Massif, Czech Republic—Austria). Tectonics 15(6):1389–1413

    Google Scholar 

  • Froitzheim N, Manatschal G (1996) Kinematics of Jurassic rifting, mantle exhumation, and passive margin formation in the Austroalpine and Penninic nappes (eastern Switzerland). Geol Soc Am Bull 108:1120–1133

    Google Scholar 

  • Froitzheim N, Schmid SM, Frey M (1996) Mesozoic paleogeography and the timing of eclogite facies metamorphism in the Alps: a working hypothesis. Eclogae Geol Helv 89:81–110

    Google Scholar 

  • Froitzheim N, Plasienka D, Schuster R (2008) Alpine tectonics of the Alps and western Carpathians. In: McCann T (ed) The geology of central Europe. The Geological Society of London. https://doi.org/10.1144/CEV2P.6

  • Fuchs G (1976) Zur Entwicklung der Böhmischen Masse. Jb Geol BA 119:45–61

    Google Scholar 

  • Fuchs G, Matura A (1976) Zur geologie des Kristallins der Böhmischen Masse. Jb Geol BA 119:1–43

    Google Scholar 

  • Fügenschuh B, Seward D, Mancktelow N (1997) Exhumation in a convergent orogen: the western Tauern window. Terra Nova 9:213–217

    Google Scholar 

  • Genser J, Neubauer F (1989) Low angle normal faults at the eastern margin of the Tauern window (Eastern Alps). Mitt Österr Geol Ges 81:233–243

    Google Scholar 

  • Genser J, Cloetingh SAPL, Neubauer F (2007) Late orogenic rebound and oblique Alpine convergence: new constraints from subsidence analysis of the Austrian Molasse basin. Glob Planet Change 58:214–223

    Google Scholar 

  • Gerdes A, Wörner G, Henk A (2000) Post-collisional granite generation and HT-LP metamorphism by radiogenic heating: the variscan south bohemian Batholith. J Geol Soc 157(3):577–587

    Google Scholar 

  • Gross M, Fritz I, Piller WE, Soliman A, Harzhauser M, Hubmann B, Moser B, Scholger R, Suttner TJ, Bojar BP (2007) The neogene of the styrian basin—guide to excursions. Joannea Geol Paläont 9:117–193

    Google Scholar 

  • Handy MR, Schmid SM, Bousquet R, Kissling E, Bernoulli D (2010) Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological-geophysical record of spreading and subduction in the Alps. Earth Sci Rev 102:121–158

    Google Scholar 

  • Harzhauser M, Tempfer PM (2004) Late Pannonian wetland ecology of the Vienna basin based on molluscs and lower vertebrate assemblages (Late Miocene, MN 9, Austria). Courier-Forschungsinstitut Senkenberg 246:55–68

    Google Scholar 

  • Hauer F (1867) Geologische Übersichtskarte der österreichisch-ungarischen Monarchie nach den Aufnahmen der K.K. Geol R.-A., M. 1:576.000. 12 Blatt. Geol RA, Wien

    Google Scholar 

  • Hejl E (1997) Cold spots during the Cenozoic evolution of the eastem Alps: thermochronological interpretation of apatite fission-track data. Tectonophysics 272:159–173

    Google Scholar 

  • Hergarten S, Wagner T, Stüwe K (2010) Age and prematurity of the Alps derived from topography. Earth Planet Sci Lett 297:453–460

    Google Scholar 

  • Janák M, Froitzheim N, Yoshida K, Sasinková V, Nosko M, Kobayashi T, Hirajima T, Vrabec M (2015) Diamond in metasedimentary crustal rocks from Pohorje, eastern Alps: a window to deep continental subduction. J Metam Geol 33:495–512

    Google Scholar 

  • Janák M, Froitzheim N, Lupták B, Vrabec M, Krogh-Ravna EJ (2004) First evidence for ultrahigh-pressure metamorphism in Pohorje, Slovenia: tracing deep continental subduction in the eastern Alps. Tectonics 23:TC5014. https://doi.org/10.1029/2004TC001641

  • Kober L (1938) Der geologische Aufbau Österreichs. Springer, Wien

    Google Scholar 

  • Kossmat F (1927) Gliederung des variszischen Gebirgsbaues. Abh Sächs Geol LA 1:1–39

    Google Scholar 

  • Kováč M, Plašienka D, Soták J, Vojtko R, Oszczypko N, Less G, Ćosović V, Fügenschuh B, Králiková S (2016) Paleogene palaeogeography and basin evolution of the western Carpathians, northern Pannonian domain and adjoining areas. Glob Planet Change 140:9–27

    Google Scholar 

  • Kroner U, Romer RL (2013) Two plates—many subduction zones: the Variscan orogeny reconsidered. Gondwana Res 24(1):298–329

    Google Scholar 

  • Kuhlemann J (2007) Paleogeographic and paleotopographic evolution of the Swiss and eastern Alps since the Oligocene. Glob Planet Change 58:224–236

    Google Scholar 

  • Kuhlemann J, Frisch W, Dunkl I, Szekely B (2001) Quantifying tectonic versus erosive denudation by the sediment budget: the Miocene core complexes of the Alps. Tectonophysics 330:1–23

    Google Scholar 

  • Kurz W, Neubauer F, Genser J, Unzog W, Dachs E (2001) Tectonic evolution of Penninic units in the Tauern window during the Paleogene: constraints from structural and metamorphic geology. In: Piller WE, Rasser MW (eds) Paleogene of the eastern Alps. Österr Akad der Wissensch, Schriftenreihe der Erdwissenschaftlichen Kommission 14:347–375

    Google Scholar 

  • Kurz W, Froitzheim N (2002) The exhumation of eclogite–facies metamorphic rocks—a review of models confronted with examples from the Alps. Int Geol Rev 44:702–743

    Google Scholar 

  • Legrain N, Stüwe K, Wölfler A (2014) Incised relict landscapes in a never glaciated part of the Eastern Alps. Geomorphology 221:124–138. https://doi.org/10.1016/j.geomorph.2014.06.010

    Article  Google Scholar 

  • Legrain N, Dixon J, Stüwe K, von Blanckenburg F, Kubik P (2015) Post-Miocene landscape rejuvenation at the eastern end of the Alps. Lithosphere 7(1):3–13. https://doi.org/10.1130/L391.1

    Article  Google Scholar 

  • Linner M (Sep 2013) Metamorphoseentwicklung und Deckenbau des Moldanubikums mit Fokus auf den Raum Melk—Dunkelsteinerwald. In: Gebhardt H (ed) Arbeitstagung 2013 der Geol Bundesanstalt, Melk 23.-27. Wien, pp 43–56

    Google Scholar 

  • Linzer HG, Decker K, Peresson H, Dell’Mour R, Frisch W (2002) Balancing lateral orogenic float of the eastern Alps. Tectonophysics 54:211–237

    Google Scholar 

  • Lippitsch R, Kissling E, Ansorge J (2003) Upper mantle structure beneath the Alpine orogen from high-resolution teleseismic tomography. J Geophys Res 108. https://doi.org/10.1029/2002JB002016

  • Lukács R, Harangi S, Guillong, M. Bachmann O, Fodor L, Buret Y, Dunkl I, Sliwinski J, von Quadt A, Peytcheva I, Zimmerer M (2018) Early to mid-miocene syn-extensional massive silicic volcanism in the Pannonian basin (East-Central Europe): Eruption chronology, correlation potential and geodynamic implications. Earth Sci Rev. https://doi.org/10.1016/j.earscirev.2018.02.005

  • Lüschen E, Lammerer B, Gebrande H, Millhan K, Nicolich R, TRANSALP working group (2004) Orogenic structure of the eastern Alps, Europe, from TRANSALP deep seismic reflection profiling. Tectonophysics 388:85–102

    Google Scholar 

  • Mancktelow NS, Stöckli DF, Grollimund B, Müller W, Fügenschuh B, Viola G, Seward D, Villa IM (2001) The DAV and Periadriatic fault system in the eastern Alps south of the Tauern window. Int J Earth Sci 90:593–622

    Google Scholar 

  • Mandl GW (2000) The Alpine sector of the Tethyan shelf—examples of Triassic to Jurassic sedimentation and deformation from the northern Calcareous Alps. Mitt Österr Geol Ges 92:61–78

    Google Scholar 

  • Mandl G, Ondrejickova A (1993) Radiolarien und conodonten aus dem Meliatikum im Ostabschnitt der NKA (A). Jb Geol BA 136(4):841–871

    Google Scholar 

  • Mandl M, Kurz W, Haunzenberger C, Fritz H, Klötzli U, Schuster R (2017) Pre-Alpine evolution of the Seckau complex (Austroalpine basement / Eastern Alps): constraints from in-situ LA-ICP-MS U-Pb zircon geochronology. Lithos 296:412–430. https://doi.org/10.1016/j.lithos.2017.11.022

    Article  Google Scholar 

  • Matte P (1986) Tectonics and plate tectonic model for the variscan belt in Europe. Tectonophysics 126:329–374

    Google Scholar 

  • Missoni S, Gawlick HJ (2010) Evidence for Jurassic subduction from the northern Calcareous Alps (Berchtesgaden; Austroalpine, Germany). Int J Earth Sci 100:1605–1631

    Google Scholar 

  • Mitterbauer U, Behm M, Brückl E, Lippitsch R, Guterch A, Keller GR, Koslovskaya E, Rumpfhuber EM, Sumanovac F (2011) Shape and origin of the East-Alp slab constrained by the ALPASS teleseismic model. Tectonophysics 510:195–206

    Google Scholar 

  • Nemes F, Neubauer F, Cloetingh S, Genser J (1997) The klagenfurt basin in the Eastern Alps: an intra-orogenic decoupled flexural basin? Tectonophysics 282:189–203

    Google Scholar 

  • Neubauer F (2002) Evolution of late Neoproterozoic to early Palaeozoic tectonic elements in central and Southeast European Alpine mountain belts: review and synthesis. Tectonophysics 352:87–103

    Google Scholar 

  • Neubauer F, Handler R (2000) Variscan orogeny in the eastern Alps and Bohemian Massif: how do these units correlate? Mitt Österr Geol Ges 92:35–59

    Google Scholar 

  • Neubauer F, Genser J, Handler R (2000) The Eastern Alps: result of a two-stage collision process. Mitt Österr Geol Ges 92:117–134

    Google Scholar 

  • Oberhauser R (1980) Der Geologische Aufbau Österreichs. Springer, Wien-New York

    Google Scholar 

  • Peresson H, Decker K (1996) The tertiary dynamics of the northern eastern Alps (Austria): changing paleostresses in a collisional plate boundary. Tectonophysics 272:125–157

    Google Scholar 

  • Petrakakis K (1997) Evolution of Moldanubian rocks in Austria: review and synthesis. J Metam Geol 15:203–222

    Google Scholar 

  • Pischinger P, Kurz W, Übleis M, Egger M, Fritz H, Brosch FJ, Stingl K (2008) Fault slip analysis in the Koralm Massif (Eastern Alps) and consequences for the final uplift of “cold spots” in Miocene times. Swiss J Geosci. https://doi.org/10.1007/s00015-008-1277-x

    Article  Google Scholar 

  • Rantitsch G, Russegger B (2000) Thrust-related very low grade metamorphism within the Gurktal nappe complex (Eastern Alps). Jahrb Geol BA 142(2):219–225

    Google Scholar 

  • Ratschbacher L, Frisch W, Neubauer F, Schmid SM, Neugebauer J (1989) Extension in compressional orogenic belts: the eastern Alps. Geology 17:404–407

    Google Scholar 

  • Ratschbacher L, Merle O, Davy P, Cobbold P (1991) Lateral extrusion in the eastern Alps: Part 1. Boundary conditions and experiments scaled for gravity. Tectonics 10:245–256. https://doi.org/10.1029/90TC02622

    Article  Google Scholar 

  • Ren Y, Stuart GW, Houseman GA, Dando B, Ionescu C, Hegedüs E, Radovanović S, Shen Y, South Carpathian Project Working Group (2012) Upper mantle structures beneath the Carpathian–Pannonian region: implications for the geodynamics of continental collision. Earth Planet Sci Lett 349:139–152

    Google Scholar 

  • Robl J, Stüwe K, Hergarten S, Evans L (2008) Extension during continental convergence in the eastern Alps: the influence of orogen-scale strike-slip faults. Geology 36:603–606

    Google Scholar 

  • Robl J, Hergarten S, Stüwe K (2008) Morphological analysis of the drainage systems in the eastern Alps. Tectonopys 460:263–277

    Google Scholar 

  • Robl J, Prasicek G, Hergarten S, Stüwe K (2015) Alpine topography in the light of tectonic uplift and glaciation. Glob Planet Change 127:34–49. https://doi.org/10.1016/j.gloplacha.2015.01.008

    Article  Google Scholar 

  • Rögl F (2001) Mid-Miocene circum-Mediterranean paleogeography. Ber Inst Geol Paläont Karl-Franzens-Univ Graz 4:49–59

    Google Scholar 

  • Rögl F (1999) Mediterranean and Parathetys. Facts and hypotheses of an Oligocene to miocene paleogeography (Short overview). Geol Carpath 50(4):339–349

    Google Scholar 

  • Royden L, Horvath F, Rumpler J (1983) Evolution of the Pannonian basin system: 1. Tectonics Tectonics 2(1):63–90. https://doi.org/10.1029/TC002i001p00063

  • Rupp C, Linner M, Mandl GW (2006) Erläuterungen zur Geologischen Karte von Oberösterreich 1:200.000. Geologische Bundesanstalt, Wien

    Google Scholar 

  • Sachsenhofer RF, Gruber W, Dunkl I (2010) Das Miozän der Becken von Leoben und Fohnsdorf. J Alp Geol 53:9–38

    Google Scholar 

  • Scharf A, Handy MR, Favaro S, Schmid SM, Bertrand A (2013) Modes of orogen-parallel stretching and extensional exhumation in response to microplate indentation and roll-back subduction (Tauern Window, Eastern Alps). Int J Earth Sci. https://doi.org/10.1007/s00531-013-0894-4

  • Schmid SM, Pfiffner OA, Froitzheim N, Schönborn G, Kissling E (1996) Geophysical-geological transect and tectonic evolution of the Swiss-Italian Alps. Tectonics 15:1036–1064

    Google Scholar 

  • Schmid SM, Fügenschuh B, Kissling E, Schuster R (2004) Tectonic map and overall architecture of the Alpine orogen. Eclogae Geol Helv 97:93–117

    Google Scholar 

  • Schmid SM, Scharf A, Handy MR, Rosenberg CL (2013) The Tauern window (Eastern Alps, Austria)—a new tectonic map, cross-sections and tectonometamorphic synthesis. Swiss J Geosc 106:1–32

    Google Scholar 

  • Schmid SM, Kissling E, Diehl T, van Hinsbergen DJ, Molli G (2017) Ivrea mantle wedge, arc of the western Alps, and kinematic evolution of the Alps-Apennines orogenic system. Swiss J Geosc 110(2):581–612

    Google Scholar 

  • Schönlaub HP (1979) Das Paläozoikum in Österreich. Verbreitung, Stratigraphie, Korrelation, Entwicklung und Paläogeographie nicht metamorpher und metamorpher Abfolgen. Abh Geol BA 33:1–124

    Google Scholar 

  • Schorn A, Neubauer F, Genser J, Bernroider M (2013) The Haselgebirge evaporitic mélange in central northern Calcareous Alps (Austria): Part of the Permian to lower Triassic rift of the Meliata ocean? Tectonophysics 583:28–48

    Google Scholar 

  • Schuster R, Stüwe K (2008) Permian metamorphic event in the Alps. Geology 36:603–606

    Google Scholar 

  • Schuster R, Stüwe K (2010) Die Geologie der Alpen im Zeitraffer. Mitt Nat Ver Steiermark 140:5–21

    Google Scholar 

  • Schuster R, Koller F, Hoeck V, Hoinkes G, Bousquet R (2004) Explanatory notes to the map: metamorphic structure of the Alps—metamorphic evolution of the eastern Alps. Mitt Österr Miner Ges 149:175–199

    Google Scholar 

  • Schuster R, Nievoll J, Rupp C, Ćorić S, Ilickovic T (2016) Neogene sedimente und landschaftsentwicklung im Umfeld der Kartenblätter GK50 Blatt 103 Kindberg und 135 Birkfeld. Arbeitstagung Der Geologischen Bundesanstalt 2015:127–143

    Google Scholar 

  • Schuster R, Daurer A, Krenmayr HG, Linner M, Mandl GW, Pestal G, Reitner JM (2014) Rocky Austria. Geology of Austria—short and colorful. 2nd edn. Geologische Bundesanstalt, Wien

    Google Scholar 

  • Sedgwick A, Murchison RI (1832) XVIII. A sketch of the structure of the Eastern Alps; with sections. Trans Geol Soc Lond 2–3:301–420. London

    Google Scholar 

  • Stampfli GM, Borel GD (2004) The transmed transsects in space and time: constraints on the paleotectonic evolution of the Mediterranean domain. In: Cavazza W, Roure F, Spakman W, Stampfli GM, Ziegler PA (eds) The TRANSMED Atlas: the Mediterranean region from crust to mantle. Springer, p 141

    Google Scholar 

  • Steininger H, Steiner E (2005) Meeresstrand am Alpenrand—Molassemeer und Wiener Becken. Verlag publication PN 1 Bibliothek der Provinz (Weitra)

    Google Scholar 

  • Stüwe K, Homberger R (2012) High above the Alps. A bird’s eye view of geology. Weishaupt, Gnas

    Google Scholar 

  • Stüwe K, Schuster R (2010) Initiation of subduction in the Alps: continent or ocean? Geology 38(2):175–178

    Google Scholar 

  • Suess E (1912) Die moravischen fenster und ihre Beziehung zum Grundgebirge des Hohen Gesenke. Denkschr Kk Akad Wiss, Math-Naturwiss Cl 88:541–631

    Google Scholar 

  • Suess E (1909) Das Antlitz der Erde, vol 3. Temsky & Freytag, Prag-Wien-Leipzig

    Google Scholar 

  • Tenczer V, Stüwe K (2003) The metamorphic field gradient in the eclogite type locality. J Metam Geol 21:377–393

    Google Scholar 

  • Thöni M (2006) Dating eclogite-facies metamorphism in the eastern Alps—approches, results, interpretations: a review. Mineral Petrol 88:123–148

    Google Scholar 

  • Tollmann A (1977) Geologie von Österreich, vol 1. Die Zentralalpen. Deuticke, Wien

    Google Scholar 

  • van Husen D (2000) Geological processes during the quaternary. Mitt Österr Geol Ges 92:135–156

    Google Scholar 

  • van Husen D (2011) Quaternary glaciations in Austria. In: Ehlers J, Gibbard PL, Hughes PD (eds) Development in quarternary sciences, vol 15. pp 15–28

    Google Scholar 

  • von Blankenburg F, Davies HJ (1995) Slab breakoff: a model for syncollisional magmatism and tectonics in the Alps. Tectonics 14:120–131

    Google Scholar 

  • von Raumer JF, Bussy F, Schaltegger U, Schulz B, Stampfli GM (2013) Pre-Mesozoic Alpine basements—their place in the European paleozoic framework. Geol Soc Am Bull 125(1–2):89–108

    Google Scholar 

  • Wagner T, Fabel D, Fiebig M, Häuselmann P, Sahy D, Sheng X, Stüwe K (2010) Young uplift in the nonglaciated parts of the eastern Alps. Earth Planet Sci Lett 295:159–169

    Google Scholar 

  • Wagner T, Fritz H, Stüwe K, Nestroy O, Rodnight H, Hellstrom J, Benischke R (2011) Correlation of cave levels, stream terraces and planation surfaces along the river Mur—timing of landscape evolution along the eastern margin of the Alps. Geomorphology 134:62–78. https://doi.org/10.1016/j.geomorph.2011.04.024

    Article  Google Scholar 

  • Wessely G (2006) Geologie der Österreichischen Bundesländer—Niederösterreich. Geologische Bundesanstalt, Wien

    Google Scholar 

  • Winkler-Hermaden A (1955) Ergebnisse und Probleme der quartären Entwicklungsgeschichte am östlichen Alpensaum außerhalb der Vereisungsgebiete. Denkschr Akad Wiss, Math-Naturw Kl 110(8):1–180

    Google Scholar 

  • Wölfler A, Stüwe K, Danisik M, Evans NJ (2012) Low temperature thermochronology in the eastern Alps: implications for structural and topographic evolution. Tectonophysics. https://doi.org/10.1016/j.tecto.2012.03016

  • Wölfler A, Kurz W, Fritz H, Stüwe K (2011) Lateral extrusion in the eastern Alps revisited: refining the model by thermochronological, sedimentary and seismic data. Tectonics 30 TC4006. https://doi.org/10.1029/2010TC002782

  • Zámolyi A, Salcher B, Draganits E, Exner U, Wagreich M, Gier S, Fiebig M, Lomax J, Surányi G, Zámolyi F (2016) Latest Pannonian and quaternary evolution at the transition between eastern Alps and Pannonian Basin: new insights from geophysical, sedimentological and geochronological data. Int J Earth Sci 106(5):1695–1721

    Google Scholar 

  • Ziegler PA, Dèzes P (2006) Crustal evolution of western and central Europe. Geol Soc Lond Mem 32(1):43–56

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Schuster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schuster, R., Stüwe, K. (2022). Geological and Tectonic Setting of Austria. In: Embleton-Hamann, C. (eds) Landscapes and Landforms of Austria. World Geomorphological Landscapes. Springer, Cham. https://doi.org/10.1007/978-3-030-92815-5_1

Download citation

Publish with us

Policies and ethics