Skip to main content

Stress Equilibration for Hyperelastic Models

  • Chapter
  • First Online:
Non-standard Discretisation Methods in Solid Mechanics

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 98))

  • 752 Accesses

Abstract

Stress equilibration is investigated for hyperelastic deformation models in this contribution. From the displacement-pressure approximation computed with a stable finite element pair, an \(H (\mathrm{div})\)-conforming approximation to the first Piola-Kirchhoff stress tensor is computed. This is done in the usual way in a vertex-patch-wise manner involving local problems of small dimension. The corresponding reconstructed Cauchy stress is not symmetric but its skew-symmetric part is controlled by the computed correction. This difference between the reconstructed stress and the stress approximation obtained directly from the Galerkin approximation also serves as an upper bound for the discretization error. These properties are illustrated by computational experiments for an incompressible rigid block loaded on one half of its top boundary.

The funding by the Deutsche Forschungsgemeinschaft (DFG) under grants BE6511/1-1 and STA 402/14-1 within the priority program SPP 1748 is gratefully acknowledged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Ainsworth, A. Allendes, G.R. Barrenechea, R. Rankin, Computable error bounds for nonconforming Fortin-Soulie finite element approximation of the Stokes problem. IMA J. Numer. Anal. 32, 417–447 (2012)

    Article  MathSciNet  Google Scholar 

  2. F. Auricchio, L. Beirão da Veiga, C. Lovadina, A. Reali, R. Taylor, P. Wriggers, Approximation of incompressible large deformation elastic problems: some unresolved issues. Comput. Mech. 52, 1153–1167 (2013)

    Article  MathSciNet  Google Scholar 

  3. M. Ainsworth, J.T. Oden, A unified approach to a posteriori error estimation using element residual methods. Numer. Math. 65, 23–50 (1993)

    Article  MathSciNet  Google Scholar 

  4. F. Bertrand, B. Kober, M. Moldenhauer, G. Starke, Weakly symmetric stress equilibration and a posteriori error estimation for linear elasticity. Numer. Methods Partial Differ. Equ. 37, 2783–2802 (2021)

    Google Scholar 

  5. F. Bertrand, M. Moldenhauer, G. Starke, Weakly symmetric stress equilibration for hyperelastic material models. GAMM-Mitteilungen 43, e202000007 (2020)

    Google Scholar 

  6. M. Botti, R. Riedlbeck, Equilibrated stress tensor reconstruction and a posteriori error estimation for nonlinear elasticity. Comput. Methods Appl. Math. 20, 39–59 (2020)

    Article  MathSciNet  Google Scholar 

  7. D. Braess, Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, 3rd edn. (Cambridge University Press, Cambridge, 2007)

    Book  Google Scholar 

  8. D. Braess, J. Schöberl, Equilibrated residual error estimator for edge elements. Math. Comput. 77, 651–672 (2008)

    Article  MathSciNet  Google Scholar 

  9. S.C. Brenner, L.R. Scott, The Mathematical Theory of Finite Element Methods, 3rd edn. (Springer, New York, 2008)

    Book  Google Scholar 

  10. C. Carstensen, G. Dolzmann, An a priori error estimate for finite element discretizations in nonlinear elasticity for polyconvex materials under small loads. Numer. Math. 97, 67–80 (2004)

    Article  MathSciNet  Google Scholar 

  11. P.G. Ciarlet, Mathematical Elasticity Volume I: Three–Dimensional Elasticity (North-Holland, Amsterdam, 1988)

    Google Scholar 

  12. P. Dörsek, J.M. Melenk, Symmetry-free, \(p\)-robust equilibrated error indication for the \(hp\)-version of the FEM in nearly incompressible linear elasticity. Comput. Methods Appl. Math. 13, 291–304 (2013)

    Article  MathSciNet  Google Scholar 

  13. A. Ern, M. Vohralík, Polynomial-degree-robust a posteriori error estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations. SIAM J. Numer. Anal. 53, 1058–1081 (2015)

    Article  MathSciNet  Google Scholar 

  14. A. Hannukainen, R. Stenberg, M. Vohralík, A unified framework for a posteriori error estimation for the Stokes equation. Numer. Math. 122, 725–769 (2012)

    Article  MathSciNet  Google Scholar 

  15. K.-Y. Kim, Guaranteed a posteriori error estimator for mixed finite element methods of linear elasticity with weak stress symmetry. SIAM J. Numer. Anal. 49, 2364–2385 (2011)

    Article  MathSciNet  Google Scholar 

  16. K.-Y. Kim, A posteriori error estimator for linear elasticity based on nonsymmetric stress tensor approximation. J. KSIAM 16, 1–13 (2011)

    MathSciNet  Google Scholar 

  17. P. LeTallec, Numerical Methods for Nonlinear Three-Dimensional Elasticity (1994); Handb. Numer. Anal. III, P.G. Ciarlet and J. L. Lions eds. (North-Holland, Amsterdam), pp. 465–662

    Google Scholar 

  18. P. Ladevèze, D. Leguillon, Error estimate procedure in the finite element method and applications. SIAM J. Numer. Anal. 20, 485–509 (1983)

    Article  MathSciNet  Google Scholar 

  19. R. Luce, B. Wohlmuth, A local a posteriori error estimator based on equilibrated fluxes. SIAM J. Numer. Anal. 42, 1394–1414 (2004)

    Article  MathSciNet  Google Scholar 

  20. J.E. Marsden, T.J.R. Hughes, Mathematical Foundations of Elasticity (Prentice Hall, Englewood Cliffs, 1983)

    MATH  Google Scholar 

  21. B. Müller, G. Starke, A. Schwarz, J. Schröder, A first-order system least squares method for hyperelasticity. SIAM J. Sci. Comput. 36, B795–B816 (2014)

    Article  MathSciNet  Google Scholar 

  22. S. Nicaise, K. Witowski, B. Wohlmuth, An a posteriori error estimator for the Lamé equation based on equilibrated fluxes. IMA J. Numer. Anal. 28, 331–353 (2008)

    Article  MathSciNet  Google Scholar 

  23. N. Parés, J. Bonet, A. Huerta, J. Peraire, The computation of bounds for linear-functional outputs of weak solutions to the two-dimensional elasticity equations. Comput. Methods Appl. Mech. Eng. 195, 406–429 (2006)

    Article  MathSciNet  Google Scholar 

  24. W. Prager, J.L. Synge, Approximations in elasticity based on the concept of function space. Quart. Appl. Math. 5, 241–269 (1947)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Bertrand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bertrand, F., Moldenhauer, M., Starke, G. (2022). Stress Equilibration for Hyperelastic Models. In: Schröder, J., Wriggers, P. (eds) Non-standard Discretisation Methods in Solid Mechanics. Lecture Notes in Applied and Computational Mechanics, vol 98. Springer, Cham. https://doi.org/10.1007/978-3-030-92672-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92672-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92671-7

  • Online ISBN: 978-3-030-92672-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics