Skip to main content

Novel Finite Elements - Mixed, Hybrid and Virtual Element Formulations at Finite Strains for 3D Applications

  • Chapter
  • First Online:
Non-standard Discretisation Methods in Solid Mechanics

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 98))

  • 824 Accesses

Abstract

The main goal of this research project is to develop new finite-element formulations as a suitable basis for the stable calculation of modern isotropic and anisotropic materials with a complex nonlinear material behavior. New ideas are pursued in a strict variational framework, based either on a mixed or virtual FE approach. A novel extension of the classical Hellinger-Reissner formulation to non-linear applications is developed. Herein, the constitutive relation of the interpolated stresses and strains is determined with help of an iterative procedure. The extension of the promising virtual finite element method (VEM) is part of the further investigation. Particularly, different stabilization methods are investigated in detail, needed in the framework of complex nonlinear constitutive behavior. Furthermore the interpolation functions for the VEM is extended from linear to quadratic functions to obtain better convergence rates. Especially in this application the flexibility of the VEM regarding the mesh generation will constitute a huge benefit. As a common software development platform the AceGen environment is applied providing a flexible tool for the generation of efficient finite element code.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Babuška, M. Suri, Locking effects in the finite element approximation of elasticity problems. Numerische Mathematik 62(1), 439–463 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Hellinger, Die Allgemeinen Ansätze der Mechanik der Kontinua, in Encyklopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, vol. 4, ed. by F. Klein, C. Müller (Vieweg+Teubner Verlag, Wiesbaden, 1907). https://doi.org/10.1007/9783-663-16028-1_9

    Chapter  Google Scholar 

  3. G. Prange, Das Extremum der Formänderungsarbeit (Habilitationsschrift, Technische Hochschule Hannover, 1916)

    Google Scholar 

  4. E. Reissner, On a variational theorem in elasticity. J. Math. Phys. 29, 90–95 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  5. H.C. Hu, On some variational principles in the theory of elasticity and the theory of plasticity. Sci. Sinica 4, 33–54 (1955)

    MATH  Google Scholar 

  6. K. Washizu, On the variational principles of elasticity and plasticity. Technical report, Aeroelastic and Structures Research Laboratory, Massachusetts Institute of Technology, Cambridge (1955)

    Google Scholar 

  7. I. Babuška, The finite element method with Lagrangian multipliers. Numerische Mathematik 20(3), 179–192 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Revue française d’automatique, informatique, recherche opérationnelle. Analyse numérique 8(2), 129–151 (1974)

    Google Scholar 

  9. D. Chapelle, K. Bathe, The inf-sup test. Comput. Struct. 47, 537–545 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. K.J. Bathe, The inf-sup condition and its evaluation for mixed finite element methods. Comput. Struct. 79, 243–252 (2001)

    Article  MathSciNet  Google Scholar 

  11. P. Wriggers, S. Reese, A note on enhanced strain methods for large deformations. Comput. Methods Appl. Mech. Eng. 135, 201–209 (1996)

    Article  MATH  Google Scholar 

  12. F. Auricchio, L. Beirão da Veiga, C. Lovadina, A. Reali, A stability study of some mixed finite elements for large deformation elasticity problems. Comput. Methods Appl. Mech. Eng. 194, 1075–1092 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. F. Auricchio, L. Beirao da Veiga, C. Lovadina, A. Reali, The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs versus NURBS-based approximations. Comput. Methods Appl. Mech. Eng. 199, 314–323 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. N. Viebahn, J. Schröder, P. Wriggers, An extension of assumed stress finite elements to a general hyperelastic framework, in Advanced Modeling and Simulation in Engineering Sciences (2019)

    Google Scholar 

  15. N. Viebahn, J. Schröder, P. Wriggers, A concept for the extension of the assumed stress finite element method to hyperelasticity, in Novel Finite Element Technologies for Solids and Structures (2019). https://doi.org/10.1007/978-3-030-33520-5_4

  16. L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. Marini, A. Russo, Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(01), 199–214 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. B. Ahmad, A. Alsaedi, F. Brezzi, L. Marini, A. Russo, Equivalent projectors for virtual element methods. Comput. Math. Appl. 66, 376–391 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. L. Beirão da Veiga, F. Brezzi, L. Marini, Virtual elements for linear elasticity problems. SIAM, J. Numer. Anal. 51, 794–812 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. L. Beirão da Veiga, F. Brezzi, L.D. Marini, A. Russo, The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24(8), 1541–1573 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. F. Brezzi, L.D. Marini, Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Engrg. 253, 455–462 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. A.L. Gain, Polytope-based topology optimization using a mimetic-inspired method. Dissertation, University of Illinois at Urbana-Champaign (2013)

    Google Scholar 

  22. A.L. Gain, C. Talischi, G.H. Paulino, On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput. Methods Appl. Mech. Eng. 282, 132–160 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. G. Paulino, A.L. Gain, Bridging art and engineering using Escher-based virtual elements. Struct. Multidiscip. Optim. 51, 867–883 (2015)

    Google Scholar 

  24. H. Chi, L. Beirão da Veiga, G. Paulino, Some basic formulations of the virtual element method (VEM) for finite deformations. Comput. Methods Appl. Mech. Eng. 318, 148–192 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Hussein, F. Aldakheel, B. Hudobivnik, P. Wriggers, P.-A. Guidault, O. Allix, A computational framework for brittle crack propagation based on an efficient virtual element method. Finite Elem. Anal. Design 159, 15–32 (2019)

    Article  MathSciNet  Google Scholar 

  26. E. Artioli, L. Beirão da Veiga, C. Lovadina, E. Sacco, Arbitrary order 2d virtual elements for polygonal meshes: part i, elastic problem. Comput. Mech. 60, 355–377 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. L. Beirão da Veiga, C. Lovadina, D. Mora, A virtual element method for elastic and inelastic problems on polytope meshes. Comput. Methods Appl. Mech. Eng. 295, 327–346 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. P. Wriggers, B. Reddy, W. Rust, B. Hudobivnik, Efficient virtual element formulations for compressible and incompressible finite deformations. Comput. Mech. 60, 253–268 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. P. Wriggers, B. Hudobivnik, A low order virtual element formulation for finite elasto-plastic deformations. Comput. Methods Appl. Mech. Eng. 327, 459–477 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. B. Hudobivnik, F. Aldakheel, P. Wriggers, Low order 3d virtual element formulation for finite elasto-plastic deformations. Comput. Mech. 63, 253–269 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. M. De Bellis, P. Wriggers, B. Hudobivnik, Serendipity virtual element formulation for nonlinear elasticity. Comput. Struct. 223, 106094 (2019)

    Google Scholar 

  32. F. Aldakheel, B. Hudobivnik, A. Hussein, P. Wriggers, Phase-field modeling of brittle fracture using an efficient virtual element scheme. Comput. Methods Appl. Mech. Eng. 341, 443–466 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. A. Hussein, B. Hudobivnik, P. Wriggers, A combined adaptive phase field and discrete cutting method for the prediction of crack paths. Comput. Methods Appl. Mech. Eng. submitted (2020)

    Google Scholar 

  34. J.O. Hallquist, NIKE2d: An implicit, finite-deformation, finite element code for analysing the static and dynamic response of two-dimensional solids, University of California, Lawrence Livermore National Laboratory, UCRL–52678 (1979)

    Google Scholar 

  35. P. Wriggers, J. Simo, A note on tangent stiffnesses for fully nonlinear contact problems. Commun. Appl. Numer. Methods 1, 199–203 (1985)

    Article  MATH  Google Scholar 

  36. J.C. Simo, P. Wriggers, R.L. Taylor, A perturbed Lagrangian formulation for the finite element solution of contact problems. Comput. Methods Appl. Mech. Eng. 50, 163–180 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  37. F. Ben Belgacem, P. Hild, P. Laborde, Approximation of the unilateral contact problem by the mortar finite element method. C. R. Acad. Sci., Paris, Ser I 324, 123–127 (1997)

    Google Scholar 

  38. B.I. Wohlmuth, A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM, J. Numer. Anal. 38, 989–1012 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  39. P. Wriggers, W. Rust, B. Reddy, A virtual element method for contact. Comput. Mech. 58, 1039–1050 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. P. Wriggers, W. Rust, A virtual element method for frictional contact including large deformations. Eng. Comput. 36, 2133–2161 (2019)

    Article  Google Scholar 

  41. F. Aldakheel, B. Hudobivnik, E. Artioli, L. Beirão da Veiga, P. Wriggers, Curvilinear virtual elements for contact mechanics. Comput. Methods Appl. Mech. Eng. submitted (2020)

    Google Scholar 

  42. M. Marino, B. Hudobivnik, P. Wriggers, Computational homogenization of polycrystalline materials with the virtual element method. Comput. Methods Appl. Mech. Eng. 355, 349–372 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  43. L. Beirão da Veiga, C. Lovadina, A. Russo, Stability analysis for the virtual element method. Math. Models Methods Appl. Sci. 27(13), 2557–2594 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. D. Boffi, F. Brezzi, M. Fortin, Mixed Finite Element Methods and Applications (Springer, Heidelberg, 2013)

    Book  MATH  Google Scholar 

  45. F. Auricchio, L. Beirão da Veiga, C. Lovadina, A. Reali, An analysis of some mixed-enhanced finite element for plane linear elasticity. Comput. Methods Appl. Mech. Eng. 194, 2947–2968 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  46. F. Auricchio, L. Beirão da Veiga, C. Lovadina, A. Reali, R. Taylor, P. Wriggers, Approximation of incompressible large deformation elastic problems: some unresolved issues. Comput. Mech. 52(5), 1153–1167 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. J. Schröder, N. Viebahn, P. Wriggers, F. Auricchio, K. Steeger, On the stability analysis of hyperelastic boundary value problems using three- and two-field mixed finite element formulations. Comput. Mech. 60(3), 479–492 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  48. T.H.H. Pian, P. Tong, Relations between incompatible displacement model and hybrid stress model. Int. J. Numer. Methods Eng. 22, 173–181 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  49. T.H.H. Pian, K. Sumihara, A rational approach for assumed stress finite elements. Int. J. Numer. Methods Eng. 20, 1685–1695 (1984)

    Article  MATH  Google Scholar 

  50. A. Krischok, C. Linder, On the enhancement of low-order mixed finite element methods for the large deformation analysis of diffusion in solids. Int. J. Numer. Methods Eng. 106, 278–297 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  51. N. Viebahn, J. Schröder, P. Wriggers, Application of assumed stress finite elements in hyperelasticity, in Report of the Workshop 1843 at the “Mathematisches Forschungsinstitut Oberwolfach” entitled “Computational Engineering”, organized by O. Allix, A. Buffa C. Carstensen, J. Schröder (2018)

    Google Scholar 

  52. J.C. Simo, R.L. Taylor, K.S. Pister, Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput. Methods Appl. Mech. Eng. 51, 177–208 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  53. U. Andelfinger, E. Ramm, EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements. Int. J. Numer. Methods Eng. 36, 1311–1337 (1993)

    Article  MATH  Google Scholar 

  54. D. Pantuso, K.J. Bathe, A four-node quadrilateral mixed-interpolated element for solids and fluids. Math. Models Methods Appl. Sci. (M3AS) 5(8), 1113–1128 (1995)

    Google Scholar 

  55. J.P. Boehler, A simple derivation of respresentations for non-polynomial constitutive equations in some cases of anisotropy. Zeitschrift für angewandte Mathematik und Mechanik 59, 157–167 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  56. L. Beirão da Veiga, F. Dassi, A. Russo, High-order virtual element method on polyhedral meshes. Comput. Math. Appl. 74(5), 1110–1122 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  57. L. Beirão da Veiga, C. Lovadina, D. Mora, A Virtual Element Method for elastic and inelastic problems on polytope meshes. Comput. Methods Appl. Mech. Eng. 295, 327–346 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  58. H. Chi, L. Beirão da Veiga, G. Paulino, Some basic formulations of the virtual element method (VEM) for finite deformations. Comput. Methods Appl. Mech. Eng. 318, 148–192 (2017). ISSN 0045-7825

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support by the Deutsche Forschungsgemeinschaft in the Priority Program 1748 “Reliable Simulation Techniques in Solid Mechanics, Development of Non-standard Discretization Methods, Mechanical and Mathematical Analysis” for the project “Novel finite elements for anisotropic media at finite strain” (Project number: 255432295, IDs: WR 19/50-1, SCHR 570/23-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Schröder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schröder, J., Wriggers, P., Kraus, A., Viebahn, N. (2022). Novel Finite Elements - Mixed, Hybrid and Virtual Element Formulations at Finite Strains for 3D Applications. In: Schröder, J., Wriggers, P. (eds) Non-standard Discretisation Methods in Solid Mechanics. Lecture Notes in Applied and Computational Mechanics, vol 98. Springer, Cham. https://doi.org/10.1007/978-3-030-92672-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92672-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92671-7

  • Online ISBN: 978-3-030-92672-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics