Skip to main content

Development of Zirconia Toughend Nanocomposites Using the Technique of Spark Plasma Sintering: Role of Reinforcement

  • Conference paper
  • First Online:
Metal-Matrix Composites

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

In this paper, microstructural development and properties (to include both physical and mechanical) of Zirconia Toughened Alumina (ZTA) composite reinforced with one volume percent of magnesium oxide (MgO)/multi-walled carbon nanotubes (MWCNTs) and processed using the technique of spark plasma sintering (SPS) are presently and adequately discussed. The role of processing parameters is both explained and appropriately highlighted through different sections of this manuscript. The average grain size, density, and microhardness were determined for the addition of magnesium oxide (MgO) reinforcement to the zirconia toughened alumina (ZTA) matrix. The highest fracture toughness was obtained for the addition of MWCNTs reinforcement to the zirconia toughened alumina (ZTA) matrix. Microhardness of the samples increased with the addition of magnesium oxide (MgO) reinforcement to the zirconia toughened alumina (ZTA) matrix, and the fracture toughness increased with the addition of MWCNTs to the zirconia toughened alumina (ZTA) matrix. The development of a material for use as a thermal barrier coating and also for its selection and use in dental-related applications is presented and briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Munir ZA, Anselmi-Tamburini U, Ohyanagi M (2006) The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J Mater Sci 41:763–777. https://doi.org/10.1007/s10853-006-6555-2

    Article  CAS  Google Scholar 

  2. Munir ZA, Quach DV, Ohyanagi M (2011) Electric current activation of sintering: a review of the pulsed electric current sintering process. J Am Ceram Soc 94:1–19. https://doi.org/10.1111/j.1551-2916.2010.04210.x

    Article  CAS  Google Scholar 

  3. Garay JE (2010) Current-Activated, pressure-assisted densification of materials. Annu Rev Mater Res 40:445–468. https://doi.org/10.1146/annurev-matsci-070909-104433

    Article  CAS  Google Scholar 

  4. Orru R, Licheri R, Locci AM, Cincotti A, Cao G (2009) Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater Sci Eng R Rep 63:127–287. https://doi.org/10.1016/j.mser.2008.09.003

    Article  CAS  Google Scholar 

  5. Hulbert DM, Anders A, Dudina DV, Andersson J, Jiang D, Unuvar C, Anselmi-Tamburini U, Lavernia EJ, Mukherjee AK (2008) The absence of plasma in “spark plasma sintering.” J Appl Phys 104:033305s. https://doi.org/10.1063/1.2963701

    Article  CAS  Google Scholar 

  6. Ye Y, Li J, Zhou H, Chen J (2008) Microstructure and mechanical properties of Yttria-stabilized ZrO2/Al2O3 nanocomposite ceramics. Ceram Int 34:1797–1803. https://doi.org/10.1016/j.ceramint.2007.06.005

    Article  CAS  Google Scholar 

  7. Wang HZ, Gao L, Guo JK (1999) Fabrication and microstructure of Al2O3-ZrO2(3Y)-SiC nanocomposites. J Am Ceram Soc 19:2125–2131

    Article  CAS  Google Scholar 

  8. Meena KL, Karunakar DB (2018) Development of alumina toughened zirconia nanocomposites using spark plasma sintering. Mater Today Proc 5:16928–16935. https://doi.org/10.1016/j.matpr.2018.04.096

    Article  CAS  Google Scholar 

  9. Rittidech R, Somrit R, Tunkasiri T (2013) Effect of adding Y2O3 on structural and mechanical properties of Al2O3-ZrO2 ceramics. Ceram Int 39:S433–-S436. https://doi.org/10.1016/j.Ceramint.2012.10.108

  10. Rainforth WM (2004) The wear behavior of oxide ceramics-A review. J Mater Sci 39:6705–6721. https://doi.org/10.1023/B:JMSC.0000045601.49480.79

  11. Smuk B, Szutkowska M, Walter J (2003) Alumina ceramics with partially stabilized zirconia for cutting tools. J Mater Process Technol 133:195–198. https://doi.org/10.1016/S0924-0136(02)00232-7

  12. Ohnabe H, Masaki S, Sasa T (1999) Potential application of ceramic matrix composites to aero-engine components. Comp: Part A 30:489–496

    Google Scholar 

  13. Miyazaki H, Yoshizawa Y, Hirao K (2004) Preparation and mechanical properties of 10 vol. % of zirconia/alumina composite with fine-scale fibrous microstructure by co-extrusion process. Mater Lett 58:1410–1414

    Google Scholar 

  14. Kosmac T, Swain MV, Claussen N (1985) The role of tetragonal and monoclinic ZrO2 particles in the fracture toughness of Al2O3 -ZrO2 composites. Mater Sci Eng 71:57–64

    Article  CAS  Google Scholar 

  15. Szutkowska M (2004) Fracture resistance behavior of alumina-zirconia composites. J Mater Process Technol 153–154:868–874. https://doi.org/10.1016/j.jmatprotec.2004.04.406

  16. Meena KL, Srivatsan TS (2021) Influence of sintering on the development of alumina-toughened nanocomposites: conventional versus microwave. Metal-Matrix composites: advances in analysis, measurement, and observations. Springer Inter. Publishing

    Google Scholar 

  17. Hannink RHJ, Kelly PM, Muddle BC (2000) Transformation toughening in zirconia-containing ceramics. J Am Ceram Soc 83:461–487. https://doi.org/10.1111/j.1151-2916.2000.tb01221.x

  18. Garvie RC (1965) The occurrence of metastable tetragonal zirconia as a crystallite size effect. J Phys Chem 69:1238–1243

    Article  CAS  Google Scholar 

  19. Kelly JR, Denry I (2008) Stabilized zirconia as a structural ceramic: an overview. Dent Mater 24: 289–298. https://doi.org/10.1016/j.dental.2007.05.005

  20. Cahoon HP, Christensen CJ (1956) Sintering and grain growth of alpha-alumina. J Am Ceram Soc 39:337–344. https://doi.org/10.1111/j.1151-2916.1956.tb15599.x

    Article  CAS  Google Scholar 

  21. Meena KL, Vidyasagar ChS, Karunakar DB (2020) Mechanical and tribological properties of alumina toughened zirconia composites through conventional sintering and microwave sintering. Trans Indian Inst Metals 73(7):1909–1923. https://doi.org/10.1007/s12666-020-02001-y

  22. Claussen N, Steeb J (1976) Toughening of ceramic composites by oriented nucleation of microcracks. J Am Ceram Soc 59:457–458. https://doi.org/10.1111/j.1151-2916.1976.Tb09524.x

    Article  CAS  Google Scholar 

  23. Stevens R (1989) Review zirconia-toughened alumina (ZTA) ceramics. J Mater Sci 24:3421–3440

    Article  Google Scholar 

  24. Zhang W, Chen H, Prentki R (2017) Numerical analysis of the mechanical behavior of ZTAp/Fe composites. Comput Mater Sci 137:153–161. https://doi.org/10.1016/j.commatsci.2017.05.021

    Article  CAS  Google Scholar 

  25. Qiu B, Xing S, Dong Q (2019) Green preparation and dry sliding wear properties of a macro-ZTA/Fe composite produced by a two-step method. Met 9(9):986. https://doi.org/10.3390/met9090986

    Article  CAS  Google Scholar 

  26. Du J, Chong X, Jiang Y, Feng J (2015) Numerical simulation of mold filling process for high chromium cast iron matrix composite reinforced by ZTA ceramic particles. Int J Heat Mass Transf 89:872–883. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.046

    Article  CAS  Google Scholar 

  27. Jeevan V, Rao CSP, Selvaraj N, Rao GB (2018) Fabrication and characterization of AA6082-ZTA composites by powder metallurgy process. Mater Today Proc 5:254–260. https://doi.org/10.1016/j.matpr.2017.11.080

    Article  CAS  Google Scholar 

  28. Perrichon A, Liu BH, Gremillard L, Reynard B, Liao J, Geringer J (2017) Ageing, shocks and wear mechanisms in ZTA and the long-term performance of hip joint materials. Mater 10(6):569. https://doi.org/10.3390/ma10060569

    Article  CAS  Google Scholar 

  29. Palmero P, Montanaro L, Reveron H, Chevalier J (2014) Surface coating of oxide powders: a new synthesis method to process biomedical grade nanocomposites. Mater 7(7):5012–5037. https://doi.org/10.3390/ma7075012

    Article  CAS  Google Scholar 

  30. Mozammil S, Karloopia J, Verma R, Jha PK (2019) Effect of varying TiB2 reinforcement and its ageing behaviour on tensile and hardness properties of in-situ Al-4.5%Cu-xTiB2 composite. J Alloys Compd 793: 454–466

    Google Scholar 

  31. Huang S, Binner J, Vaidhyanathan B, Brown P, Hampson C, Spacie C (2011) Development of nano zirconia toughened alumina for ceramic armor applications. Adv Ceram Arm 32(5):103–112. https://doi.org/10.1002/9781118095256.ch10

    Article  CAS  Google Scholar 

  32. Ratnam MM, Ahmad ZA (2015) Wear analysis of ZTA-MgO ceramic cutting inserts on stainless steel 316L wear analysis of ZTA-MgO ceramic cutting inserts on stainless steel 316L machining. Adv Mater Res 1087:101–105. https://doi.org/10.4028/www.scientific.net/AMR.1087.101

    Article  Google Scholar 

  33. De Aza AH, Chevalier J, Fantozzi G, Schehl M, Torrecillas R (2002) Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses. Biomaterial 23(3):937–945

    Article  Google Scholar 

  34. Kerkwijk B, Winnubst L, Mulder EJ, Verweij H (1999) Processing of homogeneous zirconia-toughened alumina ceramics with high dry sliding wear resistance. J Am Ceram Soc 82:2087–2093

    Article  CAS  Google Scholar 

  35. Like Q, Xikun L, Guanming Q, Weimin M, Yanbin S, Huadong Y (2007) Study on toughness mechanism of ceramic cutting tools. J Rare Earths 25:309–316. 10. https://doi.org/10.1016/S1002-0721(07)60493-1

  36. Mozammil S, Koshta E, Jha PK (2021) Abrasive wear investigation and parametric process optimization of in situ Al–4.5% Cu–xTiB2 composites. Trans Ind Inst Metals 74(3):629–648

    Google Scholar 

  37. Azhar AZA, Mohamad H, Ratnam MM, Ahmad ZA (2010) The effects of MgO addition on microstructure, mechanical properties and wear performance of zirconia-toughened alumina cutting inserts. J Alloys Compd 497:316–320. https://doi.org/10.1016/j.jallcom.2010.03.054

  38. Sarkar R, Banerjee G (1999) Effect of compositional variation and fineness on the densification of MgO-Al2O3 Compacts. J Eur Ceram Soc 19:2893–2899

    Article  CAS  Google Scholar 

  39. Mahmood AAl, Gafur MA, Hoque ME (2017) Effect of MgO on the physical, mechanical and microstructural properties of ZTA-TiO2 composite. Mater Sci Eng A 707:118–24. https://doi.org/10.1016/j.msea.2017.09.048

  40. Mozammil S, Karloopia J, Jha PK, Srivatsan TS (2021) Effect of heat treatment on mechanical properties of an aluminum alloy and aluminum alloy composite: a comparative study. Metal-matrix composites: advances in analysis, measurement, and observations. Springer International Publishing

    Google Scholar 

  41. Singh BK, Roy H, Mondal B, Roy SS, Mandal N (2018) Development and machinability evaluation of MgO doped Y-ZTA ceramic inserts for high-speed machining of steel. Machine Sci Technol 22(6):899–913. https://doi.org/10.1080/10910344.2017.1415937

    Article  CAS  Google Scholar 

  42. Chavan V, Kadam S, Sadaiah M (2019) Performance of alumina-based ceramic inserts in high-speed machining of nimonic 80A. Mater Manuf Proc 34(1): 8–17. https://doi.org/10.1080/10426914.2018.1532084

  43. Zhang F, Vanmeensel K, Inokoshi M, Batuk M, Hadermann J, Van Meerbeek B, Vleugels J (2015) Critical influence of alumina content on the low-temperature degradation of 2–3 mol % yttria-stabilized TZP for dental restorations. J Euro Ceram Soc 35(2):741–750. https://doi.org/10.1016/j.jeurceramsoc.2014.09.018

    Article  CAS  Google Scholar 

  44. Lijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  45. Bethune DS, Kiang CH, De Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605–607

    Article  CAS  Google Scholar 

  46. Zhan GD, Mukherjee AK (2004) Carbon nanotube reinforced alumina-based ceramics with novel mechanical, electrical, and thermal properties. Int J Appl Ceram Technol 1:161–171

    Article  CAS  Google Scholar 

  47. Peigney A, Laurent C, Flahaut E, Rousset A (2000) Carbon nanotubes in novel ceramic matrix nanocomposites. Ceram Int 26:677–683

    Article  CAS  Google Scholar 

  48. De Couto CAO, Ribeiro S, Passador FR (2018) Effect of carbon nanotubes reinforcement on the mechanical properties of alumina and ZTA composites for ballistic application. Ceramica 64(372):608–615. https://doi.org/10.1590/0366-69132018643722475

    Article  CAS  Google Scholar 

  49. Meena KL, Karunakar DB (2019) Effect of ZrO2 and MgO added in alumina on the physical and mechanical properties of spark plasma sintered nanocomposite. Int J Refract Met Hard Mater 81: 281–90. https://doi.org/10.1016/ijrmhm.2019.03.009

  50. Ribeiro S, Passador FR (2018) Effect of carbon nanotubes reinforcement on the mechanical properties of alumina and ZTA composites for ballistic application. Ceramica 64:608–615

    Article  Google Scholar 

  51. Sarkar D (2007) Preparation and characterization of an Al2O3-ZrO2 nanocomposite, Part I : Powder synthesis and transformation behavior during fracture. Composite Part A: Appl Sci Manuf. 38: 124–31. https://doi.org/10.1016/j.compositesa.2006.01.005

  52. Chowdhury MA, Nuruzzaman DM, Mia AH, Rahaman ML (2012) Friction coefficient of different material pairs under different normal loads and sliding velocities. Tribo Indus 34(1):18–23

    Google Scholar 

  53. Meena KL, Vidyasagar ChS, Karunakar DB (2021) Mechanical and tribological properties of mgo/multiwalled carbon nanotube- reinforced zirconia-toughened alumina composites developed through spark plasma sintering and microwave sintering. J Mater Eng Perform 30(10):1-15. https://doi.org/10.1007/s11665-021-06170-9

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. L. Meena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meena, K.L., Mozammil, S., Srivatsan, T.S. (2022). Development of Zirconia Toughend Nanocomposites Using the Technique of Spark Plasma Sintering: Role of Reinforcement. In: Srivatsan, T.S., Rohatgi, P.K., Hunyadi Murph, S. (eds) Metal-Matrix Composites. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-92567-3_12

Download citation

Publish with us

Policies and ethics