Skip to main content

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 145))

  • 356 Accesses

Abstract

How do we walk? How do we manipulate objects? How do we talk, sing, play musical instruments and draw a portrait? What does it happens when—after an accident or a disease—our motor skills are modified? And how can we design and control machines able to perform tasks that most people can do effortlessly?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    With this term, I will refer, hereinafter, to the research conducted from the beginning of ’900.

  2. 2.

    The Nervous System is intended in his central and peripheral components.

  3. 3.

    Note the cross-disciplinary similarities with the Impedance Control [59].

  4. 4.

    The term simplexity stands for a complementary relationship between simplicity and complexity. Nature’s control of animal body, and by extension the synergistic control of mechatronic devices, can be intended—at least in principle—as a very simple implementation of a very complex solution.

References

  1. Anderson, F.C., Pandy, M.G.: Dynamic optimization of human walking. J. Biomech. Eng. 123(5), 381–390 (2001)

    Google Scholar 

  2. d Avella, A., Tresch, M.C.: Modularity in the motor system: decomposition of muscle patterns as combinations of time-varying synergies. Adv. Neural Inf. Process. Syst. 1, 141–148 (2002)

    Google Scholar 

  3. Averta, G., Abbinante, M., Orsini, P., Felici, F., Lippi, P., Bicchi, A., Catalano, M.G., Bianchi, M.: A novel mechatronic system for evaluating elbow muscular spasticity relying on tonic stretch reflex threshold estimation. In: Proceedings of the Engineering in Medicine and Biology Society, 2020. EMBC’20. 42th Annual International Conference of the IEEE (2020)

    Google Scholar 

  4. Averta, G., Angelini, F., Bonilla, M., Bianchi, M., Bicchi, A.: Incrementality and hierarchies in the enrollment of multiple synergies for grasp planning. IEEE Robot. Autom. Lett. 3(3), 2686–2693 (2018)

    Google Scholar 

  5. Averta, G., Caporale, D., Della Santina, C., Bicchi, A., Bianchi, M.: A technical framework for human-like motion generation with autonomous anthropomorphic redundant manipulators. In: 2020 IEEE International Conference on In Robotics and Automation (ICRA), Paris. IEEE (2020)

    Google Scholar 

  6. Averta, G., Della Santina, C., Battaglia, E., Ciotti, S., Arapi, V., Fani, S., Bianchi, M.: From humans to robots: the role of cutaneous impairment in human environmental constraint exploitation to inform the design of robotic hands. In: 2017 9th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), pp. 179–184. IEEE (2017)

    Google Scholar 

  7. Averta, G., Della Santina, C., Battaglia, E., Felici, F., Bianchi, M., Bicchi, A.: Unvealing the principal modes of human upper limb movements through functional analysis. Front. Robot. AI 4, 37 (2017)

    Google Scholar 

  8. Averta, G., Della Santina, C., Valenza, G., Bianchi, M., Bicchi, A.: Exploiting upper-limb functional synergies for human-like motion generation of anthropomorphic robots. J. Neuro Eng. Rehabil.

    Google Scholar 

  9. Averta, G., Valenza, G., Catrambone, V., Barontini, F., Scilingo, E.P., Bicchi, A., Bianchi, M.: On the time-invariance properties of upper limb synergies. IEEE Trans. Neural Syst. Rehabil. Eng. 27(7), 1397–1406 (2019)

    Google Scholar 

  10. Bartneck, C., Kulić, D., Croft, E., Zoghbi, S.: Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. Int. J. Soc. Robot. 1(1), 71–81 (2009)

    Google Scholar 

  11. Bemstein, N.: The problem of interrelation between coordination and localization. Arch. Biol. Sci. 38, 1–35 (1935)

    Google Scholar 

  12. Berger, D.J., Gentner, R., Edmunds, T., Pai, D.K., d’Avella, A.: Differences in adaptation rates after virtual surgeries provide direct evidence for modularity. J. Neurosci. 33(30), 12384–12394 (2013)

    Google Scholar 

  13. Bernstein, N.A.: O postrojenii dvizhenij [on the construction of movements]. Medgiz, Moscow (1947)

    Google Scholar 

  14. Bianchi, M., Averta, G., Battaglia, E., Rosales, C., Bonilla, M., Tondo, A., Poggiani, M., Santaera, G., Ciotti, S., Catalano, M.G., et al.: Touch-based grasp primitives for soft hands: applications to human-to-robot handover tasks and beyond. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 7794–7801. IEEE (2018)

    Google Scholar 

  15. Bicchi, A., Gabiccini, M., Santello, M.: Modelling natural and artificial hands with synergies. Philos. Trans. R. Soc. B: Biol. Sci. 366(1581), 3153–3161 (2011)

    Google Scholar 

  16. Brown, C.Y., Asada, H.H.: Inter-finger coordination and postural synergies in robot hands via mechanical implementation of principal components analysis. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007. IROS 2007, pp. 2877–2882. IEEE (2007). https://doi.org/10.1109/iros.2007.4399547

  17. Burke, R.E.: Sir charles sherrington’s the integrative action of the nervous system: a centenary appreciation. Brain 130(4), 887–894 (2007)

    Google Scholar 

  18. Casini, S., Tincani, V., Averta, G., Poggiani, M., Della Santina, C., Battaglia, E., Catalano, M.G., Bianchi, M., Grioli, G., Bicchi, A.: Design of an under-actuated wrist based on adaptive synergies. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 6679–6686. IEEE (2017)

    Google Scholar 

  19. Castellini, C., van der Smagt, P.: Evidence of muscle synergies during human grasping. Biol. Cybern. 107(2), 233–245 (2013)

    Google Scholar 

  20. Catalano, M.G., Grioli, G., Farnioli, E., Serio, A., Piazza, C., Bicchi, A.: Adaptive synergies for the design and control of the Pisa-IIT softhand. Int. J. Robot. Res. 33, 768–782 (2014)

    Google Scholar 

  21. Catalano, M.G., Grioli, G., Serio, A., Farnioli, E., Piazza, C., Bicchi, A.: Adaptive synergies for a humanoid robot hand. In: 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), pp. 7–14. IEEE (2012)

    Google Scholar 

  22. Chow, C., Jacobson, D.: Studies of human locomotion via optimal programming. Math. Biosci. 10(3–4), 239–306 (1971)

    MATH  Google Scholar 

  23. Ciocarlie, M., Goldfeder, C., Allen, P.K.: Dimensionality reduction for hand-independent dexterous robotic grasping (2007)

    Google Scholar 

  24. Ciocarlie, M.T., Allen, P.K.: Hand posture subspaces for dexterous robotic grasping. Int. J. Robot. Res. 28(7), 851–867 (2009)

    Google Scholar 

  25. Collins, J.: The redundant nature of locomotor optimization laws. J. Biomech. 28(3), 251–267 (1995)

    Google Scholar 

  26. d’Avella, A., Giese, M., Ivanenko, Y.P., Schack, T., Flash, T.: Modularity in motor control: from muscle synergies to cognitive action representation. Front. Comput. Neurosci. 9, 126 (2015)

    Google Scholar 

  27. d’Avella, A., Portone, A., Fernandez, L., Lacquaniti, F.: Control of fast-reaching movements by muscle synergy combinations. J. Neurosci. 26(30), 7791–7810 (2006)

    Google Scholar 

  28. d’Avella, A., Saltiel, P., Bizzi, E.: Combinations of muscle synergies in the construction of a natural motor behavior. Nat. Neurosci. 6(3), 300 (2003)

    Google Scholar 

  29. Davy, D., Audu, M.: A dynamic optimization technique for predicting muscle forces in the swing phase of gait. J. Biomech. 20(2), 187–201 (1987)

    Google Scholar 

  30. Della Santina, C., Arapi, V., Averta, G., Damiani, F., Fiore, G., Settimi, A., Catalano, M.G., Bacciu, D., Bicchi, A., Bianchi, M.: Learning from humans how to grasp: a data-driven architecture for autonomous grasping with anthropomorphic soft hands. IEEE Robot. Autom. Lett. 4(2), 1533–1540 (2019)

    Google Scholar 

  31. Della Santina, C., Bianchi, M., Averta, G., Ciotti, S., Arapi, V., Fani, S., Battaglia, E., Catalano, M.G., Santello, M., Bicchi, A.: Postural hand synergies during environmental constraint exploitation. Front. Neurorobot. 11, 41 (2017)

    Google Scholar 

  32. Duchenne, G.: Physiology of motion. Translated by E.B. Kaplan (1959)

    Google Scholar 

  33. Duchenne, G.B.: Physiology of motion demonstrated by means of electrical stimulation and clinical observation and applied to the study of paralysis and deformities. WB Saunders (1959)

    Google Scholar 

  34. Duffy, B.R.: Anthropomorphism and the social robot. Robot. Auton. Syst. 42(3), 177–190 (2003)

    MATH  Google Scholar 

  35. Edsinger, A., Kemp, C.C.: Two arms are better than one: a behavior based control system for assistive bimanual manipulation. In: Recent progress in robotics: viable robotic service to human, pp. 345–355. Springer (2007)

    Google Scholar 

  36. Englehart, K., Hudgins, B., Parker, P.A., Stevenson, M.: Classification of the myoelectric signal using time-frequency based representations. Med. Eng. Phys. 21(6–7), 431–438 (1999)

    Google Scholar 

  37. Fagg, A.H., Shah, A., Barto, A.G.: A computational model of muscle recruitment for wrist movements. J. Neurophysiol. 88(6), 3348–3358 (2002)

    Google Scholar 

  38. Feldman, A.G.: Functional tuning of the nervous system with control of movement or maintenance of a steady posture-ii. controllable parameters of the muscle. Biofizika 11, 565–578 (1966)

    Google Scholar 

  39. Feldman, A.G.: Once more on the equilibrium-point hypothesis (\(\lambda \) model) for motor control. J. Mot. Behav. 18(1), 17–54 (1986)

    Google Scholar 

  40. Ficuciello, F., Palli, G., Melchiorri, C., Siciliano, B.: Experimental evaluation of postural synergies during reach to grasp with the ub hand iv. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1775–1780. IEEE (2011)

    Google Scholar 

  41. Fink, J.: Anthropomorphism and human likeness in the design of robots and human-robot interaction. In: International Conference on Social Robotics, pp. 199–208. Springer (2012)

    Google Scholar 

  42. Flash, T., Hogan, N.: The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci. 5(7), 1688–1703 (1985)

    Google Scholar 

  43. Fugl-Meyer, A.R., Jääskö, L., Leyman, I., Olsson, S., Steglind, S.: The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand. J. Rehabil. Med. 7(1), 13–31 (1975)

    Google Scholar 

  44. Gabiccini, M., Bicchi, A., Prattichizzo, D., Malvezzi, M.: On the role of hand synergies in the optimal choice of grasping forces. Auton. Robot. 31(2–3), 235–252 (2011)

    Google Scholar 

  45. Gabiccini, M., Farnioli, E., Bicchi, A.: Grasp analysis tools for synergistic underactuated robotic hands. Int. J. Robot. Res. 32(13), 1553–1576 (2013)

    Google Scholar 

  46. Galvani, L., Aldini, G.: Aloysii Galvani. De viribus electricitatis in motu musculari commentarius cum Ioannis Aldini Dissertatione et notis. Accesserunt Epistolæ ad animalis electricitatis theoriam pertinentes. Apud Societatem Typographicam (1792)

    Google Scholar 

  47. Gasparri, G.M., Manara, S., Caporale, D., Averta, G., Bonilla, M., Marino, H., Catalano, M., Grioli, G., Bianchi, M., Bicchi, A., et al.: Efficient walking gait generation via principal component representation of optimal trajectories: application to a planar biped robot with elastic joints. IEEE Robot. Autom. Lett. 3(3), 2299–2306 (2018)

    Google Scholar 

  48. Gladstone, D.J., Danells, C.J., Black, S.E.: The Fugl-Meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabil. Neural Repair 16(3), 232–240 (2002)

    Google Scholar 

  49. Grimaldi, F.M.: Physico-mathesis de lumine, coloribus et iride. Victorii Benatii (1663)

    Google Scholar 

  50. Guigon, E., Baraduc, P., Desmurget, M.: Constant effort computation as a determinant of motor behavior. Adv. Comput. Mot. Control 2 (2003)

    Google Scholar 

  51. Hahne, J., Rehbaum, H., Biessmann, F., Meinecke, F.C., Müller, K.R., Jiang, N., Farina, D., Parra, L.C.: Simultaneous and proportional control of 2D wrist movements with myoelectric signals. In: 2012 IEEE International Workshop on Machine Learning for Signal Processing, pp. 1–6. IEEE (2012)

    Google Scholar 

  52. Hamilton, A.F.D.C., Wolpert, D.M.: Controlling the statistics of action: obstacle avoidance. J. Neurophysiol. 87(5), 2434–2440 (2002)

    Google Scholar 

  53. Harris, C.M., Wolpert, D.M.: Signal-dependent noise determines motor planning. Nature 394(6695), 780 (1998)

    Google Scholar 

  54. Harwood, M.R., Mezey, L.E., Harris, C.M.: The spectral main sequence of human saccades. J. Neurosci. 19(20), 9098–9106 (1999)

    Google Scholar 

  55. Hatze, H., Buys, J.D.: Energy-optimal controls in the mammalian neuromuscular system. Biol. Cybern. 27(1), 9–20 (1977)

    MATH  Google Scholar 

  56. Hoff, B., Arbib, M.A.: Models of trajectory formation and temporal interaction of reach and grasp. J. Mot. Behav. 25(3), 175–192 (1993)

    Google Scholar 

  57. Hoff, B.R.: A computational description of the organization of human reaching and prehension (1992)

    Google Scholar 

  58. Hogan, N.: An organizing principle for a class of voluntary movements. J. Neurosci. 4(11), 2745–2754 (1984)

    Google Scholar 

  59. Hogan, N.: Impedance control-an approach to manipulation. i-theory. ii-implementation. iii-applications. ASME Trans. J. Dyn. Syst. Meas. Control B 107, 1–24 (1985)

    Google Scholar 

  60. Ijspeert, A.J.: A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander. Biol. Cybern. 84(5), 331–348 (2001)

    MathSciNet  Google Scholar 

  61. Ivanchenko, V., Jacobs, R.A.: A developmental approach aids motor learning. Neural Comput. 15(9), 2051–2065 (2003)

    MATH  Google Scholar 

  62. Ivanenko, Y.P., Poppele, R.E., Lacquaniti, F.: Five basic muscle activation patterns account for muscle activity during human locomotion. J. Physiol. 556(1), 267–282 (2004)

    Google Scholar 

  63. Krishnamoorthy, V., Goodman, S., Zatsiorsky, V., Latash, M.L.: Muscle synergies during shifts of the center of pressure by standing persons: identification of muscle modes. Biol. Cybern. 89(2), 152–161 (2003)

    MATH  Google Scholar 

  64. Kuo, A.D.: An optimal control model for analyzing human postural balance. IEEE Trans. Biomed. Eng. 42(1), 87–101 (1995)

    Google Scholar 

  65. Kutch, J.J., Valero-Cuevas, F.J.: Challenges and new approaches to proving the existence of muscle synergies of neural origin. PLoS Comput. Biol. 8(5) (2012)

    Google Scholar 

  66. Latash, M.: Evolution of motor control: from reflexes and motor programs to the equilibrium-point hypothesis. J. Hum. Kinet. 19, 3–24 (2008)

    Google Scholar 

  67. Latash, M.L., Scholz, J.P., Schöner, G.: Toward a new theory of motor synergies. Mot. Control 11(3), 276–308 (2007). https://doi.org/10.1123/mcj.11.3.276

    Article  Google Scholar 

  68. Latash, M.L., Zatsiorsky, V.M.: 6—reflexes. In: Latash, M.L., Zatsiorsky, V.M. (eds.) Biomechanics and Motor Control, pp. 99 – 120. Academic Press, San Diego (2016). https://doi.org/10.1016/B978-0-12-800384-8.00006-5, http://www.sciencedirect.com/science/article/pii/B9780128003848000065

  69. Li, W., Todorov, E., Pan, X.: Hierarchical optimal control of redundant biomechanical systems. In: The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 2, pp. 4618–4621. IEEE (2004)

    Google Scholar 

  70. Liarokapis, M.V., Artemiadis, P., Bechlioulis, C., Kyriakopoulos, K.: Directions, methods and metrics for mapping human to robot motion with functional anthropomorphism: a review. School of Mechanical Engineering, National Technical University of Athens, Technical Report (2013)

    Google Scholar 

  71. Liarokapis, M.V., Artemiadis, P.K., Kyriakopoulos, K.J.: Task discrimination from myoelectric activity: a learning scheme for emg-based interfaces. In: 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), pp. 1–6. IEEE (2013)

    Google Scholar 

  72. Liarokapis, M.V., Artemiadis, P.K., Kyriakopoulos, K.J., Manolakos, E.S.: A learning scheme for reach to grasp movements: on EMG-based interfaces using task specific motion decoding models. IEEE J. Biomed. Health Inform. 17(5), 915–921 (2013)

    Google Scholar 

  73. Liarokapis, M.V., Dollar, A.M., Kyriakopoulos, K.J.: Humanlike, task-specific reaching and grasping with redundant arms and low-complexity hands. In: 2015 International Conference on Advanced Robotics (ICAR), pp. 490–497. IEEE (2015)

    Google Scholar 

  74. Loeb, G., Levine, W., He, J.: Understanding sensorimotor feedback through optimal control. In: Cold Spring Harbor symposia on quantitative biology, vol. 55, pp. 791–803. Cold Spring Harbor Laboratory Press (1990)

    Google Scholar 

  75. Loeb, G.E.: Optimal isn’t good enough. Biol. Cybern. 106(11–12), 757–765 (2012)

    Google Scholar 

  76. Maier, M., Hepp-Reymond, M.: EMG activation patterns during force production in precision grip. ii. muscular synergies in the spatial and temporal domain. Exp. Brain Res. 103(1), 123–136 (1995)

    Google Scholar 

  77. Mason, C.R., Gomez, J.E., Ebner, T.J.: Hand synergies during reach-to-grasp. J. Neurophysiol. 86(6), 2896–2910 (2001)

    Google Scholar 

  78. Meijer, O., Latash, M.: Bernstein versus pavlovianism: an interpretation. Progress in motor control, vol. 2: structure-function relations in voluntary movements, pp. 229–250 (2002)

    Google Scholar 

  79. Miossec, S., Kheddar, A.: Human motion in cooperative tasks: moving object case study. In: IEEE International Conference on Robotics and Biomimetics, 2008. ROBIO 2008. pp. 1509–1514. IEEE (2009)

    Google Scholar 

  80. Muceli, S., Farina, D.: Simultaneous and proportional estimation of hand kinematics from EMG during mirrored movements at multiple degrees-of-freedom. IEEE Trans. Neural Syst. Rehabil. Eng. 20(3), 371–378 (2011)

    Google Scholar 

  81. Mukai, T., Hirano, S., Nakashima, H., Sakaida, Y., Guo, S.: Realization and safety measures of patient transfer by nursing-care assistant robot riba with tactile sensors. Journal of Robotics and Mechatronics 23(3), 360–369 (2011)

    Google Scholar 

  82. Nakano, E., Imamizu, H., Osu, R., Uno, Y., Gomi, H., Yoshioka, T., Kawato, M.: Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model. J. Neurophysiol. 81(5), 2140–2155 (1999)

    Google Scholar 

  83. Nashner, L.: Adapting reflexes controlling the human posture. Exp. Brain Res. 26(1), 59–72 (1976)

    Google Scholar 

  84. Nelson, W.L.: Physical principles for economies of skilled movements. Biol. Cybern. 46(2), 135–147 (1983)

    MATH  Google Scholar 

  85. Newell, K.M., Vaillancourt, D.E.: Dimensional change in motor learning. Hum. Mov. Sci. 20(4–5), 695–715 (2001)

    Google Scholar 

  86. Ortiz-Catalan, M., Håkansson, B., Brånemark, R.: Real-time and simultaneous control of artificial limbs based on pattern recognition algorithms. IEEE Trans. Neural Syst. Rehabil. Eng. 22(4), 756–764 (2014)

    Google Scholar 

  87. Ortiz-Catalan, M., Rouhani, F., Brånemark, R., Håkansson, B.: Offline accuracy: a potentially misleading metric in myoelectric pattern recognition for prosthetic control. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1140–1143. IEEE (2015)

    Google Scholar 

  88. Oster, G.: Muscle sounds. Sci. Am. 250(3), 108–115 (1984). http://www.jstor.org/stable/24969327

  89. Pandy, M., Garner, B., Anderson, F.: Optimal control of non-ballistic muscular movements: a constraint-based performance criterion for rising from a chair. J. Biomech. Eng. 117(1), 15–26 (1995)

    Google Scholar 

  90. Pandy, M.G., Zajac, F.E., Sim, E., Levine, W.S.: An optimal control model for maximum-height human jumping. J. Biomech. 23(12), 1185–1198 (1990)

    Google Scholar 

  91. Pavlov, I.P., Gantt, W.: Lectures on conditioned reflexes: twenty-five years of objective study of the higher nervous activity (behaviour) of animals (1928)

    Google Scholar 

  92. Pavlov, I.P., Gantt, W.H.: Conditioned reflexes and psychiatry, vol. 2. International publishers New York (1941)

    Google Scholar 

  93. Peshkin, M., Colgate, J.E.: Cobots. Ind. Robot.: Int. J. 26(5), 335–341 (1999)

    Google Scholar 

  94. Piazza, C., Catalano, M.G., Godfrey, S.B., Rossi, M., Grioli, G., Bianchi, M., Zhao, K., Bicchi, A.: The softhand pro-h: a hybrid body-controlled, electrically powered hand prosthesis for daily living and working. IEEE Robot. Autom. Mag. 24(4), 87–101 (2017)

    Google Scholar 

  95. Popovic, D., Stein, R.B., Oguztoreli, M.N., Lebiedowska, M., Jonic, S.: Optimal control of walking with functional electrical stimulation: a computer simulation study. IEEE Trans. Rehabil. Eng. 7(1), 69–79 (1999)

    Google Scholar 

  96. Poston, B., Danna-Dos Santos, A., Jesunathadas, M., Hamm, T.M., Santello, M.: Force-independent distribution of correlated neural inputs to hand muscles during three-digit grasping. Am. J. Physiol.-Hear. Circ. Physiol. (2010)

    Google Scholar 

  97. Prattichizzo, D., Malvezzi, M., Gabiccini, M., Bicchi, A.: On the manipulability ellipsoids of underactuated robotic hands with compliance. Robot. Auton. Syst. 60(3), 337–346 (2012)

    Google Scholar 

  98. Prattichizzo, D., Malvezzi, M., Gabiccini, M., Bicchi, A.: On motion and force controllability of precision grasps with hands actuated by soft synergies. IEEE Trans. Rob. 29(6), 1440–1456 (2013)

    Google Scholar 

  99. Rasmussen, J., Damsgaard, M., Voigt, M.: Muscle recruitment by the min/max criterion–a comparative numerical study. J. Biomech. 34(3), 409–415 (2001)

    Google Scholar 

  100. Riek, L.D., Rabinowitch, T.C., Chakrabarti, B., Robinson, P.: How anthropomorphism affects empathy toward robots. In: Proceedings of the 4th ACM/IEEE International Conference on Human Robot Interaction, pp. 245–246. ACM (2009)

    Google Scholar 

  101. Saltiel, P., Wyler-Duda, K., D’Avella, A., Tresch, M.C., Bizzi, E.: Muscle synergies encoded within the spinal cord: evidence from focal intraspinal NMDA iontophoresis in the frog. J. Neurophysiol. 85(2), 605–619 (2001)

    Google Scholar 

  102. Santello, M., Bianchi, M., Gabiccini, M., Ricciardi, E., Salvietti, G., Prattichizzo, D., Ernst, M., Moscatelli, A., Jörntell, H., Kappers, A.M., et al.: Hand synergies: integration of robotics and neuroscience for understanding the control of biological and artificial hands. Phys. Life Rev. (2016)

    Google Scholar 

  103. Santello, M., Flanders, M., Soechting, J.F.: Postural hand synergies for tool use. J. Neurosci. 18(23), 10105–10115 (1998)

    Google Scholar 

  104. Santello, M., Flanders, M., Soechting, J.F.: Patterns of hand motion during grasping and the influence of sensory guidance. J. Neurosci. 22(4), 1426–1435 (2002)

    Google Scholar 

  105. Santisteban, L., Térémetz, M., Bleton, J.P., Baron, J.C., Maier, M.A., Lindberg, P.G.: Upper limb outcome measures used in stroke rehabilitation studies: a systematic literature review. PLoS ONE 11(5), e0154792 (2016)

    Google Scholar 

  106. Schmidt, R.A.: A schema theory of discrete motor skill learning. Psychol. Rev. 82(4), 225 (1975)

    Google Scholar 

  107. Scholz, J.P., Schöner, G.: The uncontrolled manifold concept: identifying control variables for a functional task. Exp. Brain Res. 126(3), 289–306 (1999). https://doi.org/10.1007/s002210050738

    Article  Google Scholar 

  108. Schwarz, A., Averta, G., Veerbeek, J.M., Luft, A., Held, J.P., Valenza, G., Bicchi, A., Bianchi, M.: A functional analysis-based approach to quantify upper limb impairment level in chronic stroke patients: a pilot study. In: Engineering in Medicine and Biology Society, 2019. EMBC’19. 41th Annual International Conference of the IEEE. IEEE (2019)

    Google Scholar 

  109. See, J., Dodakian, L., Chou, C., Chan, V., McKenzie, A., Reinkensmeyer, D.J., Cramer, S.C.: A standardized approach to the Fugl-Meyer assessment and its implications for clinical trials. Neurorehabil. Neural Repair 27(8), 732–741 (2013)

    Google Scholar 

  110. Shimansky, Y.P.: Spinal motor control system incorporates an internal model of limb dynamics. Biol. Cybern. 83(4), 379–389 (2000)

    MathSciNet  Google Scholar 

  111. Shimansky, Y.P., Kang, T., He, J.: A novel model of motor learning capable of developing an optimal movement control law online from scratch. Biol. Cybern. 90(2), 133–145 (2004)

    MATH  Google Scholar 

  112. Smeets, J.B., Brenner, E.: A new view on grasping. Mot. Control 3(3), 237–271 (1999)

    Google Scholar 

  113. Stuart, D., Pierce, P., Callister, R., Brichta, A., McDonagh, J.: Sir Charles Sherrington: humanist, mentor, and movement neuroscientist. In: Classics in Movement Science, pp. 317–374 (2001)

    Google Scholar 

  114. Thakur, P.H., Bastian, A.J., Hsiao, S.S.: Multidigit movement synergies of the human hand in an unconstrained haptic exploration task. J. Neurosci. 28(6), 1271–1281 (2008)

    Google Scholar 

  115. Thrane, G., Sunnerhagen, K.S., Persson, H.C., Opheim, A., Alt Murphy, M.: Kinematic upper extremity performance in people with near or fully recovered sensorimotor function after stroke. Physiother. Theory Pract. 1–11 (2018)

    Google Scholar 

  116. Ting, L.H., Macpherson, J.M.: A limited set of muscle synergies for force control during a postural task. J. Neurophysiol. (2005)

    Google Scholar 

  117. Todorov, E.: Cosine tuning minimizes motor errors. Neural Comput. 14(6), 1233–1260 (2002)

    MATH  Google Scholar 

  118. Todorov, E.: Optimality principles in sensorimotor control. Nat. Neurosci. 7(9), 907 (2004)

    Google Scholar 

  119. Todorov, E., Jordan, M.I.: Smoothness maximization along a predefined path accurately predicts the speed profiles of complex arm movements. J. Neurophysiol. 80(2), 696–714 (1998)

    Google Scholar 

  120. Todorov, E., Jordan, M.I.: Optimal feedback control as a theory of motor coordination. Nat. Neurosci. 5(11), 1226 (2002)

    Google Scholar 

  121. Tresch, M.C., Cheung, V.C., d’Avella, A.: Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets. J. Neurophysiol. (2006)

    Google Scholar 

  122. Tresch, M.C., Jarc, A.: The case for and against muscle synergies. Curr. Opin. Neurobiol. 19(6), 601–607 (2009)

    Google Scholar 

  123. Tresch, M.C., Saltiel, P., Bizzi, E.: The construction of movement by the spinal cord. Nat. Neurosci. 2(2), 162 (1999)

    Google Scholar 

  124. Tuller, B., Turvey, M.: The bernstein perspective: ll. the concept of muscle linkage or coordinative. In: Human Motor Behavior: An Introduction, p. 253 (1982)

    Google Scholar 

  125. Uno, Y., Kawato, M., Suzuki, R.: Formation and control of optimal trajectory in human multijoint arm movement. Biol. Cybern. 61(2), 89–101 (1989)

    Google Scholar 

  126. Arapi, V., Zhang, Y., Averta, G., Catalano, M.G., Rus, D., Della Santina, C., Bianchi, M.: To grasp or not to grasp: an end-to-end deep-learning approach for predicting grasping failures in soft hands. In: IEEE International Conference on Soft Robotics, Yale University, USA. IEEE (2020)

    Google Scholar 

  127. Valero-Cuevas, F.J.: Predictive modulation of muscle coordination pattern magnitude scales fingertip force magnitude over the voluntary range. J. Neurophysiol. 83(3), 1469–1479 (2000)

    Google Scholar 

  128. Valero-Cuevas, F.J., Zajac, F.E., Burgar, C.G.: Large index-fingertip forces are produced by subject-independent patterns of muscle excitation. J. Biomech. 31(8), 693–703 (1998)

    Google Scholar 

  129. Vinjamuri, R., Sun, M., Chang, C.C., Lee, H.N., Sclabassi, R.J., Mao, Z.H.: Temporal postural synergies of the hand in rapid grasping tasks. IEEE Trans. Inf Technol. Biomed. 14(4), 986–994 (2010)

    Google Scholar 

  130. Vujaklija, I., Roche, A.D., Hasenoehrl, T., Sturma, A., Amsuess, S., Farina, D., Aszmann, O.C.: Translating research on myoelectric control into clinics–are the performance assessment methods adequate? Front. Neurorobot. 11, 7 (2017)

    Google Scholar 

  131. Weiss, E.J., Flanders, M.: Muscular and postural synergies of the human hand. J. Neurophysiol. 92(1), 523–535 (2004). https://doi.org/10.1152/jn.01265.2003

    Article  Google Scholar 

  132. Whytt, R.: The Works of Robert Whytt. Becket, T., De Hondt, P.A. (eds.). London (1768)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Averta, G. (2022). Introduction. In: Human-Aware Robotics: Modeling Human Motor Skills for the Design, Planning and Control of a New Generation of Robotic Devices. Springer Tracts in Advanced Robotics, vol 145. Springer, Cham. https://doi.org/10.1007/978-3-030-92521-5_1

Download citation

Publish with us

Policies and ethics