Skip to main content

Model Free Error Compensation for Cable-Driven Robot Based on Deep Learning with Sim2real Transfer Learning

  • Conference paper
  • First Online:
Informatics in Control, Automation and Robotics (ICINCO 2020)

Abstract

The paper deals with model-free error compensation for cable-driven parallel robots based on the sim2real deep transfer learning. Particular attention is paid to simulation-based error estimation for different payloads attached to the robot end-effector and the use of the Transfer Learning approach for error compensation. This allows to reduce physical experiments with a real robot and gather sufficient data set within a reasonable time, which is required for deep learning. The obtained results were applied and validated for underactuated 4-dof (degrees of freedom) cable-driven parallel robot. Model-free Deep learning-based methods for a considerable training dataset provides better accuracy than simple linear error compensators using model-based calibration procedure. The proposed sim2real Transfer Learning method allowed to speed up the process of robotics system integration and recalibration due to the significant sample efficiency improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akhmetzyanov, A.: Github repository (2019). https://github.com/AydarAkhmetzyanov/Deep-Learning-based-cable-driven-robot-kinematics--error-compensation-with-Transfer-Learning

  2. Akhmetzyanov, A., Rassabin, M., Maloletov, A., Fadeev, M., Klimchik, A.: Deep learning with transfer learning method for error compensation of cable-driven robot. In: Gusikhin, O., Madani, K., Zaytoon, J. (eds.) Proceedings of the 17th International Conference on Informatics in Control, Automation and Robotics, ICINCO 2020, Lieusaint, Paris, France, 7–9 July 2020, pp. 553–559. ScitePress (2020). https://doi.org/10.5220/0009905605530559

  3. Albus, J., Bostelman, R., Dagalakis, N.: The NIST SPIDER, a robot crane. J. Res. Natl. Inst. Stand. Technol. 97, 373–385 (1992)

    Article  Google Scholar 

  4. Babaghasabha, R., Khosravi, M., Taghirad, H.: Adaptive robust control of fully-constrained cable driven parallel robots. J. Res. Natl. Inst. Stand. Technol. 25, 27–36 (2015)

    MATH  Google Scholar 

  5. Bayani, H., Masouleh, M., Kalhor, A.: An experimental study on the vision-based control and identification of planar cable-driven parallel robots. Robot. Auton. Syst. 75(Part B), 187–202 (2016)

    Article  Google Scholar 

  6. Carricato, M., Merlet, J.P.: Geometrico-static analysis of under-constrained cable-driven parallel robots. In: Lenarcic, J., Stanisic, M. (eds.) Advances in Robot Kinematics: Motion in Man and Machine, pp. 309–319. Springer, Dordrecht (2010). https://doi.org/10.1007/978-90-481-9262-5_33

    Chapter  Google Scholar 

  7. Dallej, T., Gouttefarde, M., Andreff, N., Dahmouche, R., Martinet, P.: Vision-based modeling and control of large-dimension cable-driven parallel robots. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1581–1586 (2012)

    Google Scholar 

  8. Dallej, T., Gouttefarde, M., Andreff, N., Michelin, M., Martinet, P.: Towards vision-based control of cable-driven parallel robots. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2855–2860 (2011)

    Google Scholar 

  9. Du, J., Bao, H., Cui, C., Yang, D.: Dynamic analysis of cable-driven parallel manipulators with time-varying cable lengths. Finite Elem. Anal. Des. 48, 1392–1399 (2012)

    Article  MathSciNet  Google Scholar 

  10. Duka, A.V.: Neural network based inverse kinematics solution for trajectory tracking of a robotic arm. Procedia Technol. 12, 20–27 (2014). https://doi.org/10.1016/j.protcy.2013.12.451

    Article  Google Scholar 

  11. Fadeev, M., Maloletov, A.: Control of the four-cable-driven parallel robot with the help of the inverse kinematic model. In: Proceedings of the 6th International Young Scientists Conference on Information Technologies, Telecommunications and Control Systems (ITTCS 2019) (2019)

    Google Scholar 

  12. Gao, B., Song, H., Zhao, J., Guo, S., Sun, L., Tang, Y.: Inverse kinematics and workspace analysis of a cable-driven parallel robot with a spring spine. Mech. Mach. Theory 76, 56–69 (2014)

    Article  Google Scholar 

  13. Gorman, J., Jablokow, K., Cannon, D.: The cable array robot: theory and experiment. In: Proceedings 2001 ICRA IEEE International Conference on Robotics and Automation (Cat No01CH37164), vol. 3, pp. 2804–2810 (2001)

    Google Scholar 

  14. Gosselin, C., Ping, R., Foucault, S.: Dynamic trajectory planning of a two-DOF cable-suspended parallel robot. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 1476–1481 (2012)

    Google Scholar 

  15. Gouttefarde, M., Collard, J., Riehl, N., Baradat, C.: Simplified static analysis of large-dimension parallel cable-driven robots. In: 2012 IEEE International Conference on Robotics and Automation, pp. 2299–2305 (2012)

    Google Scholar 

  16. Kawamura, S., Choe, W., Tanaka, S., Pandian, S.: Development of an ultrahigh speed robot falcon using wire drive system. In: Proceedings of 1995 IEEE International Conference on Robotics and Automation, vol. 1, pp. 215–220 (1995)

    Google Scholar 

  17. Khosravi, M., Taghirad, H.: Robust PID control of fully-constrained cable driven parallel robots. Mechatronics 24, 87–97 (2014)

    Article  Google Scholar 

  18. Klimchik, A., Ambiehl, A., Garnier, S., Furet, B., Pashkevich, A.: Experimental study of robotic-based machining. IFAC-PapersOnLine 49(12), 174–179 (2016). https://doi.org/10.1016/j.ifacol.2016.07.591, http://www.sciencedirect.com/science/article/pii/S2405896316308515, 8th IFAC Conference on Manufacturing Modelling, Management and Control MIM 2016

  19. Klimchik, A., Bondarenko, D., Pashkevich, A., Briot, S., Furet, B.: Compliance error compensation in robotic-based milling. CoRR abs/1409.6231 (2014). http://arxiv.org/abs/1409.6231

  20. Klimchik, A., Pashkevich, A.: Robotic manipulators with double encoders: accuracy improvement based on advanced stiffness modeling and intelligent control. IFAC-PapersOnLine 51(11), 740–745 (2018). https://doi.org/10.1016/j.ifacol.2018.08.407, http://www.sciencedirect.com/science/article/pii/S2405896318315337, 16th IFAC Symposium on Information Control Problems in Manufacturing INCOM 2018

  21. Klimchik, A., Pashkevich, A., Chablat, D., Hovland, G.: Compliance error compensation technique for parallel robots composed of non-perfect serial chains. Robot. Comput.-Integr. Manuf. 29(2), 385–393 (2013). https://doi.org/10.1016/j.rcim.2012.09.008, http://www.sciencedirect.com/science/article/pii/S0736584512001111

  22. Kozak, K., Qian, Z., Jinsong, W.: Static analysis of cable-driven manipulators with non-negligible cable mass. IEEE Trans. Robot. 22, 425–433 (2006)

    Article  Google Scholar 

  23. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017). https://doi.org/10.1145/3065386

    Article  Google Scholar 

  24. Lafourcade, P.: Étude des manipulateurs parallèles à cábles: conception d’une suspension active pour soufflerie (2004)

    Google Scholar 

  25. Lamaury, J., Gouttefarde, M.: Control of a large redundantly actuated cable-suspended parallel robot. In: 2013 IEEE International Conference on Robotics and Automation, pp. 4659–4664 (2013)

    Google Scholar 

  26. Maloletov, A., Fadeev, M., Klimchik, A.: Error analysis in solving the inverse problem of the cable-driven parallel underactuated robot kinematics and methods for their elimination. IFAC-PapersOnLine 52, 1156–1161 (2019). https://doi.org/10.1016/j.ifacol.2019.11.352

  27. Merlet, J.P.: Analysis of wire elasticity for wire-driven parallel robots. In: Ceccarelli, M. (ed.) Proceedings of EUCOMES 08, pp. 471–478. Springer, Dordrecht (2009). https://doi.org/10.1007/978-1-4020-8915-2_57

    Chapter  Google Scholar 

  28. Merlet, J.: Kinematic analysis of the 4-3-1 and 3-2-1 wire-driven parallel crane. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 4635–4640 (2013)

    Google Scholar 

  29. Merlet, J., Daney, D.: A portable, modular parallel wire crane for rescue operations. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 2834–2839 (2010)

    Google Scholar 

  30. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space (2013)

    Google Scholar 

  31. Morizono, T., Kurahashi, K., Kawamura, S.: Analysis and control of a force display system driven by parallel wire mechanism. Robotica 16, 551–563 (1998)

    Article  Google Scholar 

  32. Morris, M., Shoham, M.: Applications and theoretical issues of cable-driven robots, May 2009

    Google Scholar 

  33. Narvekar, S., Stone, P.: Learning curriculum policies for reinforcement learning (2018)

    Google Scholar 

  34. Ou, M., Xiumin, D.: Dynamics analysis of a cable-driven parallel manipulator for hardware-in-the-loop dynamic simulation. In: 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics Proceedings, pp. 837–842 (2005)

    Google Scholar 

  35. Pane, Y., Nageshrao, S., Kober, J., Babuska, R.: Reinforcement learning based compensation methods for robot manipulators. Eng. Appl. Artif. Intell. 78, 236–247 (2019). https://doi.org/10.1016/j.engappai.2018.11.006

    Article  Google Scholar 

  36. Pham, C., Yeo, S., Yang, G., Chen, I.: Workspace analysis of fully restrained cable-driven manipulators. Robot. Auton. Syst. 57, 901–912 (2009)

    Article  Google Scholar 

  37. Pusey, J., Fattah, A., Agrawal, S., Messina, E.: Design and workspace analysis of a 6–6 cable-suspended parallel robot. Mech. Mach. Theory 39, 761–778 (2004)

    Article  Google Scholar 

  38. Seriani, S., Seriani, M., Gallina, P.: Workspace optimization for a planar cable-suspended direct-driven robot. Robot. Comput.-Integr. Manuf. 34, 1–7 (2015)

    Article  Google Scholar 

  39. Torrey, L., Shavlik, J., Walker, T., Maclin, R.: Transfer learning via advice taking. In: Koronacki, J., Raś, Z.W., Wierzchoń, S.T., Kacprzyk, J. (eds.) Advances in Machine Learning I. Studies in Computational Intelligence, vol. 262. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-05177-7_7

    Chapter  MATH  Google Scholar 

  40. Wu, Y., Klimchik, A., Caro, S., Furet, B., Pashkevich, A.: Geometric calibration of industrial robots using enhanced partial pose measurements and design of experiments. Robot. Comput.-Integr. Manuf. 35, 151–168 (2015). https://doi.org/10.1016/j.rcim.2015.03.007, http://www.sciencedirect.com/science/article/pii/S0736584515000411

  41. Yeo, S., Yang, G., Lim, W.: Design and analysis of cable-driven manipulators with variable stiffness. Mech. Mach. Theory 69, 230–244 (2013)

    Article  Google Scholar 

  42. Yuan, H., Courteille, E., Deblaise, D.: Static and dynamic stiffness analyses of cable-driven parallel robots with non-negligible cable mass and elasticity. Mech. Mach. Theory 85, 64–81 (2015)

    Article  Google Scholar 

  43. Zhang, N., Shang, W.: Dynamic trajectory planning of a 3-DOF under-constrained cable-driven parallel robot. Mech. Mach. Theory 98, 21–35 (2016)

    Article  Google Scholar 

  44. Zhao, G., Zhang, P., Ma, G., Xiao, W.: System identification of the nonlinear residual errors of an industrial robot using massive measurements. Robot. Comput.-Integr. Manuf. 59, 104–114 (2019). https://doi.org/10.1016/j.rcim.2019.03.007, http://www.sciencedirect.com/science/article/pii/S0736584518306008

  45. Zi, B., Duan, B., Du, J., Bao, H.: Dynamic modeling and active control of a cable-suspended parallel robot. Mechatronics 18, 1–12 (2008)

    Article  Google Scholar 

  46. Zi, B., Zhu, Z., Du, J.: Analysis and control of the cable-supporting system including actuator dynamics. Control. Eng. Pract. 19, 491–501 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

Work was supported by the RFBR (Russian Foundation for Basic Research) (Grant No. 19-08-01234).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandr Klimchik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Akhmetzyanov, A., Rassabin, M., Maloletov, A., Fadeev, M., Klimchik, A. (2022). Model Free Error Compensation for Cable-Driven Robot Based on Deep Learning with Sim2real Transfer Learning. In: Gusikhin, O., Madani, K., Zaytoon, J. (eds) Informatics in Control, Automation and Robotics. ICINCO 2020. Lecture Notes in Electrical Engineering, vol 793. Springer, Cham. https://doi.org/10.1007/978-3-030-92442-3_24

Download citation

Publish with us

Policies and ethics