Skip to main content

Variable Complexity Corneal Surfaces Characterization by Modal Geometrical Reconstruction Methods: Comparative Study

  • Conference paper
  • First Online:
Advances in Design Engineering II (INGEGRAF 2021)

Abstract

Validation of new methods for keratoconus diagnosis has generated a great interest for the last years in the field of ophthalmology. Corneal surface reconstruction by discrete 3D points creates the possibility to apply modal or zonal geometrical methods. The goal of this work is to determine the geometrical behavior of the cornea in each keratoconus stage by different modal geometrical models, mainly, those derived from the general equation of the biconical and its associated parameters. This study included a total amount of 75 eyes, 20 of these were healthy eyes and 55 classified with keratoconus pathology by using Amsler-Krumeich classification. After studying the proposed models, the biconical model showed the best fit model while spherical model showed the worst fit one. By assessing geometrical parameters from biconical model, curvature radius and asphericity in the main direction, the geometrical corneal behavior can be assessed in each keratoconus stage in both anterior and posterior cornea. Using a variable reduction in two parameters, mean radius and mean asphericity, a decreasing trend in both parameters with keratoconus progress is found. Therefore, this study proposes to validate the biconical model for variable complexity surfaces with keratoconus pathology as a tool for diagnosis in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geng, Z., Bidanda, B.: Review of reverse engineering systems–current state of the art. Virtual Phys. Prototyp. 12(2), 161–172 (2017)

    Google Scholar 

  2. Kainz, W., et al.: Advances in computational human phantoms and their applications in biomedical engineering—a topical review. IEEE Trans. Radiat. Plasma Med. Sci. 3(1), 1–23 (2018)

    MathSciNet  Google Scholar 

  3. Lasemi, A., Xue, D., Gu, P.: Recent development in CNC machining of freeform surfaces: a state-of-the-art review. Comput. Aided Des. 42(7), 641–654 (2010)

    Google Scholar 

  4. Lim, S.P., Haron, H.: Surface reconstruction techniques: a review. Artif. Intell. Rev. 42(1), 59–78 (2012). https://doi.org/10.1007/s10462-012-9329-z

    Article  Google Scholar 

  5. Lohfeld, S., Barron, V., McHugh, P.: Biomodels of bone: a review. Ann. Biomed. Eng. 33(10), 1295–1311 (2005)

    Google Scholar 

  6. Schillinger, D., Ruess, M.: The Finite Cell Method: a review in the context of higher-order structural analysis of CAD and image-based geometric models. Arch. Comput. Meth. Eng. 22(3), 391–455 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Martínez-Finkelshtein, A., et al.: Adaptive cornea modeling from keratometric data. Invest. Ophthalmol. Vis. Sci. 52(8), 4963–4970 (2011)

    Google Scholar 

  8. Ramos-López, D., et al.: Placido-based indices of corneal irregularity. Optom. Vis. Sci. 88(10), 1220–1231 (2011)

    Google Scholar 

  9. Brenner, L.F., et al.: Myopic surface ablation in asymmetrical topographies: refractive results and theoretical corneal elastic response. Am. J. Ophthalmol. 177, 34–43 (2017)

    Google Scholar 

  10. Cavas-Martínez, F., et al.: Study of morpho-geometric variables to improve the diagnosis in keratoconus with mild visual limitation. Symmetry 10(8), 306 (2018)

    Google Scholar 

  11. Cavas-Martínez, F., et al.: Study and characterization of morphogeometric parameters to assist diagnosis of keratoconus. Biomed. Eng. Online 17(1), 1–18 (2018)

    Google Scholar 

  12. Cavas-Martínez, F., et al.: Assessment of pattern and shape symmetry of bilateral normal corneas by Scheimpflug technology. Symmetry 10(10), 453 (2018)

    Google Scholar 

  13. Cavas-Martínez, F., et al.: Keratoconus detection based on a new corneal volumetric analysis. Sci. Rep. 7(1), 1–10 (2017)

    Google Scholar 

  14. Cavas-Martínez, F., et al.: A new approach to keratoconus detection based on corneal morphogeometric analysis. PLoS ONE 12(9), e0184569 (2017)

    Google Scholar 

  15. Alastrué, V., et al.: Biomechanical modeling of refractive corneal surgery. J. Biomech. Eng. 128(1), 150–160 (2006). https://doi.org/10.1115/1.2132368

    Article  Google Scholar 

  16. Calossi, A.: Corneal asphericity and spherical aberration. J. Refract. Surg. 23(5), 505–514 (2007)

    Google Scholar 

  17. Gatinel, D., et al.: Corneal asphericity change after excimer laser hyperopic surgery: theoretical effects on corneal profiles and corresponding Zernike expansions. Invest. Ophthalmol. Vis. Sci. 45(5), 1349–1359 (2004)

    Google Scholar 

  18. Navarro, R., et al.: Lower-and higher-order aberrations predicted by an optomechanical model of arcuate keratotomy for astigmatism. J. Cataract Refract. Surg. 35(1), 158–165 (2009)

    Google Scholar 

  19. Pandolfi, A., Manganiello, F.: A model for the human cornea: constitutive formulation and numerical analysis. Biomech. Model. Mechanobiol. 5(4), 237–246 (2006)

    Google Scholar 

  20. Smadja, D., et al.: Influence of the reference surface shape for discriminating between normal corneas, subclinical keratoconus, and keratoconus. J. Refract. Surg. 29(4), 274–281 (2013)

    Google Scholar 

  21. Martínez-Finkelshtein, A., et al.: Comparative analysis of some modal reconstruction methods of the shape of the cornea from corneal elevation data. Invest. Ophthalmol. Vis. Sci. 50(12), 5639–5645 (2009)

    Google Scholar 

  22. Romero-Jiménez, M., Santodomingo-Rubido, J., Wolffsohn, J.S.: Keratoconus: a review. Cont. Lens Anterior Eye 33(4), 157–166 (2010)

    Google Scholar 

  23. Cavas-Martínez, F., et al.: Corneal topography in keratoconus: state of the art. Eye Vis. 3(1), 5 (2016)

    Google Scholar 

  24. Montalbán, R., et al.: Intrasubject repeatability in keratoconus-eye measurements obtained with a new Scheimpflug photography-based system. J. Cataract. Refract. Surg. 39(2), 211–218 (2013)

    Google Scholar 

  25. Mohan, S., et al.: Parametric NURBS curve interpolators: a review. Int. J. Precis. Eng. Manuf. 9(2), 84–92 (2008)

    Google Scholar 

  26. Espinosa, J., et al.: Optical surface reconstruction technique through combination of zonal and modal fitting. J. Biomed. Opt. 15(2), 026022 (2010)

    MathSciNet  Google Scholar 

  27. Rabinowitz, Y.S.: Keratoconus. Surv. Ophthalmol. 42(4), 297–319 (1998)

    Google Scholar 

  28. Wilson, S.E., Lin, D., Klyce, S.D.: Corneal topography of keratoconus. Cornea 10(1), 2–8 (1991)

    Google Scholar 

  29. Rabinowitz, Y.S., McDonnell, P.J.: Computer-assisted corneal topography in keratoconus. Refract. Corneal Surg. 5(6), 400–408 (1989)

    Google Scholar 

  30. Auffarth, G.U., Wang, L., Völcker, H.E.: Keratoconus evaluation using the Orbscan topography system. J. Cataract Refract. Surg. 26(2), 222–228 (2000)

    Google Scholar 

  31. Kennedy, R.H., Bourne, W.M., Dyer, J.A.: A 48-year clinical and epidemiologic study of keratoconus. Am. J. Ophthalmol. 101(3), 267–273 (1986)

    Google Scholar 

  32. Elsheikh, A., et al.: Numerical study of the effect of corneal layered structure on ocular biomechanics. Curr. Eye Res. 34(1), 26–35 (2009)

    Google Scholar 

  33. Gatinel, D., et al.: Corneal elevation topography: best fit sphere, elevation distance, asphericity, toricity and clinical implications. Cornea 30(5), 508 (2011)

    Google Scholar 

  34. Montalbán, R., et al.: Comparative analysis of the relationship between anterior and posterior corneal shape analyzed by Scheimpflug photography in normal and keratoconus eyes. Graefes Arch. Clin. Exp. Ophthalmol. 251(6), 1547–1555 (2013)

    Google Scholar 

  35. Montalbán, R., et al.: Scheimpflug photography-based clinical characterization of the correlation of the corneal shape between the anterior and posterior corneal surfaces in the normal human eye. J. Cataract Refract. Surg. 38(11), 1925–1933 (2012)

    Google Scholar 

  36. Atchison, D.A., et al.: Age-related changes in optical and biometric characteristics of emmetropic eyes. J. Vis. 8(4), 29 (2008)

    Google Scholar 

  37. Piñero, D.P., et al.: Corneal volume, pachymetry, and correlation of anterior and posterior corneal shape in subclinical and different stages of clinical keratoconus. J. Cataract Refract. Surg. 36(5), 814–825 (2010)

    Google Scholar 

  38. Yebra-Pimentel, E., et al.: Asfericidad corneal en una población de adultos jóvenes: Implicaciones clínicas. Arch. Soc. Esp. Oftalmol. 79(8), 385–391 (2004)

    Google Scholar 

  39. González-Méijome, J.M., et al.: Asphericity of the anterior human cornea with different corneal diameters. J. Cataract Refract. Surg. 33(3), 465–473 (2007)

    Google Scholar 

  40. Maldonado, M.J., et al.: Repeatability and reproducibility of posterior corneal curvature measurements by combined scanning-slit and placido-disc topography after LASIK. Ophthalmology 113(11), 1918–1926 (2006)

    Google Scholar 

  41. Ho, J.-D., et al.: Validity of the keratometric index: evaluation by the Pentacam rotating Scheimpflug camera. J. Cataract Refract. Surg. 34(1), 137–145 (2008)

    Google Scholar 

  42. Dubbelman, M., et al.: Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography. Acta Ophthalmol. Scand. 80(4), 379–383 (2002)

    Google Scholar 

  43. Dubbelman, M., Sicam, V., Van der Heijde, G.: The shape of the anterior and posterior surface of the aging human cornea. Vis. Res. 46(6–7), 993–1001 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Ballesta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ballesta, A., Alió, J., Bolarín, J.M., Cavas, F. (2022). Variable Complexity Corneal Surfaces Characterization by Modal Geometrical Reconstruction Methods: Comparative Study. In: Cavas Martínez, F., Peris-Fajarnes, G., Morer Camo, P., Lengua Lengua, I., Defez García, B. (eds) Advances in Design Engineering II. INGEGRAF 2021. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-92426-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92426-3_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92425-6

  • Online ISBN: 978-3-030-92426-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics