Skip to main content

Subdivision and G-Spline Hybrid Constructions for High-Quality Geometric and Analysis-Suitable Surfaces

  • Conference paper
  • First Online:
Geometric Challenges in Isogeometric Analysis

Part of the book series: Springer INdAM Series ((SINDAMS,volume 49))

  • 477 Accesses

Abstract

This survey of piecewise polynomial surface constructions for filling multi-sided holes in a smooth spline complex focusses on a class of hybrid constructions that, while heterogeneous, combines all the practical advantages of state-of-the-art for modelling and analysis: good shape, easy implementation and simple refinability up a pre-defined level. After reviewing the three ingredients—subdivision, G-spline and guided surfaces—the hybrid is defined to consist essentially of one macro-patch for each of n sectors, leaving just a tiny n-sided central hole to be filled by a G-spline construction. Here tiny means both geometrically small, e.g., two orders of magnitude smaller than pieces of the spline complex, and small in its contribution to engineering analysis, i.e., it is unlikely to require further refinement to express additional geometric detail or resolve a function on the surface, such as the solution of a partial differential equation. Each macro-patch has the local structure of a subdivision surface near, but excluding the central, extraordinary point: all internal transitions are the identity or scale according to contraction speed toward the extraordinary point. Both the number of pieces of the macro-patches and the speed can be chosen application-dependent and adaptively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., Desbrun, M.: Anisotropic polygonal remeshing. ACM Trans. Graph. 22, 485–493 (2003)

    Article  Google Scholar 

  2. Andjelic, Z.: What is the definition of a class A surface? https://grabcad.com/questions/what-is-definition-of-class-a-surface. Accessed May 2015

  3. Au, F.T.K., Cheung, Y.K.: Spline finite elements for beam and plate. Comput. Struct. 37, 717–729 (1990)

    Article  Google Scholar 

  4. Au, F.T.K., Cheung, Y.K.: Isoparametric spline finite strip for plane structures. Comput. Struct. 48, 22–32 (1993)

    Article  MATH  Google Scholar 

  5. Augsdoerfer, U.H., Dodgson, N.A., Sabin, M.A.: Removing polar rendering artifacts in subdivision surfaces. J. Graph., GPU, Game Tools 14, 61–76 (2009)

    Article  MATH  Google Scholar 

  6. Beier, K.-P., Chen, Y.: Highlight-line algorithm for realtime surface-quality assessment. Comput. Aided Des. 26, 268–277 (1994)

    Article  MATH  Google Scholar 

  7. Belytschko, T., Stolarski, H., Liu, W.K., Carpenter, N., Ong, J.S.J.: Stress projection for membrane and shear locking in shell finite elements. Comput. Methods Appl. Mech. Eng. 51, 221–258 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Benson, D.J., Bazilevs, Y., Hsu, M.-C., Hughes, T.J.R.: A large deformation, rotation-free, isogeometric shell. Comput. Methods Appl. Mech. Eng. 200, 1367–1378 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Benson, D.J., Hartmann, S., Bazilevs, Y., Hsu, M.-C., Hughes, T.J.R.: Blended iso-geometric shells. Comput. Methods Appl. Mech. Eng. 255, 133–146 (2013)

    Article  MATH  Google Scholar 

  10. Bézier, P.E.: Essai de Définition Numérique des Courbes et des Surfaces Experimentales. PhD thesis, Université Pierre et Marie Curie (1977)

    Google Scholar 

  11. Boehm, W.: Smooth curves and surfaces. In: Farin, G. (ed.) Geometric Modeling: Algorithms and New Trends, pp. 175–184. SIAM, Philadelphia (1987)

    Google Scholar 

  12. Bommes, D., Campen, M., Ebke, H.-C., Alliez, P., Kobbelt, L.: Integer-grid maps for reliable quad meshing. ACM Trans. Graph. 32, 98 (2013)

    Article  MATH  Google Scholar 

  13. Braibant, V., Fleury, C.: Shape optimal design using B-splines. Comput. Methods Appl. Mech. Eng. 44, 247–267 (1984)

    Article  MATH  Google Scholar 

  14. Catmull, E., Clark, J.: Recursively generated B-spline surfaces on arbitrary topological meshes. Comput. Aided Des. 10, 350–355 (1978)

    Article  Google Scholar 

  15. Charrot, P., Gregory, J.: A pentagonal surface patch for computer aided geometric design. Comput. Aided Geometr. Design 1, 87–94 (1984)

    Article  MATH  Google Scholar 

  16. Collin, A., Sangalli, G., Takacs, T.: Analysis-suitable \(G^{1}\) multi-patch parametrizations for \(C^{1}\) isogeometric spaces. Comput. Aided Geometr. Design 47, 93–113 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  17. DeRose, T.: Geometric continuity: a parametrization independent measure of continuity for computer aided design. Ph.D. thesis, UC Berkeley, California (1985)

    Google Scholar 

  18. DeRose, T., Kass, M., Truong, T.: Subdivision surfaces in character animation. In: Proceedings of the ACM Conference on Computer Graphics (SIGGRAPH-98), pp. 85–94. ACM Press, New York (1998)

    Google Scholar 

  19. Doo, D., Sabin, M.: Behaviour of recursive division surfaces near extraordinary points. Comput. Aided Des. 10, 356–360 (1978)

    Article  Google Scholar 

  20. Farin, G.: Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide. Academic (1988)

    Google Scholar 

  21. Garrity, T., Warren, J.: Geometric continuity. Comput. Aided Geometr. Design 8, 51–66 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Giannelli, C., Jüttler, B., Speleers, H.: THB-splines: the truncated basis for hierarchical splines. Comput. Aided Geometr. Design 29, 485–498 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gomez, H., Calo, V.M., Bazilevs, Y., Hughes, T.J.R.: Isogeometric analysis of the Cahn-Hilliard phase-field model. Comput. Methods Appl. Mech. Eng. 197, 4333–4352 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gregory, J.A., Hahn, J.M.: A \(C^2\) polygonal surface patch. Comput. Aided Geometr. Design 6, 69–75 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  25. Gregory, J.A., Zhou, J.: Filling polygonal holes with bicubic patches. Comput. Aided Geometr. Design 11, 391–410 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Groisser, D., Peters, J.: Matched \(G^k\)-constructions always yield \(C^k\)-continuous isogeometric elements. Comput. Aided Geometr. Design 34, 67–72 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  27. Hahn, J.M.: Geometric continuous patch complexes. Comput. Aided Geometr. Design 6, 55–67 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hettinga, G.J., Kosinka, J.: Phong tessellation and PN polygons for polygonal models. In: Peytavie, A., Bosch, C., (eds.), EG 2017 - Short Papers. The Eurographics Association (2017)

    Google Scholar 

  29. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kahmann, J.: Continuity of curvature between adjacent Bézier patches. In: Barnhill, R.E., Böhm, W. (eds.) Surfaces in CAGD, pp. 65–75. North-Holland Publishing Company, Amsterdam (1983)

    Google Scholar 

  31. Jakob, W., Tarini, M., Panozzo, D., Sorkine-Hornung, O.: Instant field-aligned meshes. ACM Trans. Graph. 34, 189 (2015)

    Article  Google Scholar 

  32. Kälberer, F., Nieser, M., Polthier, K.: QuadCover - surface parameterization using branched coverings. Comput. Graph. Forum 26, 375–384 (2007)

    Article  MATH  Google Scholar 

  33. Kapl, M., Vitrih, V., Jüttler, B., Birner, K.: Isogeometric analysis with geometrically continuous functions on two-patch geometries. Comput. Math. Appl. 70, 1518–1538 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Karčiauskas, K., Myles, A., Peters, J.: A \(C^2\) polar jet subdivision. In: Scheffer, A., Polthier, K.,(eds.), Geometry Processing 2006, pp. 173–180. Eurographics Association (2006)

    Google Scholar 

  35. Karčiauskas, K., Nguyen, T., Peters, J.: Generalizing bicubic splines for modelling and IGA with irregular layout. Comput. Aided Design 70, 23–35 (2016)

    Article  Google Scholar 

  36. Karčiauskas, K., Panozzo, D., Peters, J.: T-junctions in spline surfaces. ACM Trans. Graph. 36, 170 (2017)

    Article  Google Scholar 

  37. Karčiauskas, K., Peters, J.: Quad-net obstacle course. http://www.cise.ufl.edu/research/SurfLab/shape_gallery.shtml. Accessed June 2020

  38. Karčiauskas, K., Peters, J.: Concentric tesselation maps and curvature continuous guided surfaces. Comput. Aided Geometr. Design 24, 99–111 (2007)

    Article  MATH  Google Scholar 

  39. Karčiauskas, K., Peters, J.: Adjustable speed surface subdivision. Comput. Aided Geometr. Design 26, 962–969 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Karčiauskas, K., Peters, J.: Biquintic \(G^2\) surfaces via functionals. Comput. Aided Geometr. Design 33, 17–29 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  41. Karčiauskas, K., Peters, J.: Can bi-cubic surfaces be class A? Comput. Graph. Forum 34, 229–238 (2015)

    Article  Google Scholar 

  42. Karčiauskas, K., Peters, J.: Improved shape for multi-surface blends. Graph. Models 82, 87–98 (2015)

    Article  Google Scholar 

  43. Karčiauskas, K., Peters, J.: Curvature continuous bi-4 constructions for scaffold- and sphere-like surfaces. Comput. Aided Des. 78, 48–59 (2016)

    Article  Google Scholar 

  44. Karčiauskas, K., Peters, J.: Minimal bi-6 \(G^2\) completion of bicubic spline surfaces. Comput. Aided Geometr. Design 41, 10–22 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  45. Karčiauskas, K., Peters, J.: Refinable \(G^1\) functions on \(G^1\) free-form surfaces. Comput. Aided Geometr. Design 54, 61–73 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  46. Karčiauskas, K., Peters, J.: Fair free-form surfaces that are almost everywhere parametrically \(C^2\). J. Comput. Appl. Math. 349, 470–481 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  47. Karčiauskas, K., Peters, J.: A new class of guided \(C^2\) subdivision surfaces combining good shape with nested refinement. Comput. Graph. Forum 37, 84–95 (2018)

    Article  Google Scholar 

  48. Karčiauskas, K., Peters, J.: Rapidly contracting subdivision yields finite, effectively \({C}^2\) surfaces. Comput. Graph. 74, 182–190 (2018)

    Article  Google Scholar 

  49. Karčiauskas, K., Peters, J.: Refinable bi-quartics for design and analysis. Comput. Aided Des. 102, 204–214 (2018)

    Article  Google Scholar 

  50. Karčiauskas, K., Peters, J.: Curvature-bounded guided subdivision: Biquartics versus bicubics. Comput.-Aided Design 114, 122–132 (2019)

    Article  MathSciNet  Google Scholar 

  51. Karčiauskas, K., Peters, J.: High quality refinable \(G\)-splines for locally quad-dominant meshes with \(T\)-gons. Comput. Graph. Forum 38, 151–161 (2019)

    Article  Google Scholar 

  52. Karčiauskas, K., Peters, J.: Localized G-splines for quad & T-gon meshes. Comput. Aided Geometr. Design 71, 244–254 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  53. Karčiauskas, K., Peters, J.: Refinable smooth surfaces for locally quad-dominant meshes with T-gons. Comput. Graph. 82, 193–202 (2019)

    Article  Google Scholar 

  54. Karčiauskas, K., Peters, J.: Low degree splines for locally quad-dominant meshes. Comput. Aided Geometr. Design 83, 1–12 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  55. Karčiauskas, K., Peters, J.: A sharp degree bound on \(G^2\)-refinable multi-sided surfaces. Comput. Aided Des. 125, 102867 (2020)

    Article  MathSciNet  Google Scholar 

  56. Karciauskas, K., Peters, J., Reif, U.: Shape characterization of subdivision surfaces - case studies. Comput. Aided Geometr. Design 21, 601–614 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  57. Kiciak, P.: Spline surfaces of arbitrary topology with continuous curvature and optimized shape. Comput. Aided Des. 45, 154–167 (2013)

    Article  MathSciNet  Google Scholar 

  58. Kiendl, J., Bletzinger, K.-U., Linhard, J., Wüchner, R.: Isogeometric shell analysis with Kirchhoff-Love elements. Comput. Methods Appl. Mech. Eng. 198, 3902–3914 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  59. Kraft, R.: Adaptive und linear unabhängige Multilevel B-Splines und ihre Anwendungen. Ph.D. thesis, University of Stuttgart (1998)

    Google Scholar 

  60. Lai, Y.-K., Kobbelt, L., Hu, S.-M.: An incremental approach to feature aligned quad dominant remeshing. In: Haines, E., McGuire, M., (eds.), Symposium on Solid and Physical Modeling, pp. 137–145. ACM (2008)

    Google Scholar 

  61. Li, X., Finnigan, G.T., Sederberg, T.W.: \(G^1\) non-uniform Catmull-Clark surfaces. ACM Trans. Graph. 35, 135 (2016)

    Google Scholar 

  62. Liu, D.: A geometric condition for smoothness between adjacent Bézier surface patches. Acta Math. Appl. Sin. 9, 432–442 (1986)

    MATH  Google Scholar 

  63. Loop, C.: Second order smoothness over extraordinary vertices. In: Eurographics Symposium on Geometry Processing, pp. 169–178 (2004)

    Google Scholar 

  64. Loop, C., Schaefer, S.: Approximating Catmull-Clark subdivision surfaces with bicubic patches. ACM Trans. Graph. 27, 8 (2008)

    Article  Google Scholar 

  65. Loop, C.T., DeRose, T.D.: A multisided generalization of Bézier surfaces. ACM Trans. Graph. 8, 204–234 (1989)

    Article  MATH  Google Scholar 

  66. Loop, C.T., Schaefer, S.: \({G}^2\) tensor product splines over extraordinary vertices. Comput. Graph. Forum 27, 1373–1382 (2008)

    Article  Google Scholar 

  67. Loop, C.T., Schaefer, S., Ni, T., Castaño, I.: Approximating subdivision surfaces with Gregory patches for hardware tessellation. ACM Trans. Graph. 28, 151 (2009)

    Article  Google Scholar 

  68. De Lorenzis, L., Temizer, I., Wriggers, P., Zavarise, G.: A large deformation frictional contact formulation using NURBS-based isogeometric analysis. Int. J. Numer. Meth. Eng. 87, 1278–1300 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  69. Ma, Y., Ma, W.: Subdivision schemes with optimal bounded curvature near extraordinary vertices. Comput. Graph. Forum 37, 455–467 (2018)

    Article  Google Scholar 

  70. Mourrain, B., Vidunas, R., Villamizar, N.: Geometrically continuous splines for surfaces of arbitrary topology. Comput. Aided Geometr. Design 45, 108–133 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  71. Myles, A., Pietroni, N., Zorin, D.: Robust field-aligned global parametrization. ACM Trans. Graph. 33, 135 (2014)

    Article  MATH  Google Scholar 

  72. Nguyen, T., Karčiauskas, K., Peters, J.: A comparative study of several classical, discrete differential and isogeometric methods for solving Poisson’s equation on the disk. Axioms 3, 280–299 (2014)

    Article  MATH  Google Scholar 

  73. Nguyen, T., Karčiauskas, K., Peters, J.: \({C}^1\) finite elements on non-tensor-product 2d and 3d manifolds. Appl. Math. Comput. 272, 148–158 (2016)

    MathSciNet  MATH  Google Scholar 

  74. Nguyen, T., Peters, J.: Refinable \({C}^1\) spline elements for irregular quad layout. Comput. Aided Geometr. Design 43, 123–130 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  75. Encyclopedia of Mathematics. Galerkin method. https://encyclopediaofmath.org/wiki/Galerkin_method. Accessed Dec 2020

  76. Peters, J.: Fitting Smooth Parametric Surfaces to 3D Data. Ph.D. thesis, University of Wisconsin (1990)

    Google Scholar 

  77. Peters, J.: Parametrizing singularly to enclose vertices by a smooth parametric surface. In:  MacKay, S., Kidd, E.M., (eds.), Graphics Interface ’91, Calgary, Alberta, 3–7 June 1991: proceedings, pp. 1–7. Canadian Information Processing Society (1991)

    Google Scholar 

  78. Peters, J.: A characterization of connecting maps as roots of the identity. In: Laurent, P.-J., Le Méhauté, A., Schumaker, L.L., (eds.), Curves and Surfaces in Geometric Design, pp. 369–376 (1994)

    Google Scholar 

  79. Peters, J.: Splines for meshes with irregularities. SMAI J. Comput. Math. S5, 161–183 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  80. Peters, J., Fan, J.: On the complexity of smooth spline surfaces from quad meshes. Comput. Aided Geometr. Design 27, 96–105 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  81. Peters, J., Karčiauskas, K.: An introduction to guided and polar surfacing. In: æhlen, M.D., et al., (eds.), Mathematical Methods for Curves and Surfaces. Lecture Notes in Computer Science, vol. 5862, pp. 299–315. Springer (2010)

    Google Scholar 

  82. Peters, J., Reif, U.: Subdivision Surfaces. Geometry and Computing, vol. 3. Springer, New York (2008)

    Google Scholar 

  83. Pixar. http://graphics.pixar.com/opensubdiv/docs/intro.html. Accessed June 2020

  84. Reif, U.: Neue Aspekte in der Theorie der Freiformflächen beliebiger Topologie. Ph.D. thesis, University of Stuttgart (1993)

    Google Scholar 

  85. Reif, U.: A refinable space of smooth spline surfaces of arbitrary topological genus. J. Approx. Theory 90, 174–199 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  86. Sabin, M.: Transfinite surface interpolation. In: Mullineux, G., (ed.), The Mathematics of Surfaces VI, pp. 517–534. Clarendon Press (1996)

    Google Scholar 

  87. Sabin, M.A.: The use of piecewise forms for the numerical representation of shape. Ph.D. thesis, Computer and Automation Institute (1977)

    Google Scholar 

  88. Salvi, P., Várady, T.: Multi-sided Bézier surfaces over concave polygonal domains. Comput. Graph. 74, 56–65 (2018)

    Article  Google Scholar 

  89. Sangalli, G., Takacs, T., Vázquez, R.: Unstructured spline spaces for isogeometric analysis based on spline manifolds. Comput. Aided Geometr. Design 47, 61–82 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  90. Schertler, N., Tarini, M., Jakob, W., Kazhdan, M., Gumhold, S., Panozzo, D.: Field-aligned online surface reconstruction. ACM Trans. Graph. 36, 77 (2017)

    Article  Google Scholar 

  91. Schramm, U., Pilkey, W.D.: The coupling of geometric descriptions and finite elements using NURBS - a study in shape optimization. Finite Elem. Anal. Des. 340, 11–34 (1993)

    Article  MATH  Google Scholar 

  92. Sederberg, T.W., Zheng, J., Bakenov, A., Nasri, A.: T-splines and T-NURCCs. ACM Trans. Graph. 22, 477–484 (2003)

    Article  Google Scholar 

  93. Shyy, Y.K., Fleury, C., Izadpanah, K.: Shape optimal design using higher-order elements. Comput. Methods Appl. Mech. Eng. 71, 99–116 (1988)

    Article  MATH  Google Scholar 

  94. Smith, J., Schaefer, S.: Selective degree elevation for multi-sided Bézier patches. Comput. Graph. Forum 34, 609–615 (2015)

    Article  Google Scholar 

  95. Speleers, H., Manni, C., Pelosi, F., Sampoli, M.L.: Isogeometric analysis with Powell-Sabin splines for advection-diffusion-reaction problems. Comput. Methods Appl. Mech. Eng. 221, 132–148 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  96. Stam, J.: Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values. In: Proceedings of SIGGRAPH 1998, pp. 395–404. ACM Press (1998)

    Google Scholar 

  97. Temizer, I., Wriggers, P., Hughes, T.J.R.: Contact treatment in isogeometric analysis with NURBS. Comput. Methods Appl. Mech. Eng. 200, 1100–1112 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  98. Toshniwal, D., Speleers, H., Hughes, T.J.R.: Smooth cubic spline spaces on unstructured quadrilateral meshes with particular emphasis on extraordinary points: Geometric design and isogeometric analysis considerations. Comput. Methods Appl. Mech. Eng. 327, 411–458 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  99. Várady, T., Rockwood, A.P., Salvi, P.: Transfinite surface interpolation over irregular \(n\)-sided domains. Comput. Aided Des. 43, 1330–1340 (2011)

    Article  Google Scholar 

  100. Várady, T., Salvi, P., Karikó, G.: A multi-sided Bézier patch with a simple control structure. Comput. Graph. Forum 35, 307–317 (2016)

    Article  Google Scholar 

  101. Vlachos, A., Peters, J., Boyd, C., Mitchell, J.L.: Curved PN triangles. In: 2001 Symposium on Interactive 3D Graphics, pp. 159–166. ACM Press (2001)

    Google Scholar 

  102. Wikipedia. Galerkin method. https://en.wikipedia.org/wiki/Galerkin_method. Accessed Dec 2020

  103. Wikipedia. Weak formulation. https://en.wikipedia.org/wiki/Weak_formulation. Accessed Dec 2020

  104. Wikipedia. Class A surface. http://en.wikipedia.org/wiki/Class_A_surface. Accessed June 2020

  105. Yamada, Y.: Clay Modeling: Techniques for Giving Three-dimensional Form to Idea. Nissan Design Center, Kaneko Enterprises (1997)

    Google Scholar 

  106. Ye, X.: Curvature continuous interpolation of curve meshes. Comput. Aided Geometr. Design 14, 169–190 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peters, J., Karčiauskas, K. (2022). Subdivision and G-Spline Hybrid Constructions for High-Quality Geometric and Analysis-Suitable Surfaces. In: Manni, C., Speleers, H. (eds) Geometric Challenges in Isogeometric Analysis. Springer INdAM Series, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-030-92313-6_8

Download citation

Publish with us

Policies and ethics