Skip to main content

Functions of Agroforestry Systems as Biodiversity Islands in Productive Landscapes

  • Chapter
  • First Online:
Biodiversity Islands: Strategies for Conservation in Human-Dominated Environments

Part of the book series: Topics in Biodiversity and Conservation ((TOBC,volume 20))

Abstract

Given their ability to harmonize productivity with environmental functions, agroforestry systems (AFS) are an important strategy for conservation within human managed landscapes. AFS are heterogeneous in their design, management, and species composition, with consequences for their restoration, conservation, and productivity functions. AFS can function as biodiversity islands or can be incorporated into existing biodiversity islands as buffer zones because they can be integrated into already productive landscapes. This chapter provides an overview of the various ecological, social, and economic benefits of the main types of AFS systems and their applications as and within biodiversity islands. It also discusses the use of incentives to support and promote AFS in order to safeguard the contributions they provide to landscape biodiversity and rural communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Centro Agronómico Tropical de Investigación y Enseñanza, Tropical Agriculture Research and Higher Education Center, Turrialba, Costa Rica.

References

  • Abete T, Wiersum KF, Bongers F, Sterck F (2006) Diversity and dynamics in homegardens of southern Ethiopia. In: Kumar BM, Nair PKR (eds) Tropical homegardens: a time-tested example of sustainable agroforestry. Advances in agroforestry 3. Springer, Dordrecht, 377 pp, pp 123–142

    Google Scholar 

  • Beer J, Muschler R, Kass D, Somarriba E (1998) Shade management in coffee and cacao plantations. Agrofor Syst 38:134–164

    Google Scholar 

  • Bertsch A (2017) Indigenous successional agroforestry: integrating the old and new to address food insecurity and deforestation. In: Montagnini F (ed) Integrating landscapes: agroforestry for biodiversity conservation and food sovereignty, Advances in agroforestry 12. Springer, Cham, pp 165–178

    Chapter  Google Scholar 

  • Bhagwat SA, Willis KJ, Birks HJB, Whittaker RJ (2008) Agroforestry: a refuge for tropical biodiversity? Trends Ecol Evol 23(5):261–267

    Article  PubMed  Google Scholar 

  • Blackman A, Ávalos-Sartorio B, Chow F (2012) Land cover change in agroforestry: shade coffee in El Salvador. Land Econ 88(1):75–101

    Article  Google Scholar 

  • Blanckaert I, Swennen RL, Paredes Flores M, Rosas López R, Lira Saade R (2004) Floristic composition, plant uses and management practices in homegardens of San Rafael Coxcatlán, Valley of Tehuacán, Mexico. J Arid Environ 57:39–62

    Article  Google Scholar 

  • Brewer MD (2011) Strategies for cost-effective native species restoration in the sub-tropical Atlantic Forest of southern Brazil. In: Montagnini F, Finney C (eds) Restoring degraded landscapes with native species in Latin America. Nova Science Publishers, New York, pp 173–195

    Google Scholar 

  • Cabral H, Coronel-Bejarano D, Ruiz R, Canete L, Britez E, Rojas V (2020) Living in the shadows: diversity of amphibians, reptiles and birds in shade-grown yerba mate (Ilex Paraguariensis) plantations. Austral Ecol:1–12. https://doi.org/10.1111/aec.12942

  • Calle A, Montagnini F, Zuluaga AF (2009) Farmer’s perceptions of Silvopastoral system promotion in Quindío, Colombia. Bois For Trop 300(2):79–94

    Article  Google Scholar 

  • Calle Z, Murgueitio E, Chará J (2012) Integrating forestry, sustainable cattle ranching, and landscape restoration. Unasylva 63:31–40

    Google Scholar 

  • Calle Z, Hernández M, Murgueitio E, Giraldo AM, Uribe F, Zuluaga AF (2015) Especies focales del Proyecto Ganadería Colombiana Sostenible. Carta Fedegán 148:54–60

    Google Scholar 

  • Calle Z, Giraldo AM, Cardozo A, Galindo A, Murgueitio E (2017) Enhancing biodiversity in neotropical silvopastoral systems: use of indigenous trees and palms. In: Montagnini F (ed) Integrating landscapes: agroforestry for biodiversity conservation and food sovereignty, Advances in agroforestry 12. Springer, Cham, pp 417–438

    Chapter  Google Scholar 

  • Calle Z, Hernando C, José E, José J, Hernán C, Murgueitio B, Murgueitio A, Murgueitio E (2022) A highly productive biodiversity island: El Hatico Nature Reserve (Valle Del Cauca, Colombia). In: Montagnini F (ed) Biodiversity islands: strategies for conservation in human-dominated environments. Topics in Biodiversity and Conservation. Springer, Cham, pp 279–304

    Google Scholar 

  • Callo-Concha D, Denich M (2011) Operationalizing environmental services of agroforestry systems: functional biodiversity assessment in Tomé-Açú, Pará, Brazil. In: Montagnini F, Francesconi W, Rossi E (eds) Agroforestry as a tool for landscape restoration. Nova Science Publishers, New York, pp 143–156

    Google Scholar 

  • Calmon M, Brancalion PH, Paese A, Aronson J, Castro P, da Silva SC, Rodrigues RR (2011) Emerging threats and opportunities for large-scale ecological restoration in the Atlantic Forest of Brazil. Restor Ecol 19(2):154–158

    Article  Google Scholar 

  • Cerda R, Deheuvels O, Calvache R, Niehaus L, Saenz Y, Kent J, Vilchez S, Villota A, Martinez C, Somarriba E (2014) Contribution of cocoa agroforestry systems to family income and domestic consumption: looking toward intensification. Agrofor Syst. https://doi.org/10.1007/s10457-014-9691-8

  • Chait G (2015) Café en Colombia: servicios ecosistémicos, conservación de la biodiversidad. In: Montagnini F, Somarriba E, Murgueitio E, Fassola H, Eibl B (eds) Sistemas Agroforestales. Funciones productivas, socioeconómicas y ambientales, Serie Técnica Informe Técnico 402. CATIE/Fundación CIPAV, Turrialba/Cali, pp 349–361

    Google Scholar 

  • Chará J, Camargo JC, Calle Z, Bueno L, Murgueitio E, Arias L, Dossman M, Molina EJ (2015) Servicios ambientales de sistemas silvopastoriles intensivos: mejoramiento del suelo y restauración ecológica. In: Montagnini F, Somarriba E, Murgueitio E, Fassola H, Eibl B (eds) Sistemas agroforestales: funciones productivas, socioeconómicas y ambientales, Serie técnica informe técnico No. 402. CATIE/Editorial CIPAV, Turrialba/Cali, pp 331–347

    Google Scholar 

  • Chará JD, Rivera J, Barahona R, Murgueitio E, Deblitz C, Reyes E, Martins Mauricio R, MolinaJJ FM, Zuluaga AF (2017) Intensive silvopastoral systems: economics and contribution to climate change mitigation and public policies. In: Montagnini F (ed) Integrating landscapes: agroforestry for biodiversity conservation and food sovereignty, Advances in agroforestry 12. Springer, Cham, pp 395–416

    Chapter  Google Scholar 

  • Clough Y, Barkmann J, Juhrbandt J, Kessler M, Cherico Wangera T, Anshary A, Buchorig D, Cicuzza D, Darrasi K, Dwi Putrak D, Erasmi S, Pitopang M, Schmidt C, Schulze CH, Seidell D, Steffan-Dewenter I, Stenchly K, Vidal S, Weista M, Wielgoss AW, Tscharntke T (2011) Combining high biodiversity with high yields in tropical agroforests. Proc Natl Acad Sci USA 108(20):8311–8316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cockle KL, Leonard ML, Bodrati AA (2005) Presence and abundance of birds in an Atlantic forest reserve and adjacent plantation of shade-grown yerba mate, in Paraguay. Biodivers Conserv 14:3265–3288

    Article  Google Scholar 

  • Davidson S (2005) Shade coffee agro-ecosystems in Mexico: a synopsis of the environmental services and socio-economic considerations. J Sustain For 21(1):81–95

    Article  Google Scholar 

  • De Tobar L, Ibrahim M (2010) ¿Las cercas vivas ayudan a la conservación de la diversidad de mariposas en paisajes agropecuarios? Rev Biol Trop 58(1):447–463

    Google Scholar 

  • De Tobar L, Ibrahim M, Casasola F (2007) Diversidad de mariposas en un paisaje agropecuario del Pacífico central de Costa Rica. Agroforestería en las Américas 45:58–65

    Google Scholar 

  • Diemont SAW, Martin JF, Levy-Tacher SI (2006) Lacandon Maya forest management: restoration of soil fertility using native tree species. Ecol Eng 28:205–212

    Article  Google Scholar 

  • Diemont SAW, Bohn JL, Rayome DD (2011) Comparisons of Mayan forest management, restoration, and conservation. For Ecol Manag 261:1696–1705

    Article  Google Scholar 

  • Eibl B, Montagnini F, López M, Montechiesi R, Barth S, Esterche E (2015) Ilex paraguariensis A. St.-Hil., yerba mate orgánica bajo dosel de especies nativas maderables, una propuesta de producción sustentable. In: Montagnini F, Somarriba E, Murgueitio E, Fassola H, Eibl B (eds) Sistemas agroforestales: funciones productivas, socioeconómicas y ambientales, Serie técnica informe técnico No. 402. CATIE/Editorial CIPAV, Turrialba/Cali, pp 153–177

    Google Scholar 

  • Eibl B, Montagnini F, López M, López LN, Montechiesi R, Esterche E (2017) Organic yerba mate, Ilex paraguariensis, in association with native tree species: a sustainable production alternative. In: Montagnini F (ed) Integrating landscapes: agroforestry for biodiversity conservation and food sovereignty, Advances in agroforestry 12. Springer, Cham, pp 261–281

    Chapter  Google Scholar 

  • Fajardo ND, González RJ, Neira LA (2009) Sistemas ganaderos amigos de las aves. In: Murgueitio E, Cuartas C, Naranjo J (eds) Ganadería del futuro: Investigación para el desarrollo, 2da edn. Fundación CIPAV, Cali, pp 171–203

    Google Scholar 

  • Francesconi W, Montagnini F (2015) Los SAF como estrategia para favorecer la conectividad funcional del paisaje fragmentado. In: Montagnini F, Somarriba E, Murgueitio E, Fassola H, Eibl B (eds) Sistemas agroforestales: funciones productivas, socioeconómicas y ambientales, Serie técnica informe técnico No. 402. CATIE/Editorial CIPAV, Turrialba/Cali, pp 363–379

    Google Scholar 

  • Francesconi W, Montagnini F, Ibrahim M (2011a) Living fences as linear extensions of forest remnants: a strategy for restoration of connectivity in agricultural landscapes. In: Montagnini F, Finney C (eds) Restoring degraded landscapes with native species in Latin America. Nova Science Publishers, New York, pp 115–126

    Google Scholar 

  • Francesconi W, Montagnini F, Ibrahim M (2011b) Using bird distribution to evaluate the potential of living fences to restore landscape connectivity in pasturelands. In: Montagnini F, Francesconi W, Rossi E (eds) Agroforestry as a tool for landscape restoration. Nova Science Publishers, New York, pp 133–142

    Google Scholar 

  • Gockowski J, Tchatat M, Dondjang JP, Hietet G, Fouda T (2010) An empirical analysis of the biodiversity and economic returns to cocoa agroforests in Southern Cameroon. J Sustain For 29(6):638–670. https://doi.org/10.1080/10549811003739486

    Article  Google Scholar 

  • González-Soberanis C, Casas A (2004) Traditional management and domestication of tempesquistle, Sideroxylon palmeri (Sapotaceae) in the Tehuacan-Cuicatlán Valley, Central México. J Arid Environ 59:245–258

    Article  Google Scholar 

  • Griffith DM (2000) Agroforestry: a refuge for tropical biodiversity after fire. Conserv Biol 14:325–326

    Article  Google Scholar 

  • Gross L, Castro-Tanzi S, Scherr SJ (2016) Connecting farms to landscapes for biodiversity conservation. The CAMBio project in Central America. Ecoagriculture discussion paper no. 15, Ecoagriculture Partners, Washington DC, 31 pp

    Google Scholar 

  • Harvey C, Villanueva C, Villacís J, Chacón M, Muñoz D, López M, Ibrahim M, Gómez R, Taylor R, Martínez J, Navas A, Sáenz J, Sánchez D, Medina A, Vílches S, Hernández B, Pérez A, Ruíz F, López F, Lang I, Kunth S, Sinclair F (2005) Contribution of live fences to the ecological integrity of agricultural landscapes. Agric Ecosyst Environ 111:200–230

    Article  Google Scholar 

  • Harvey CA, Komar O, Chazdon R, Ferguson BG, Finegan B, Griffith DM, Martínez-Ramos M, Morales H, Nigh R, Soto-Pinto L, Van Breugel M, Wishnie M (2008) Integrating agricultural landscapes with biodiversity conservation in the Mesoamerican hotspot. Cons Biol 22(1):8–15

    Article  Google Scholar 

  • Hobbs RJ, Walker LR, Walker J (2007) Integrating restoration and succession. In: Walker LR, Walker J, Hobbs RJ (eds) Linking restoration and ecological succession. Springer, New York, pp 168–179

    Chapter  Google Scholar 

  • House PH, Ochoa L (1998) La diversidad de especies útiles en diez huertos en la aldea de Camalote, Honduras. In: Lok R (ed) Huertos caseros tradicionales de América Central: características, beneficios e importancia, desde un enfoque multidisciplinario. Centro Agronómico Tropical de Investigación y Enseñanza (CATIE), Turrialba, pp 61–84

    Google Scholar 

  • Ibrahim M, Camargo JC (2001) ¿Cómo aumentar la regeneración de árboles maderable en potreros? Agroforestería en las Américas 8(32):35–41

    Google Scholar 

  • Ibrahim M, Casasola F, Villanueva C, Murgueitio E, Ramírez E, Sáenz S, Sepúlveda C (2011) Payment for environmental services as a tool to encourage the adoption of silvo-pastoral systems and restoration of agricultural landscapes dominated by cattle in Latin America. In: Montagnini F, Finney C (eds) Restoring degraded landscapes with native species in Latin America. Nova Science Publishers, New York, pp 197–219

    Google Scholar 

  • Ilany T, Ashton M, Montagnini F, Martinez C (2010) Using agroforestry to improve soil fertility: effects of intercropping on Ilex paraguariensis (yerba mate) plantations with Araucaria angustifolia. Agrofor Syst 80(3):399–409

    Article  Google Scholar 

  • Jose S (2009) Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor Syst 76:1–10

    Article  Google Scholar 

  • Jose S (2012) Agroforestry for conserving and enhancing biodiversity. Agrofor Syst 85(1):1–8

    Article  Google Scholar 

  • Kumar BM, Nair PKR (2006) (eds) Tropical Homegardens: a time-tested example of sustainable agroforestry, Advances in agroforestry 3. Springer, Dordrecht, 377 pp

    Google Scholar 

  • Laurance WF (2008) Theory meets reality: how habitat fragmentation research has transcended island biogeographic theory. Biol Conserv 141(7):1731–1744

    Article  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton, p 203

    Google Scholar 

  • Mas AH, Dietsch T (2003) An index of management intensity for coffee agroecosystems to evaluate butterfly species richness. Ecol Appl 13(5):1491–1501

    Article  Google Scholar 

  • Miccolis A, Mongeli Peneireiro F, Rodrigues Marques H, Mascia Vieira DL, Francia Arco-Verde M, Rigon Hoffmann M, Rehder T, Barbosa Pereira AV (2016) Agroforestry Systems for agroecological restoration: how to reconcile conversation with production, options for the Cerrado and the Caatinga. Brasília: Instituto Sociedade, População e Natureza – ISPN/World Agroforestry Centre – ICRAF, 240p. http://old.worldagroforestry.org/downloads/Publications/PDFS/B19034.pdf

  • Moguel P, Toledo V (1999) Biodiversity conservation in traditional coffee systems of Mexico. Cons Bio 13(1):11–21

    Article  Google Scholar 

  • Montagnini F (2006) Homegardens of Mesoamerica: biodiversity, food security, and nutrient management. In: Kumar BM, Nair PKR (eds) Tropical homegardens: a time-tested example of sustainable agroforestry, Advances in agroforestry, vol 3. Springer, Dordrecht, pp 61–84

    Chapter  Google Scholar 

  • Montagnini F (2020) The contribution of agroforestry to restoration and conservation: biodiversity islands in degraded landscapes. In: Dagar JC, Gupta SR, Teketay D (eds) Agroforestry for degraded landscapes: recent advances and emerging challenges, vol 1. Springer, Singapore, pp 445–479. https://doi.org/10.1007/978-981-15-4136-0_15

    Chapter  Google Scholar 

  • Montagnini F, Berg KE (2019) Feeding the world. In: Carver F, Gossington H, Manuel C (eds) Sustainable development goals. Transforming our world. Witan Media/United Nations Association – UK, Painswick/London, pp 98–100. https://www.sustainablegoals.org.uk/feeding-the-world/

  • Montagnini F, Finney C (2011) Payments for environmental services in Latin America as a tool for restoration and rural development. Ambio 40:285–297

    Article  PubMed  Google Scholar 

  • Montagnini F, Metzel R (2017) The contribution of agroforestry to sustainable development goal 2: end hunger, achieve food security and improved nutrition, and promote sustainable agriculture. In: Montagnini F (ed) Integrating landscapes: agroforestry for biodiversity conservation and food sovereignty, Advances in agroforestry 12. Springer, Cham, pp 11–45

    Chapter  Google Scholar 

  • Montagnini F et al (1992) Sistemas agroforestales. Principios y aplicaciones en los trópicos, 2d. ed. Organización para Estudios Tropicales (OTS). San José, 622 pp. http://www.ots.ac.cr/images/downloads/information-resources/library/sistemasagroforestales.pdf

  • Montagnini F, Eibl B, Barth SR (2011) Organic yerba mate: an environmentally, socially and financially suitable agroforestry system. Bois For Tropiques 308:59–74. https://drflorenciamontagnini.wordpress.com/organic-yerba-mate-an-environmentally-socially-and-financially-suitable-agroforestry-system/

    Article  Google Scholar 

  • Montagnini F, Ibrahim M, Murgueitio Restrepo E (2013) Silvopastoral systems and mitigation of climate change in Latin America. Bois For Tropiques 316(2):3–16

    Article  Google Scholar 

  • Montagnini F, Somarriba E, Murgueitio E, Fassola H, Eibl B (eds) (2015) Sistemas agroforestales: funciones productivas, socioeconómicas y ambientales. Serie técnica informe técnico No. 402. CATIE/Editorial CIPAV, Turrialba/Cali, 454pp

    Google Scholar 

  • Montagnini F, Levin B, Berg KE (2022) Introduction. Biodiversity islands: strategies for conservation in human-dominated environments. In: Montagnini F (ed) Biodiversity islands: strategies for conservation in human-dominated environments, Topics in Biodiversity and Conservation. Springer, Cham, pp 1–35

    Google Scholar 

  • Montoya-Molina S, Giraldo-Echeverri C, Montoya-Lerma J, Chará J, Escobar F, Calle Z (2016) Land sharing vs land sparing in the dry Caribbean lowlands: a dung beetles’ perspective. Appl Soil Ecol 98:204–212

    Article  Google Scholar 

  • Múnera E, Bock BC, Bolívar Vergara DM, Botero Botero JA (2009) Composición y estructura de la avifauna en diferentes hábitats en el Departamento de Córdoba, Colombia. In: Murgueitio E, Cuartas C, Naranjo J (eds) Ganadería del futuro: Investigación para el desarrollo, 2da Ed. Fundación CIPAV, Cali, pp 206–225

    Google Scholar 

  • Murgueitio E, Cuartas C, Naranjo J (eds) (2009) Ganadería del futuro: Investigación para el desarrollo, 2da Ed. Fundación CIPAV (Centro para la Investigación en Sistemas Silvopastoriles de Producción Agropecuaria), Cali, p 490

    Google Scholar 

  • Murgueitio E, Calle Z, Uribe F, Calle A, Solorio B (2011) Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands. For Ecol Manag 261(10):1654–1663

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca G, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:858–863

    Article  CAS  Google Scholar 

  • Nair PKR, Kumar BM (2006) Introduction. In: Kumar BM, Nair PKR (eds) Tropical homegardens: a time-tested example of sustainable agroforestry, Advances in agroforestry, vol 3. Springer, Dordrecht, pp 1–10

    Chapter  Google Scholar 

  • Negret HRC, Negret R, Montes-Londoño I (2022) Residential garden design for urban biodiversity conservation: experience from Panama City, Panama. In: Montagnini F (ed) Biodiversity islands: strategies for conservation in human-dominated environments. Topics in Biodiversity and Conservation. Springer, Cham, pp 387–417

    Google Scholar 

  • Peneireiro FM (1999) Sistemas Agroflorestais Dirigidos pela Sucessão Natural: um Estudo de Caso. (Agroforestry systems driven by natural succession: a case study). Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”. Master’s dissertation, 138 pp

    Google Scholar 

  • Pepper LG, De Freitas Navegantes Alves L (2017) Small-scale Açaí in the global market: adding value to ensure sustained income for forest farmers in the Amazon Estuary. In: Montagnini F (ed) Integrating landscapes: agroforestry for biodiversity conservation and food sovereignty, Advances in agroforestry 12. Springer, Cham, pp 211–234

    Chapter  Google Scholar 

  • Perfecto I, Vandermeer J, Mas AA, Soto Pinto L (2005) Biodiversity, yield, and shade coffee certification. Ecol Econ 54:435–446

    Article  Google Scholar 

  • Peters CM (2018) Managing the wild. Stories of people and plants and tropical forests. Yale University Press, New Haven, p 208

    Book  Google Scholar 

  • Peyre A, Guidal A, Wiersum KF, Bongers F (2006) Homegardens dynamics in Kerala, India. In: Kumar BM, Nair PKR (eds) Tropical homegardens: a time-tested example of sustainable agroforestry, Advances in agroforestry, vol 3. Springer, Dordrecht, pp 87–104

    Chapter  Google Scholar 

  • Pezo D, Ibrahim M (1999) Sistemas Silvopastoriles, 2nd ed. Proyecto Agroforestal CATIE/GTZ, Módulo de Enseñanza Agroforestal No. 2. CATIE, Turrialba, Costa Rica, 275pp

    Google Scholar 

  • Phalan B, Onial M, Balmford A, Green RE (2011) Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333(6047):1289–1291

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153

    Article  Google Scholar 

  • Rivera L, Armbrecht I, Calle Z (2013) Silvopastoral systems and ant diversity conservation in a cattle-dominated landscape of the Colombian Andes. Agric Ecosyst Environ 181:188–194

    Article  Google Scholar 

  • Rocha P, Niella F, Keller H, Montagnini F, Metzel R, Eibl B, Kornel J, Romero F, López L, Araujo J, Barquinero J (2017) Ecological indigenous (EIK) and scientific (ESK) knowledge integration as tool for sustainable development in indigenous communities. experience in Misiones, Argentina. In: Montagnini F (ed) Integrating landscapes: agroforestry for biodiversity conservation and food sovereignty, Advances in agroforestry 12. Springer, Cham, pp 235–260

    Chapter  Google Scholar 

  • Rolim SG, Chiarello AG (2004) Slow death of Atlantic forest trees in cocoa agroforestry in southeastern Brazil. Biodivers Conserv 13:2679–2694

    Article  Google Scholar 

  • Rosales M, Sáenz JC (2007) Uso de coberturas de vegetación por tropas de monos congos (Alouatta palliata) y carablanca (Cebus capucinus) en un agropaisaje y percepciones de finqueros con respecto a la conservación de los primates en Esparza, Costa Rica. In: III Congreso Iberoamericano Sobre Desarrollo y Ambiente (CISDA), Heredia, Costa Rica

    Google Scholar 

  • Roshetko JM, Purwanto E, Moeliono M, Widayati A, Purnomosidhi P, Mahrizal, Wau D, Perdana A, Martini E, Gaol A, Paramita E, Dahlia L, Suyanto KN, Manurung G, Yuliani L, Rohadi D, Manalu P, Umar A, Millang S (2016) Agroforestry and Forestry in Sulawesi: linking knowledge with action. Annual progress report year 5 (April 2015–March 2016). World Agroforestry Centre (ICRAF) Southeast Asia Regional Program, Center for International Forestry Research; Bogor, Indonesia, Operation Wallacea Trust, Bogor, Indonesia, Faculty of Forestry, Hasanuddin University, Makassar, Indonesia, 137 pp

    Google Scholar 

  • Rossi E, Montagnini F, de Melo E (2011) Effects of management practices on coffee productivity and herbaceous species diversity in agroforestry systems in Costa Rica. In: Montagnini F, Francesconi W, Rossi E (eds) Agroforestry as a tool for landscape restoration. Nova Science Publishers, New York, pp 115–132

    Google Scholar 

  • Sáenz JC, Villatoro F, Ibrahim M, Fajardo D, Pérez M (2007) Relación entre las comunidades de aves y la vegetación en agropaisajes dominados por la ganadería en Costa Rica, Nicaragua y Colombia. Agroforestería en las Américas 45:37–48

    Google Scholar 

  • Santos-Gally R, Boege K (2022) Biodiversity islands. Native tree islands within silvopastoral systems in a neotropical region. In: Montagnini F (ed) Biodiversity islands: strategies for conservation in human-dominated environments, Topics in Biodiversity and Conservation. Springer, Cham, pp 117–138

    Google Scholar 

  • Schulz J (2011) Imitating natural ecosystems through successional agroforestry for the regeneration of degraded lands – a case study of smallholder agriculture in northeastern Brazil. In: Montagnini F, Francesconi W, Rossi E (eds) Agroforestry as a tool for landscape restoration. Nova Science Publishers, New York, pp 3–17

    Google Scholar 

  • Soler R, Benítez J, Solá F, Lencinas MV (2022) Biodiversity islands at the world’s southernmost city: plant, bird and insect conservation in urban forests and peatlands of Ushuaia, Argentina. In: Montagnini F (ed) Biodiversity islands: strategies for conservation in human-dominated environments, Topics in Biodiversity and Conservation. Springer, Cham, pp 419–437

    Google Scholar 

  • Somarriba E, Harvey CA, Samper M, Anthony F, Gonzalez J, Staver C, Rice RA (2004) Biodiversity conservation in neotropical coffee (Coffea Arabica) plantations. In: Schroth G, da Fonseca GAB, Harvey CA, Gascon C, Vasconcelos HL, Izac MN (eds) Agroforestry and biodiversity conservation in tropical landscapes. Island Press, Washington, D.C., pp 198–226

    Google Scholar 

  • SOS Mata Atlântica, INPE (2014) Atlas dos remanescentes florestais da Mata Atlântica: período 2012–2013. Instituto Nacional de Pesquisas Espaciais http://www.inpe.br/ https://www.sosma.org.br/

  • Tamashiro S (2018) Corredores verdes reducen impactos del desmonte. Retrieved 17 October 2018, from http://curi.nearural.com/ampliar.php?mkt_hm=6&id=40360&utm_source=email_marketing&utm_admin=8097&utm_medium=email&utm_campaign=#.W4l9KnmQBck.email

  • Teodoro AV, Munoz A, Tscharntke T (2011) Early succession arthropod community changes on experimental passion fruit plant patches along a land-use gradient in Ecuador. Agric Ecos Environ 140(1–2):14–19

    Article  Google Scholar 

  • Terrones Rincón TDRL, Hernández Martínez MA, Ríos Ruiz SA, Martínez Ayala C (2011) Non-wood products from native multipurpose trees from agroforestry homegardens in the semiarid Mexican Plateau. In: Montagnini F, Francesconi W, Rossi E (eds) Agroforestry as a tool for landscape restoration. Nova Science Publishers, New York, pp 85–97

    Google Scholar 

  • Tjørve E (2010) How to resolve the SLOSS debate: lessons from species-diversity models. J Theor Biol 264(2):604–661

    Article  PubMed  Google Scholar 

  • Toensmeier E (2022) Paradise lot: a temperate urban multistrata agroforestry island of biodiversity. In: Montagnini F (ed) Biodiversity islands: strategies for conservation in human dominated environments. Topics in Biodiversity and Conservation, Springer, Cham, pp 439–459

    Google Scholar 

  • Tscharntke T, Clough Y, Bhagwat SA, Buchori D, Faust H, Hertel D, Holscher D, Juhrbandt J, Kessler M, Perfecto I, Scherber C, Schroth G, Veldkamp E, Wanger TC (2011) Multifunctional shade-tree management in tropicalagroforestry landscapes – a review. J Appl Ecol 48:619–629

    Article  Google Scholar 

  • Udawatta RP, Rankoth LM, Jose S (2019) Agroforestry and biodiversity. Sustainability 11:2879. https://doi.org/10.3390/su11102879

    Article  Google Scholar 

  • Wezel A, Bender S (2003) Plant species diversity of homegardens of Cuba and its significance for household food supply. Agrofor Syst 57:39–49

    Article  Google Scholar 

  • Wezel A, Ohl J (2006) Homegarden plant diversity in relation to remoteness from urban centers: a case study from the Peruvian Amazon. In: Kumar BM, Nair PKR (eds) Tropical homegardens: a time-tested example of sustainable agroforestry, Advances in agroforestry 3. Springer, Dordrecht, pp 159–184

    Google Scholar 

  • Young K (2017) Mimicking nature: a review of successional agroforestry systems as an analogue to natural regeneration of secondary forest stands. In: Montagnini F (ed) Integrating landscapes: agroforestry for biodiversity conservation and food sovereignty, Advances in agroforestry 12. Springer, Cham, pp 179–209

    Chapter  Google Scholar 

Download references

Acknowledgements

Thanks to Brett Levin (Yale University School of Forestry and Environmental Studies) who provided valuable assistance in the preparation of this chapter, and to Kjell Berg for his continued input and encouragement. Brett Levin and Joseph Orefice provided useful comments and insights as reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florencia Montagnini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Montagnini, F., del Fierro, S. (2022). Functions of Agroforestry Systems as Biodiversity Islands in Productive Landscapes. In: Montagnini, F. (eds) Biodiversity Islands: Strategies for Conservation in Human-Dominated Environments. Topics in Biodiversity and Conservation, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-92234-4_4

Download citation

Publish with us

Policies and ethics