Skip to main content

Mechanical Properties of the Extracellular Matrix

  • Living reference work entry
  • First Online:
Handbook of the Extracellular Matrix

Abstract

The mechanical properties of the extracellular matrix (ECM) are of utmost importance in understanding the dynamic interplay between cells and their microenvironment in both health and disease. The ECM actively regulates cellular behavior, while cells continuously modulate the ECM properties, which are closely linked to its composition and architecture. This chapter provides a comprehensive review of the major components of the ECM and their influence on mechanical properties. The two primary models used to study ECM are discussed here: endogenously generated ECM through in vitro culture of matrix-producing cells and ECM obtained from tissue decellularization. Furthermore, various techniques for characterizing ECM biomechanics at macro- and micro-scale are presented, including tensile and compression testing, atomic force microscopy, and rheometry. Lastly, ECM-cell interactions measurements are presented, highlighting key techniques such as hydrogel contraction assays and traction force microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Al Jamal R, Roughley PJ, Ludwig MS. Effect of glycosaminoglycan degradation on lung tissue viscoelasticity. Am J Phys Lung Cell Mol Phys. 2001;280(2):L306–15.

    CAS  Google Scholar 

  • Badylak SF, Lantz GC, Coffey A, Geddes LA. Small intestinal submucosa as a large diameter vascular graft in the dog. J Surg Res. 1989;47(1):74–80.

    Article  CAS  PubMed  Google Scholar 

  • Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986;56(9):930–3.

    Article  CAS  PubMed  Google Scholar 

  • Brightman AO, Rajwa BP, Sturgis JE, McCallister ME, Robinson JP, Voytik-Harbin SL. Time-lapse confocal reflection microscopy of collagen fibrillogenesis and extracellular matrix assembly in vitro. Biopolymers. 2000;54(3):222–34.

    Article  CAS  PubMed  Google Scholar 

  • Brodsky B, Persikov AV. Molecular structure of the collagen triple helix. Adv Protein Chem. 2005;70:301–39.

    Article  CAS  PubMed  Google Scholar 

  • Burgess JK, Mauad T, Tjin G, Karlsson JC, Westergren-Thorsson G. The extracellular matrix – the under-recognized element in lung disease? J Pathol. 2016;240(4):397–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhuri O, Cooper-White J, Janmey PA, Mooney DJ, Shenoy VB. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature. 2020;584(7822):535–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Li Y, Hao H, Li C, Du Y, Hu Y, Li J, Liang Z, Liu J, Chen L. Mesenchymal stem cell conditioned medium promotes proliferation and migration of alveolar epithelial cells under septic conditions in vitro via the JNK-P38 signaling pathway. Cell Physiol Biochem. 2015;37(5):1830–46.

    Article  CAS  PubMed  Google Scholar 

  • Corsi A, Xu T, Chen XD, Boyde A, Liang J, Mankani M, Sommer B, Iozzo RV, Eichstetter I, Robey PG, Bianco P, Young MF. Phenotypic effects of biglycan deficiency are linked to collagen fibril abnormalities, are synergized by decorin deficiency, and mimic Ehlers-Danlos-like changes in bone and other connective tissues. J Bone Miner Res. 2002;17(7):1180–9.

    Article  CAS  PubMed  Google Scholar 

  • Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32(12):3233–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darnell M, Mooney DJ. Leveraging advances in biology to design biomaterials. Nat Mater. 2017;16(12):1178–85.

    Article  CAS  PubMed  Google Scholar 

  • DeAngelis PL. Glycosaminoglycan polysaccharide biosynthesis and production: today and tomorrow. Appl Microbiol Biotechnol. 2012;94(2):295–305.

    Article  CAS  PubMed  Google Scholar 

  • Di Lullo GA, Sweeney SM, Korkko J, Ala-Kokko L, San Antonio JD. Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J Biol Chem. 2002;277(6):4223–31.

    Article  PubMed  Google Scholar 

  • Dimitriadis EK, Horkay F, Maresca J, Kachar B, Chadwick RS. Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys J. 2002;82(5):2798–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle AD, Yamada KM. Mechanosensing via cell-matrix adhesions in 3D microenvironments. Exp Cell Res. 2016;343(1):60–6.

    Article  CAS  PubMed  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89.

    Article  CAS  PubMed  Google Scholar 

  • Farré N, Otero J, Falcones B, Torres M, Jorba I, Gozal D, Almendros I, Farré R, Navajas D. Intermittent hypoxia mimicking sleep apnea increases passive stiffness of myocardial extracellular matrix. A multiscale study. Front Physiol. 2018;9:1143.

    Article  PubMed  PubMed Central  Google Scholar 

  • Flynn LE. The use of decellularized adipose tissue to provide an inductive microenvironment for the adipogenic differentiation of human adipose-derived stem cells. Biomaterials. 2010;31(17):4715–24.

    Article  CAS  PubMed  Google Scholar 

  • Ford AJ, Rajagopalan P. Extracellular matrix remodeling in 3D: implications in tissue homeostasis and disease progression. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018;10(4):e1503.

    Article  PubMed  Google Scholar 

  • Freytes DO, Martin J, Velankar SS, Lee AS, Badylak SF. Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix. Biomaterials. 2008;29(11):1630–7.

    Article  CAS  PubMed  Google Scholar 

  • Fu R-H, Wang Y-C, Liu S-P, Shih T-R, Lin H-L, Chen Y-M, Sung J-H, Lu C-H, Wei J-R, Wang Z-W, Huang S-J, Tsai C-H, Shyu W-C, Lin S-Z. Decellularization and recellularization technologies in tissue engineering. Cell Transplant. 2014;23(4–5):621–30.

    Article  PubMed  Google Scholar 

  • Funamoto S, Nam K, Kimura T, Murakoshi A, Hashimoto Y, Niwaya K, Kitamura S, Fujisato T, Kishida A. The use of high-hydrostatic pressure treatment to decellularize blood vessels. Biomaterials. 2010;31(13):3590–5.

    Article  CAS  PubMed  Google Scholar 

  • Gaetani R, Zizzi EA, Deriu MA, Morbiducci U, Pesce M, Messina E. When stiffness matters: mechanosensing in heart development and disease. Front Cell Dev Biol. 2020;8:334.

    Article  PubMed  PubMed Central  Google Scholar 

  • García JR, García AJ. Cellular mechanotransduction: sensing rigidity. Nat Mater. 2014;13(6):539–40.

    Article  PubMed  Google Scholar 

  • Gavara N. A beginner's guide to atomic force microscopy probing for cell mechanics. Microsc Res Tech. 2017;80(1):75–84.

    Article  PubMed  Google Scholar 

  • Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27(19):3675–83.

    CAS  PubMed  Google Scholar 

  • Habanjar O, Diab-Assaf M, Caldefie-Chezet F, Delort L. 3D cell culture systems: tumor application, advantages, and disadvantages. Int J Mol Sci. 2021;22(22):12200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto Y, Funamoto S, Sasaki S, Honda T, Hattori S, Nam K, Kimura T, Mochizuki M, Fujisato T, Kobayashi H, Kishida A. Preparation and characterization of decellularized cornea using high-hydrostatic pressurization for corneal tissue engineering. Biomaterials. 2010;31(14):3941–8.

    Article  CAS  PubMed  Google Scholar 

  • Hess O, Hess S. Nonlinear fluid behavior: from shear thinning to shear thickening. Physica A: Stat Mech Appl. 1994;207(4):517–40.

    Article  Google Scholar 

  • Hopkinson A, Shanmuganathan VA, Gray T, Yeung AM, Lowe J, James DK, Dua HS. Optimization of amniotic membrane (AM) denuding for tissue engineering. Tissue Eng Part C Methods. 2008;14(4):371–81.

    Article  CAS  PubMed  Google Scholar 

  • Hopwood JJ, Dorfman A. Glycosaminoglycan synthesis by cultured human skin fibroblasts after transformation with simian virus 40. J Biol Chem. 1977;252(14):4777–85.

    Article  CAS  PubMed  Google Scholar 

  • Hulmes DJ, Jesior JC, Miller A, Berthet-Colominas C, Wolff C. Electron microscopy shows periodic structure in collagen fibril cross sections. Proc Natl Acad Sci U S A. 1981;78(6):3567–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang J, San BH, Turner NJ, White LJ, Faulk DM, Badylak SF, Li Y, Yu SM. Molecular assessment of collagen denaturation in decellularized tissues using a collagen hybridizing peptide. Acta Biomater. 2017;53:268–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa S, Ishimori K, Ito S. A 3D epithelial-mesenchymal co-culture model of human bronchial tissue recapitulates multiple features of airway tissue remodeling by TGF-β1 treatment. Respir Res. 2017;18(1):195.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jorba I, Beltrán G, Falcones B, Suki B, Farré R, García-Aznar JM, Navajas D. Nonlinear elasticity of the lung extracellular microenvironment is regulated by macroscale tissue strain. Acta Biomater. 2019;92:265–76.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kasimir MT, Rieder E, Seebacher G, Silberhumer G, Wolner E, Weigel G, Simon P. Comparison of different decellularization procedures of porcine heart valves. Int J Artif Organs. 2003;26(5):421–7.

    Article  CAS  PubMed  Google Scholar 

  • Keane TJ, Londono R, Turner NJ, Badylak SF. Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials. 2012;33(6):1771–81.

    Article  CAS  PubMed  Google Scholar 

  • Keeley FW, Bellingham CM, Woodhouse KA. Elastin as a self-organizing biomaterial: use of recombinantly expressed human elastin polypeptides as a model for investigations of structure and self-assembly of elastin. Philos Trans R Soc Lond Ser B Biol Sci. 2002;357(1418):185–9.

    Article  CAS  Google Scholar 

  • Kontomaris SV, Stylianou A, Malamou A. Atomic force microscopy nanoindentation method on collagen fibrils. Materials (Basel). 2022;15(7):2477.

    Article  CAS  PubMed  Google Scholar 

  • Korducki JM, Loftus SJ, Bahn RS. Stimulation of glycosaminoglycan production in cultured human retroocular fibroblasts. Invest Ophthalmol Vis Sci. 1992;33(6):2037–42.

    CAS  PubMed  Google Scholar 

  • Lenselink EA. Role of fibronectin in normal wound healing. Int Wound J. 2015;12(3):313–6.

    Article  PubMed  Google Scholar 

  • Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater. 2016;1(12):16071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Hansen KC, Zhang Y, Dong C, Dinu CZ, Dzieciatkowska M, Pei M. Rejuvenation of chondrogenic potential in a young stem cell microenvironment. Biomaterials. 2014;35(2):642–53.

    Article  CAS  PubMed  Google Scholar 

  • Lou J, Stowers R, Nam S, Xia Y, Chaudhuri O. Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture. Biomaterials. 2018;154:213–22.

    Article  CAS  PubMed  Google Scholar 

  • Lovelady HH, Shashidhara S, Matthews WG. Solvent specific persistence length of molecular type I collagen. Biopolymers. 2014;101(4):329–35.

    Article  CAS  PubMed  Google Scholar 

  • Maia FR, Fonseca KB, Rodrigues G, Granja PL, Barrias CC. Matrix-driven formation of mesenchymal stem cell-extracellular matrix microtissues on soft alginate hydrogels. Acta Biomater. 2014;10(7):3197–208.

    Article  CAS  PubMed  Google Scholar 

  • Marchioni A, Tonelli R, Cerri S, Castaniere I, Andrisani D, Gozzi F, Bruzzi G, Manicardi L, Moretti A, Demurtas J, Baroncini S, Andreani A, Cappiello GF, Busani S, Fantini R, Tabbì L, Samarelli AV, Clini E. Pulmonary stretch and lung Mechanotransduction: implications for progression in the fibrotic lung. Int J Mol Sci. 2021;22(12):6443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melo E, Cárdenes N, Garreta E, Luque T, Rojas M, Navajas D, Farré R. Inhomogeneity of local stiffness in the extracellular matrix scaffold of fibrotic mouse lungs. J Mech Behav Biomed Mater. 2014;37:186–95.

    Article  CAS  PubMed  Google Scholar 

  • Mercer RR, Crapo JD. Spatial distribution of collagen and elastin fibers in the lungs. J Appl Physiol (1985). 1990;69(2):756–65.

    Article  CAS  PubMed  Google Scholar 

  • Mezger T. The rheology handbook 8. Oscillatory tests. For users of rotational and oscillatory rheometers. Hannover: Vincentz Network; 2020. p. 153–247.

    Google Scholar 

  • Mithieux SM, Weiss AS. Elastin. In: Advances in protein chemistry. Amsterdam: Academic; 2005. p. 437–61.

    Google Scholar 

  • Mouw JK, Ou G, Weaver VM. Extracellular matrix assembly: a multiscale deconstruction. Nat Rev Mol Cell Biol. 2014;15(12):771–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA, Hynes RO. The extracellular matrix: tools and insights for the “omics” era. Matrix Biol. 2016;49:10–24.

    Article  CAS  PubMed  Google Scholar 

  • Navajas D, Mijailovich S, Glass GM, Stamenović D, Fredberg JJ. Dynamic response of the isolated passive rat diaphragm strip. J Appl Physiol (1985). 1992;73(6):2681–92.

    Article  CAS  PubMed  Google Scholar 

  • Orgel JP, Miller A, Irving TC, Fischetti RF, Hammersley AP, Wess TJ. The in situ supermolecular structure of type I collagen. Structure. 2001;9(11):1061–9.

    Article  CAS  PubMed  Google Scholar 

  • Otero J, Navajas D, Alcaraz J. Characterization of the elastic properties of extracellular matrix models by atomic force microscopy. Methods Cell Biol. 2019;156:59–83.

    Article  PubMed  Google Scholar 

  • Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, Taylor DA. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med. 2008;14(2):213–21.

    Article  CAS  PubMed  Google Scholar 

  • Papakonstantinou E, Roth M, Karakiulakis G. Hyaluronic acid: a key molecule in skin aging. Dermato-Endocrinol. 2012;4(3):253–8.

    Article  CAS  Google Scholar 

  • Parkinson J, Kadler KE, Brass A. Simple physical model of collagen fibrillogenesis based on diffusion limited aggregation. J Mol Biol. 1995;247(4):823–31.

    Article  CAS  PubMed  Google Scholar 

  • Paulsson M. Basement membrane proteins: structure, assembly, and cellular interactions. Crit Rev Biochem Mol Biol. 1992;27(1–2):93–127.

    CAS  PubMed  Google Scholar 

  • Petit C, Karkhaneh Yousefi AA, Guilbot M, Barnier V, Avril S. Atomic force microscopy stiffness mapping in human aortic smooth muscle cells. J Biomech Eng. 2022;144(8):081001.

    Article  PubMed  Google Scholar 

  • Phillips M, Maor E, Rubinsky B. Nonthermal irreversible electroporation for tissue decellularization. J Biomech Eng. 2010;132(9):091003.

    Article  PubMed  Google Scholar 

  • Pickup MW, Mouw JK, Weaver VM. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 2014;15(12):1243–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pouliot RA, Young BM, Link PA, Park HE, Kahn AR, Shankar K, Schneck MB, Weiss DJ, Heise RL. Porcine lung-derived extracellular matrix hydrogel properties are dependent on pepsin digestion time. Tissue Eng Part C Methods. 2020;26(6):332–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasertsung I, Kanokpanont S, Bunaprasert T, Thanakit V, Damrongsakkul S. Development of acellular dermis from porcine skin using periodic pressurized technique. J Biomed Mater Res B Appl Biomater. 2008;85(1):210–9.

    Article  PubMed  Google Scholar 

  • Reing JE, Brown BN, Daly KA, Freund JM, Gilbert TW, Hsiong SX, Huber A, Kullas KE, Tottey S, Wolf MT, Badylak SF. The effects of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaffolds. Biomaterials. 2010;31(33):8626–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricard-Blum S. The collagen family. Cold Spring Harb Perspect Biol. 2011;3(1):a004978.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rieder E, Kasimir MT, Silberhumer G, Seebacher G, Wolner E, Simon P, Weigel G. Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J Thorac Cardiovasc Surg. 2004;127(2):399–405.

    Article  PubMed  Google Scholar 

  • Riis S, Hansen AC, Johansen L, Lund K, Pedersen C, Pitsa A, Hyldig K, Zachar V, Fink T, Pennisi CP. Fabrication and characterization of extracellular matrix scaffolds obtained from adipose-derived stem cells. Methods. 2019;171:68–76.

    Article  PubMed  Google Scholar 

  • Romberger DJ. Fibronectin. Int J Biochem Cell Biol. 1997;29(7):939–43.

    Article  CAS  PubMed  Google Scholar 

  • Rouabhia M, Park H, Meng S, Derbali H, Zhang Z. Electrical stimulation promotes wound healing by enhancing dermal fibroblast activity and promoting myofibroblast transdifferentiation. PLoS One. 2013;8(8):e71660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saldin LT, Cramer MC, Velankar SS, White LJ, Badylak SF. Extracellular matrix hydrogels from decellularized tissues: structure and function. Acta Biomater. 2017;49:1–15.

    Article  CAS  PubMed  Google Scholar 

  • Sano MB, Neal RE 2nd, Garcia PA, Gerber D, Robertson J, Davalos RV. Towards the creation of decellularized organ constructs using irreversible electroporation and active mechanical perfusion. Biomed Eng Online. 2010;9:83.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanz-Fraile H, Amoros S, Mendizabal I, Galvez-Monton C, Prat-Vidal C, Bayes-Genis A, Navajas D, Farre R, Otero J. Silk-reinforced collagen hydrogels with raised multiscale stiffness for mesenchymal cells 3D culture. Tissue Eng Part A. 2020;26(5–6):358–70.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki N, Odajima S. Elongation mechanism of collagen fibrils and force-strain relations of tendon at each level of structural hierarchy. J Biomech. 1996a;29(9):1131–6.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki N, Odajima S. Stress-strain curve and Young’s modulus of a collagen molecule as determined by the X-ray diffraction technique. J Biomech. 1996b;29(5):655–8.

    Article  CAS  PubMed  Google Scholar 

  • Severov V, Tsvetkov V, Barinov N, Babenko V, Klinov D, Pozmogova G. Spontaneous DNA synapsis by forming noncanonical intermolecular structures. Polymers (Basel). 2022;14(10):2118.

    Article  CAS  PubMed  Google Scholar 

  • Shen ZL, Kahn H, Ballarini R, Eppell SJ. Viscoelastic properties of isolated collagen fibrils. Biophys J. 2011;100(12):3008–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoulders MD, Raines RT. Collagen structure and stability. Annu Rev Biochem. 2009;78:929–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sicard D, Haak AJ, Choi KM, Craig AR, Fredenburgh LE, Tschumperlin DJ. Aging and anatomical variations in lung tissue stiffness. Am J Physiol Lung Cell Mol Physiol. 2018;314(6):L946–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spang MT, Christman KL. Extracellular matrix hydrogel therapies: in vivo applications and development. Acta Biomater. 2018;68:1–14.

    Article  CAS  PubMed  Google Scholar 

  • Stanisavljevic J, Loubat-Casanovas J, Herrera M, Luque T, Peña R, Lluch A, Albanell J, Bonilla F, Rovira A, Peña C, Navajas D, Rojo F, García de Herreros A, Baulida J. Snail1-expressing fibroblasts in the tumor microenvironment display mechanical properties that support metastasis. Cancer Res. 2015;75(2):284.

    Article  CAS  PubMed  Google Scholar 

  • Stern MM, Myers RL, Hammam N, Stern KA, Eberli D, Kritchevsky SB, Soker S, Van Dyke M. The influence of extracellular matrix derived from skeletal muscle tissue on the proliferation and differentiation of myogenic progenitor cells ex vivo. Biomaterials. 2009;30:2393–9. (1878-5905 (Electronic))

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Style RW, Boltyanskiy R, German GK, Hyland C, MacMinn CW, Mertz AF, Wilen LA, Xu Y, Dufresne ER. Traction force microscopy in physics and biology. Soft Matter. 2014;10(23):4047–55.

    Article  CAS  PubMed  Google Scholar 

  • Sun YL, Luo ZP, Fertala A, An KN. Direct quantification of the flexibility of type I collagen monomer. Biochem Biophys Res Commun. 2002;295(2):382–6.

    Article  CAS  PubMed  Google Scholar 

  • Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. Extracellular matrix structure. Adv Drug Deliv Rev. 2016;97:4–27.

    Article  CAS  PubMed  Google Scholar 

  • Trowbridge JM, Gallo RL. Dermatan sulfate: new functions from an old glycosaminoglycan. Glycobiology. 2002;12(9):117r–25r.

    Article  CAS  PubMed  Google Scholar 

  • Uygun BE, Soto-Gutierrez A, Yagi H, Izamis ML, Guzzardi MA, Shulman C, Milwid J, Kobayashi N, Tilles A, Berthiaume F, Hertl M, Nahmias Y, Yarmush ML, Uygun K. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med. 2010;16(7):814–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varma S, Orgel JP, Schieber JD. Nanomechanics of type I collagen. Biophys J. 2016;111(1):50–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vesentini S, Fitié CF, Montevecchi FM, Redaelli A. Molecular assessment of the elastic properties of collagen-like homotrimer sequences. Biomech Model Mechanobiol. 2005;3(4):224–34.

    Article  CAS  PubMed  Google Scholar 

  • Wainwright JM, Czajka CA, Patel UB, Freytes DO, Tobita K, Gilbert TW, Badylak SF. Preparation of cardiac extracellular matrix from an intact porcine heart. Tissue Eng Part C Methods. 2010;16(3):525–32.

    Article  CAS  PubMed  Google Scholar 

  • Wang D-A, Varghese S, Sharma B, Strehin I, Fermanian S, Gorham J, Fairbrother DH, Cascio B, Elisseeff JH. Multifunctional chondroitin sulphate for cartilage tissue–biomaterial integration. Nat Mater. 2007;6(5):385–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wells RG. Tissue mechanics and fibrosis. Biochim Biophys Acta. 2013;1832(7):884–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wichterle O, Lím D. Hydrophilic gels for biological use. Nature. 1960;185(4706):117–8.

    Article  Google Scholar 

  • Wierzbicka-Patynowski I, Schwarzbauer JE. The ins and outs of fibronectin matrix assembly. J Cell Sci. 2003;116(Pt 16):3269–76.

    Article  CAS  PubMed  Google Scholar 

  • Wilks BT, Evans EB, Nakhla MN, Morgan JR. Directing fibroblast self-assembly to fabricate highly-aligned, collagen-rich matrices. Acta Biomater. 2018;81:70–9.

    Article  CAS  PubMed  Google Scholar 

  • Woodley DT, Yamauchi M, Wynn KC, Mechanic G, Briggaman RA. Collagen telopeptides (cross-linking sites) play a role in collagen gel lattice contraction. J Invest Dermatol. 1991;97(3):580–5.

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Puperi DS, Grande-Allen KJ, West JL. Ascorbic acid promotes extracellular matrix deposition while preserving valve interstitial cell quiescence within 3D hydrogel scaffolds. J Tissue Eng Regen Med. 2017;11(7):1963–73.

    Article  CAS  PubMed  Google Scholar 

  • Yang L, van der Werf KO, Fitié CF, Bennink ML, Dijkstra PJ, Feijen J. Mechanical properties of native and cross-linked type I collagen fibrils. Biophys J. 2008;94(6):2204–11.

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Lin H, Shen H, Wang B, Lei G, Tuan RS. Mesenchymal stem cell-derived extracellular matrix enhances chondrogenic phenotype of and cartilage formation by encapsulated chondrocytes in vitro and in vivo. Acta Biomater. 2018;69:71–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zündel M, Ehret AE, Mazza E. The multiscale stiffness of electrospun substrates and aspects of their mechanical biocompatibility. Acta Biomater. 2019;84:146–58.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Spanish Ministry of Science, Innovation, and Universities by grant number PID2021-128674OB-I00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Otero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sanz-Fraile, H., Otero, J. (2024). Mechanical Properties of the Extracellular Matrix. In: Maia, F.R.A., Oliveira, J.M., Reis, R.L. (eds) Handbook of the Extracellular Matrix. Springer, Cham. https://doi.org/10.1007/978-3-030-92090-6_5-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92090-6_5-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92090-6

  • Online ISBN: 978-3-030-92090-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics