Skip to main content

Assessment of Microsatellite Instability from Next-Generation Sequencing Data

  • Chapter
  • First Online:
Computational Methods for Precision Oncology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1361))

Abstract

Microsatellite instability (MSI) is a genetic alteration due to a deficiency of the DNA mismatch repair system, where microsatellites accumulate insertions/deletions. This phenotype has been extensively characterized in colorectal cancer and is also sought in the context of Lynch syndrome diagnosis. It has recently been described in dozens of cancer types from whole genome/exome sequencing data, bearing some prognostic information. Moreover, MSI has also proven to be a major predicator of the response to immune checkpoint blockade therapy in solid cancer patients. Among the different methods developed for MSI detection in cancer, next-generation sequencing (NGS) is a promising and versatile technology offering many possibilities and advantages in diverse clinical applications compared to the gold standard PCR and capillary electrophoresis approach. NGS could notably increase the number of analyzed microsatellites and potentially be used to analyze other genetic alterations required for precision oncology. However, it requires the development of robust new computational algorithms for the analysis of NGS microsatellite data. In this chapter, we describe the different approaches developed for the assessment of MSI from NGS data in cancer, including the different microsatellite panels and computational algorithms proposed, highlighting their advantages and drawbacks, and their evaluation in different clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aaltonen LA, Peltomaki P, Leach FS, Sistonen P, Pylkkanen L, Mecklin JP, Jarvinen H, Powell SM, Jen J, Hamilton SR, et al. Clues to the pathogenesis of familial colorectal cancer. Science. 1993;260(5109):812–6.

    Article  CAS  Google Scholar 

  2. Aaltonen LA, Salovaara R, Kristo P, Canzian F, Hemminki A, Peltomaki P, Chadwick RB, Kaariainen H, Eskelinen M, Jarvinen H, Mecklin JP, de la Chapelle A. Incidence of hereditary nonpolyposis colorectal cancer and the feasibility of molecular screening for the disease. N Engl J Med. 1998;338(21):1481–7. https://doi.org/10.1056/NEJM199805213382101.

    Article  CAS  PubMed  Google Scholar 

  3. Abida W, Cheng ML, Armenia J, Middha S, Autio KA, Vargas HA, Rathkopf D, Morris MJ, Danila DC, Slovin SF, Carbone E, Barnett ES, Hullings M, Hechtman JF, Zehir A, Shia J, Jonsson P, Stadler ZK, Srinivasan P, Laudone VP, Reuter V, Wolchok JD, Socci ND, Taylor BS, Berger MF, Kantoff PW, Sawyers CL, Schultz N, Solit DB, Gopalan A, Scher HI. Analysis of the prevalence of microsatellite instability in prostate cancer and response to immune checkpoint blockade. JAMA Oncol. 2019;5(4):471–8. https://doi.org/10.1001/jamaoncol.2018.5801.

    Article  PubMed  Google Scholar 

  4. Bacher JW, Flanagan LA, Smalley RL, Nassif NA, Burgart LJ, Halberg RB, Megid WM, Thibodeau SN. Development of a fluorescent multiplex assay for detection of MSI-high tumors. Dis Markers. 2004;20(4–5):237–50.

    Article  Google Scholar 

  5. Barnetson RA, Tenesa A, Farrington SM, Nicholl ID, Cetnarskyj R, Porteous ME, Campbell H, Dunlop MG. Identification and survival of carriers of mutations in DNA mismatch-repair genes in colon cancer. N Engl J Med. 2006;354(26):2751–63. https://doi.org/10.1056/NEJMoa053493.

    Article  CAS  PubMed  Google Scholar 

  6. Baudrin LG, Deleuze JF, How-Kit A. Molecular and computational methods for the detection of microsatellite instability in cancer. Front Oncol. 2018a;8:621. https://doi.org/10.3389/fonc.2018.00621.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Baudrin LG, Duval A, Daunay A, Buhard O, Bui H, Deleuze JF, How-Kit A. Improved microsatellite instability detection and identification by nuclease-assisted microsatellite instability enrichment using HSP110 T17. Clin Chem. 2018b; https://doi.org/10.1373/clinchem.2018.287490.

  8. Bianchi F, Galizia E, Catalani R, Belvederesi L, Ferretti C, Corradini F, Cellerino R. CAT25 is a mononucleotide marker to identify HNPCC patients. J Mol Diagn. 2009;11(3):248–52. https://doi.org/10.2353/jmoldx.2009.080155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bocker T, Diermann J, Friedl W, Gebert J, Holinski-Feder E, Karner-Hanusch J, von Knebel-Doeberitz M, Koelble K, Moeslein G, Schackert HK, Wirtz HC, Fishel R, Ruschoff J. Microsatellite instability analysis: a multicenter study for reliability and quality control. Cancer Res. 1997;57(21):4739–43.

    CAS  PubMed  Google Scholar 

  10. Bodo S, Colas C, Buhard O, Collura A, Tinat J, Lavoine N, Guilloux A, Chalastanis A, Lafitte P, Coulet F, Buisine MP, Ilencikova D, Ruiz-Ponte C, Kinzel M, Grandjouan S, Brems H, Lejeune S, Blanche H, Wang Q, Caron O, Cabaret O, Svrcek M, Vidaud D, Parfait B, Verloes A, Knappe UJ, Soubrier F, Mortemousque I, Leis A, Auclair-Perrossier J, Frebourg T, Flejou JF, Entz-Werle N, Leclerc J, Malka D, Cohen-Haguenauer O, Goldberg Y, Gerdes AM, Fedhila F, Mathieu-Dramard M, Hamelin R, Wafaa B, Gauthier-Villars M, Bourdeaut F, Sheridan E, Vasen H, Brugieres L, Wimmer K, Muleris M, Duval A. Diagnosis of constitutional mismatch repair-deficiency syndrome based on microsatellite instability and lymphocyte tolerance to methylating agents. Gastroenterology. 2015;149(4):1017–1029 e1013. https://doi.org/10.1053/j.gastro.2015.06.013.

    Article  PubMed  Google Scholar 

  11. Boland CR, Goel A. Microsatellite instability in colorectal cancer. Gastroenterology. 2010;138(6):2073–2087 e2073. https://doi.org/10.1053/j.gastro.2009.12.064.

    Article  CAS  PubMed  Google Scholar 

  12. Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW, Meltzer SJ, Rodriguez-Bigas MA, Fodde R, Ranzani GN, Srivastava S. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998;58(22):5248–57.

    CAS  PubMed  Google Scholar 

  13. Bonneville R, Krook MA, Kautto EA, Miya J, Wing MR, Chen HZ, Reeser JW, Yu L, Roychowdhury S. Landscape of microsatellite instability across 39 cancer types. JCO Precis Oncol. 2017, 2017; https://doi.org/10.1200/PO.17.00073.

  14. Boyiadzis MM, Kirkwood JM, Marshall JL, Pritchard CC, Azad NS, Gulley JL. Significance and implications of FDA approval of pembrolizumab for biomarker-defined disease. J Immunother Cancer. 2018;6(1):35. https://doi.org/10.1186/s40425-018-0342-x.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Buhard O, Lagrange A, Guilloux A, Colas C, Chouchene M, Wanherdrick K, Coulet F, Guillerm E, Dorard C, Marisa L, Bokhari A, Greene M, El-Murr N, Bodo S, Muleris M, Sourouille I, Svrcek M, Cervera P, Blanche H, Lefevre JH, Parc Y, Lepage C, Chapusot C, Bouvier AM, Gaub MP, Selves J, Garrett K, Iacopetta B, Soong R, Hamelin R, Garrido C, Lascols O, Andre T, Flejou JF, Collura A, Duval A. HSP110 T17 simplifies and improves the microsatellite instability testing in patients with colorectal cancer. J Med Genet. 2016;53(6):377–84. https://doi.org/10.1136/jmedgenet-2015-103518.

    Article  CAS  PubMed  Google Scholar 

  16. Buhard O, Suraweera N, Lectard A, Duval A, Hamelin R. Quasimonomorphic mononucleotide repeats for high-level microsatellite instability analysis. Dis Markers. 2004;20(4–5):251–7.

    Article  Google Scholar 

  17. Cawkwell L, Li D, Lewis FA, Martin I, Dixon MF, Quirke P. Microsatellite instability in colorectal cancer: improved assessment using fluorescent polymerase chain reaction. Gastroenterology. 1995;109(2):465–71.

    Article  CAS  Google Scholar 

  18. Cortes-Ciriano I, Lee S, Park WY, Kim TM, Park PJ. A molecular portrait of microsatellite instability across multiple cancers. Nat Commun. 2017;8:15180. https://doi.org/10.1038/ncomms15180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Daunay A, Duval A, Baudrin LG, Buhard O, Renault V, Deleuze JF, How-Kit A. Low temperature isothermal amplification of microsatellites drastically reduces stutter artifact formation and improves microsatellite instability detection in cancer. Nucleic Acids Res. 2019; https://doi.org/10.1093/nar/gkz811.

  20. Dietmaier W, Wallinger S, Bocker T, Kullmann F, Fishel R, Ruschoff J. Diagnostic microsatellite instability: definition and correlation with mismatch repair protein expression. Cancer Res. 1997;57(21):4749–56.

    CAS  PubMed  Google Scholar 

  21. Dorard C, de Thonel A, Collura A, Marisa L, Svrcek M, Lagrange A, Jego G, Wanherdrick K, Joly AL, Buhard O, Gobbo J, Penard-Lacronique V, Zouali H, Tubacher E, Kirzin S, Selves J, Milano G, Etienne-Grimaldi MC, Bengrine-Lefevre L, Louvet C, Tournigand C, Lefevre JH, Parc Y, Tiret E, Flejou JF, Gaub MP, Garrido C, Duval A. Expression of a mutant HSP110 sensitizes colorectal cancer cells to chemotherapy and improves disease prognosis. Nat Med. 2011;17(10):1283–9. https://doi.org/10.1038/nm.2457.

    Article  CAS  PubMed  Google Scholar 

  22. Ellegren H. Microsatellites: simple sequences with complex evolution. Nat Rev Genet. 2004;5(6):435–45. https://doi.org/10.1038/nrg1348.

    Article  CAS  PubMed  Google Scholar 

  23. Fang H, Wu Y, Narzisi G, O'Rawe JA, Barron LT, Rosenbaum J, Ronemus M, Iossifov I, Schatz MC, Lyon GJ. Reducing INDEL calling errors in whole genome and exome sequencing data. Genome Med. 2014;6(10):89. https://doi.org/10.1186/s13073-014-0089-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Faulkner RD, Seedhouse CH, Das-Gupta EP, Russell NH. BAT-25 and BAT-26, two mononucleotide microsatellites, are not sensitive markers of microsatellite instability in acute myeloid leukaemia. Br J Haematol. 2004;124(2):160–5.

    Article  CAS  Google Scholar 

  25. Findeisen P, Kloor M, Merx S, Sutter C, Woerner SM, Dostmann N, Benner A, Dondog B, Pawlita M, Dippold W, Wagner R, Gebert J, von Knebel DM. T25 repeat in the 3′ untranslated region of the CASP2 gene: a sensitive and specific marker for microsatellite instability in colorectal cancer. Cancer Res. 2005;65(18):8072–8. https://doi.org/10.1158/0008-5472.CAN-04-4146.

    Article  CAS  PubMed  Google Scholar 

  26. Foltz SM, Liang WW, Xie M, Ding L. MIRMMR: binary classification of microsatellite instability using methylation and mutations. Bioinformatics. 2017;33(23):3799–801. https://doi.org/10.1093/bioinformatics/btx507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fujimoto A, Fujita M, Hasegawa T, Wong JH, Maejima K, Oku-Sasaki A, Nakano K, Shiraishi Y, Miyano S, Yamamoto G, Akagi K, Imoto S, Nakagawa H. Comprehensive analysis of indels in whole-genome microsatellite regions and microsatellite instability across 21 cancer types. Genome Res. 2020; https://doi.org/10.1101/gr.255026.119.

  28. Gallon R, Muhlegger B, Wenzel SS, Sheth H, Hayes C, Aretz S, Dahan K, Foulkes W, Kratz CP, Ripperger T, Azizi AA, Baris Feldman H, Chong AL, Demirsoy U, Florkin B, Imschweiler T, Januszkiewicz-Lewandowska D, Lobitz S, Nathrath M, Pander HJ, Perez-Alonso V, Perne C, Ragab I, Rosenbaum T, Rueda D, Seidel MG, Suerink M, Taeubner J, Zimmermann SY, Zschocke J, Borthwick GM, Burn J, Jackson MS, Santibanez-Koref M, Wimmer K. A sensitive and scalable microsatellite instability assay to diagnose constitutional mismatch repair deficiency by sequencing of peripheral blood leukocytes. Hum Mutat. 2019;40(5):649–55. https://doi.org/10.1002/humu.23721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gallon R, Sheth H, Hayes C, Redford L, Alhilal G, O'Brien O, Spiewak H, Waltham A, McAnulty C, Izuogu OG, Arends MJ, Oniscu A, Alonso AM, Laguna SM, Borthwick GM, Santibanez-Koref M, Jackson MS, Burn J. Sequencing-based microsatellite instability testing using as few as six markers for high-throughput clinical diagnostics. Hum Mutat. 2020;41(1):332–41. https://doi.org/10.1002/humu.23906.

    Article  CAS  PubMed  Google Scholar 

  30. Gan C, Love C, Beshay V, Macrae F, Fox S, Waring P, Taylor G. Applicability of next generation sequencing technology in microsatellite instability testing. Genes. 2015;6(1):46–59. https://doi.org/10.3390/genes6010046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Georgiadis A, Durham JN, Keefer LA, Bartlett BR, Zielonka M, Murphy D, White JR, Lu S, Verner EL, Ruan F, Riley D, Anders RA, Gedvilaite E, Angiuoli S, Jones S, Velculescu VE, Le DT, Diaz LA Jr, Sausen M. Noninvasive detection of microsatellite instability and high tumor mutation burden in cancer patients treated with PD-1 blockade. Clin Cancer Res. 2019;25(23):7024–34. https://doi.org/10.1158/1078-0432.CCR-19-1372.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Giardiello FM, Allen JI, Axilbund JE, Boland CR, Burke CA, Burt RW, Church JM, Dominitz JA, Johnson DA, Kaltenbach T, Levin TR, Lieberman DA, Robertson DJ, Syngal S, Rex DK. Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the US Multi-society Task Force on colorectal cancer. Am J Gastroenterol. 2014;109(8):1159–79. https://doi.org/10.1038/ajg.2014.186.

    Article  PubMed  Google Scholar 

  33. Goel A, Nagasaka T, Hamelin R, Boland CR. An optimized pentaplex PCR for detecting DNA mismatch repair-deficient colorectal cancers. PLoS One. 2010;5(2):e9393. https://doi.org/10.1371/journal.pone.0009393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gonzalez-Garcia I, Moreno V, Navarro M, Marti-Rague J, Marcuello E, Benasco C, Campos O, Capella G, Peinado MA. Standardized approach for microsatellite instability detection in colorectal carcinomas. J Natl Cancer Inst. 2000;92(7):544–9.

    Article  CAS  Google Scholar 

  35. Hampel H, Frankel W, Panescu J, Lockman J, Sotamaa K, Fix D, Comeras I, La Jeunesse J, Nakagawa H, Westman JA, Prior TW, Clendenning M, Penzone P, Lombardi J, Dunn P, Cohn DE, Copeland L, Eaton L, Fowler J, Lewandowski G, Vaccarello L, Bell J, Reid G, de la Chapelle A. Screening for Lynch syndrome (hereditary nonpolyposis colorectal cancer) among endometrial cancer patients. Cancer Res. 2006;66(15):7810–7. https://doi.org/10.1158/0008-5472.CAN-06-1114.

    Article  CAS  PubMed  Google Scholar 

  36. Hampel H, Pearlman R, Beightol M, Zhao W, Jones D, Frankel WL, Goodfellow PJ, Yilmaz A, Miller K, Bacher J, Jacobson A, Paskett E, Shields PG, Goldberg RM, de la Chapelle A, Shirts BH, Pritchard CC. Assessment of tumor sequencing as a replacement for lynch syndrome screening and current molecular tests for patients with colorectal cancer. JAMA Oncol. 2018;4(6):806–13. https://doi.org/10.1001/jamaoncol.2018.0104.

    Article  PubMed  Google Scholar 

  37. Hatch SB, Lightfoot HM Jr, Garwacki CP, Moore DT, Calvo BF, Woosley JT, Sciarrotta J, Funkhouser WK, Farber RA. Microsatellite instability testing in colorectal carcinoma: choice of markers affects sensitivity of detection of mismatch repair-deficient tumors. Clin Can Res. 2005;11(6):2180–7. https://doi.org/10.1158/1078-0432.CCR-04-0234.

    Article  CAS  Google Scholar 

  38. Hause RJ, Pritchard CC, Shendure J, Salipante SJ. Classification and characterization of microsatellite instability across 18 cancer types. Nat Med. 2016;22(11):1342–50. https://doi.org/10.1038/nm.4191.

    Article  CAS  PubMed  Google Scholar 

  39. Hempelmann JA, Lockwood CM, Konnick EQ, Schweizer MT, Antonarakis ES, Lotan TL, Montgomery B, Nelson PS, Klemfuss N, Salipante SJ, Pritchard CC. Microsatellite instability in prostate cancer by PCR or next-generation sequencing. J Immunother Cancer. 2018;6(1):29. https://doi.org/10.1186/s40425-018-0341-y.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hempelmann JA, Scroggins SM, Pritchard CC, Salipante SJ. MSIplus for integrated colorectal cancer molecular testing by next-generation sequencing. J Mol Diagn. 2015;17(6):705–14. https://doi.org/10.1016/j.jmoldx.2015.05.008.

    Article  CAS  PubMed  Google Scholar 

  41. Hirotsu Y, Nagakubo Y, Amemiya K, Oyama T, Mochizuki H, Omata M. Microsatellite instability status is determined by targeted sequencing with MSIcall in 25 cancer types. Clin Chim Acta. 2020;502:207–13. https://doi.org/10.1016/j.cca.2019.11.002.

    Article  CAS  PubMed  Google Scholar 

  42. Hoang JM, Cottu PH, Thuille B, Salmon RJ, Thomas G, Hamelin R. BAT-26, an indicator of the replication error phenotype in colorectal cancers and cell lines. Cancer Res. 1997;57(2):300–3.

    CAS  PubMed  Google Scholar 

  43. How-Kit A, Daunay A, Buhard O, Meiller C, Sahbatou M, Collura A, Duval A, Deleuze JF. Major improvement in the detection of microsatellite instability in colorectal cancer using HSP110 T17 E-ice-COLD-PCR. Hum Mutat. 2018;39(3):441–53. https://doi.org/10.1002/humu.23379.

    Article  CAS  PubMed  Google Scholar 

  44. Huang MN, McPherson JR, Cutcutache I, Teh BT, Tan P, Rozen SG. MSIseq: software for assessing microsatellite instability from catalogs of somatic mutations. Sci Rep. 2015;5:13321. https://doi.org/10.1038/srep13321.

    Article  CAS  PubMed  Google Scholar 

  45. Ingham D, Diggle CP, Berry I, Bristow CA, Hayward BE, Rahman N, Markham AF, Sheridan EG, Bonthron DT, Carr IM. Simple detection of germline microsatellite instability for diagnosis of constitutional mismatch repair cancer syndrome. Hum Mutat. 2013;34(6):847–52. https://doi.org/10.1002/humu.22311.

    Article  CAS  PubMed  Google Scholar 

  46. Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature. 1993;363(6429):558–61. https://doi.org/10.1038/363558a0.

    Article  CAS  PubMed  Google Scholar 

  47. Ivady G, Madar L, Dzsudzsak E, Koczok K, Kappelmayer J, Krulisova V, Macek M Jr, Horvath A, Balogh I. Analytical parameters and validation of homopolymer detection in a pyrosequencing-based next generation sequencing system. BMC Genomics. 2018;19(1):158. https://doi.org/10.1186/s12864-018-4544-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jia P, Yang X, Guo L, Liu B, Lin J, Liang H, Sun J, Zhang C, Ye K. MSIsensor-pro: fast, accurate, and matched-normal-sample-free detection of microsatellite instability. Genomics Proteomics Bioinformatics. 2020; https://doi.org/10.1016/j.gpb.2020.02.001.

  49. Johansen AFB, Kassentoft CG, Knudsen M, Laursen MB, Madsen AH, Iversen LH, Sunesen KG, Rasmussen MH, Andersen CL. Validation of computational determination of microsatellite status using whole exome sequencing data from colorectal cancer patients. BMC Cancer. 2019;19(1):971. https://doi.org/10.1186/s12885-019-6227-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kautto EA, Bonneville R, Miya J, Yu L, Krook MA, Reeser JW, Roychowdhury S. Performance evaluation for rapid detection of pan-cancer microsatellite instability with MANTIS. Oncotarget. 2017;8(5):7452–63. https://doi.org/10.18632/oncotarget.13918.

    Article  PubMed  Google Scholar 

  51. Kawakami H, Zaanan A, Sinicrope FA. Microsatellite instability testing and its role in the management of colorectal cancer. Curr Treat Options in Oncol. 2015;16(7):30. https://doi.org/10.1007/s11864-015-0348-2.

    Article  Google Scholar 

  52. Kim TM, Laird PW, Park PJ. The landscape of microsatellite instability in colorectal and endometrial cancer genomes. Cell. 2013;155(4):858–68. https://doi.org/10.1016/j.cell.2013.10.015.

    Article  CAS  PubMed  Google Scholar 

  53. Kinney N, Titus-Glover K, Wren JD, Varghese RT, Michalak P, Liao H, Anandakrishnan R, Pulenthiran A, Kang L, Garner HR. CAGm: a repository of germline microsatellite variations in the 1000 genomes project. Nucleic Acids Res. 2019;47(D1):D39–45. https://doi.org/10.1093/nar/gky969.

    Article  CAS  PubMed  Google Scholar 

  54. Ladas I, Yu F, Leong KW, Fitarelli-Kiehl M, Song C, Ashtaputre R, Kulke M, Mamon H, Makrigiorgos GM. Enhanced detection of microsatellite instability using pre-PCR elimination of wild-type DNA homo-polymers in tissue and liquid biopsies. Nucleic Acids Res. 2018; https://doi.org/10.1093/nar/gky251.

  55. Laghi L, Bianchi P, Malesci A. Differences and evolution of the methods for the assessment of microsatellite instability. Oncogene. 2008;27(49):6313–21. https://doi.org/10.1038/onc.2008.217.

    Article  CAS  PubMed  Google Scholar 

  56. Laghi L, Bianchi P, Roncalli M, Malesci A. Re: revised Bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst. 2004;96(18):1402–3; author reply 1403–1404. https://doi.org/10.1093/jnci/djh280.

    Article  PubMed  Google Scholar 

  57. Laiho P, Launonen V, Lahermo P, Esteller M, Guo M, Herman JG, Mecklin JP, Jarvinen H, Sistonen P, Kim KM, Shibata D, Houlston RS, Aaltonen LA. Low-level microsatellite instability in most colorectal carcinomas. Cancer Res. 2002;62(4):1166–70.

    CAS  PubMed  Google Scholar 

  58. Latham A, Srinivasan P, Kemel Y, Shia J, Bandlamudi C, Mandelker D, Middha S, Hechtman J, Zehir A, Dubard-Gault M, Tran C, Stewart C, Sheehan M, Penson A, DeLair D, Yaeger R, Vijai J, Mukherjee S, Galle J, Dickson MA, Janjigian Y, O'Reilly EM, Segal N, Saltz LB, Reidy-Lagunes D, Varghese AM, Bajorin D, Carlo MI, Cadoo K, Walsh MF, Weiser M, Aguilar JG, Klimstra DS, Diaz LA Jr, Baselga J, Zhang L, Ladanyi M, Hyman DM, Solit DB, Robson ME, Taylor BS, Offit K, Berger MF, Stadler ZK. Microsatellite instability is associated with the presence of Lynch syndrome pan-cancer. J Clin Oncol. 2019;37(4):286–95. https://doi.org/10.1200/JCO.18.00283.

    Article  CAS  PubMed  Google Scholar 

  59. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, Lu S, Kemberling H, Wilt C, Luber BS, Wong F, Azad NS, Rucki AA, Laheru D, Donehower R, Zaheer A, Fisher GA, Crocenzi TS, Lee JJ, Greten TF, Duffy AG, Ciombor KK, Eyring AD, Lam BH, Joe A, Kang SP, Holdhoff M, Danilova L, Cope L, Meyer C, Zhou S, Goldberg RM, Armstrong DK, Bever KM, Fader AN, Taube J, Housseau F, Spetzler D, Xiao N, Pardoll DM, Papadopoulos N, Kinzler KW, Eshleman JR, Vogelstein B, Anders RA, Diaz LA Jr. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357(6349):409–13. https://doi.org/10.1126/science.aan6733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, Biedrzycki B, Donehower RC, Zaheer A, Fisher GA, Crocenzi TS, Lee JJ, Duffy SM, Goldberg RM, de la Chapelle A, Koshiji M, Bhaijee F, Huebner T, Hruban RH, Wood LD, Cuka N, Pardoll DM, Papadopoulos N, Kinzler KW, Zhou S, Cornish TC, Taube JM, Anders RA, Eshleman JR, Vogelstein B, Diaz LA Jr. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20. https://doi.org/10.1056/NEJMoa1500596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Louveau B, Tost J, Mauger F, Sadoux A, Podgorniak MP, How-Kit A, Pages C, Roux J, Da Meda L, Lebbe C, Mourah S. Clinical value of early detection of circulating tumour DNA-BRAF(V600mut) in patients with metastatic melanoma treated with a BRAF inhibitor. ESMO Open. 2017;2(2):e000173. https://doi.org/10.1136/esmoopen-2017-000173.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lu Y, Soong TD, Elemento O. A novel approach for characterizing microsatellite instability in cancer cells. PLoS One. 2013;8(5):e63056. https://doi.org/10.1371/journal.pone.0063056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lynch HT, de la Chapelle A. Hereditary colorectal cancer. N Engl J Med. 2003;348(10):919–32. https://doi.org/10.1056/NEJMra012242.

    Article  CAS  PubMed  Google Scholar 

  64. Mandal R, Samstein RM, Lee KW, Havel JJ, Wang H, Krishna C, Sabio EY, Makarov V, Kuo F, Blecua P, Ramaswamy AT, Durham JN, Bartlett B, Ma X, Srivastava R, Middha S, Zehir A, Hechtman JF, Morris LG, Weinhold N, Riaz N, Le DT, Diaz LA Jr, Chan TA. Genetic diversity of tumors with mismatch repair deficiency influences anti-PD-1 immunotherapy response. Science. 2019;364(6439):485–91. https://doi.org/10.1126/science.aau0447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Marcus L, Lemery SJ, Keegan P, Pazdur R. FDA approval summary: Pembrolizumab for the treatment of microsatellite instability-high solid tumors. Clin Cancer Res. 2019;25(13):3753–8. https://doi.org/10.1158/1078-0432.CCR-18-4070.

    Article  CAS  PubMed  Google Scholar 

  66. Middha S, Zhang L, Nafa K, Jayakumaran G, Wong D, Kim HR, Sadowska J, Berger MF, Delair DF, Shia J, Stadler Z, Klimstra DS, Ladanyi M, Zehir A, Hechtman JF. Reliable pan-cancer microsatellite instability assessment by using targeted next-generation sequencing data. JCO Precis Oncol. 2017, 2017; https://doi.org/10.1200/PO.17.00084.

  67. Murphy KM, Zhang S, Geiger T, Hafez MJ, Bacher J, Berg KD, Eshleman JR. Comparison of the microsatellite instability analysis system and the Bethesda panel for the determination of microsatellite instability in colorectal cancers. J Mol Diagn. 2006;8(3):305–11. https://doi.org/10.2353/jmoldx.2006.050092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nawroz H, Koch W, Anker P, Stroun M, Sidransky D. Microsatellite alterations in serum DNA of head and neck cancer patients. Nat Med. 1996;2(9):1035–7. https://doi.org/10.1038/nm0996-1035.

    Article  CAS  PubMed  Google Scholar 

  69. Niu B, Ye K, Zhang Q, Lu C, Xie M, McLellan MD, Wendl MC, Ding L. MSIsensor: microsatellite instability detection using paired tumor-normal sequence data. Bioinformatics. 2014;30(7):1015–6. https://doi.org/10.1093/bioinformatics/btt755.

    Article  CAS  PubMed  Google Scholar 

  70. Nowak JA, Yurgelun MB, Bruce JL, Rojas-Rudilla V, Hall DL, Shivdasani P, Garcia EP, Agoston AT, Srivastava A, Ogino S, Kuo FC, Lindeman NI, Dong F. Detection of mismatch repair deficiency and microsatellite instability in colorectal adenocarcinoma by targeted next-generation sequencing. J Mol Diagn. 2017;19(1):84–91. https://doi.org/10.1016/j.jmoldx.2016.07.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Overman MJ, Lonardi S, Wong KYM, Lenz HJ, Gelsomino F, Aglietta M, Morse MA, Van Cutsem E, McDermott R, Hill A, Sawyer MB, Hendlisz A, Neyns B, Svrcek M, Moss RA, Ledeine JM, Cao ZA, Kamble S, Kopetz S, Andre T. Durable clinical benefit with nivolumab plus Ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol. 2018;36(8):773–9. https://doi.org/10.1200/JCO.2017.76.9901.

    Article  CAS  PubMed  Google Scholar 

  72. Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA, Desai J, Hill A, Axelson M, Moss RA, Goldberg MV, Cao ZA, Ledeine JM, Maglinte GA, Kopetz S, Andre T. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017;18(9):1182–91. https://doi.org/10.1016/S1470-2045(17)30422-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pagin A, Zerimech F, Leclerc J, Wacrenier A, Lejeune S, Descarpentries C, Escande F, Porchet N, Buisine MP. Evaluation of a new panel of six mononucleotide repeat markers for the detection of DNA mismatch repair-deficient tumours. Br J Cancer. 2013;108(10):2079–87. https://doi.org/10.1038/bjc.2013.213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Perucho M. Correspondence re: C.R. Boland et al., A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 58: 5248–5257, 1998. Cancer Res. 1999;59(1):249–56.

    CAS  PubMed  Google Scholar 

  75. Petrackova A, Vasinek M, Sedlarikova L, Dyskova T, Schneiderova P, Novosad T, Papajik T, Kriegova E. Standardization of sequencing coverage depth in NGS: recommendation for detection of clonal and subclonal mutations in cancer diagnostics. Front Oncol. 2019;9:851. https://doi.org/10.3389/fonc.2019.00851.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Phipps AI, Limburg PJ, Baron JA, Burnett-Hartman AN, Weisenberger DJ, Laird PW, Sinicrope FA, Rosty C, Buchanan DD, Potter JD, Newcomb PA. Association between molecular subtypes of colorectal cancer and patient survival. Gastroenterology. 2015;148(1):77–87 e72. https://doi.org/10.1053/j.gastro.2014.09.038.

    Article  CAS  PubMed  Google Scholar 

  77. Pritchard CC, Morrissey C, Kumar A, Zhang X, Smith C, Coleman I, Salipante SJ, Milbank J, Yu M, Grady WM, Tait JF, Corey E, Vessella RL, Walsh T, Shendure J, Nelson PS. Complex MSH2 and MSH6 mutations in hypermutated microsatellite unstable advanced prostate cancer. Nat Commun. 2014;5:4988. https://doi.org/10.1038/ncomms5988.

    Article  CAS  PubMed  Google Scholar 

  78. Redford L, Alhilal G, Needham S, O'Brien O, Coaker J, Tyson J, Amorim LM, Middleton I, Izuogu O, Arends M, Oniscu A, Alonso AM, Laguna SM, Gallon R, Sheth H, Santibanez-Koref M, Jackson MS, Burn J. A novel panel of short mononucleotide repeats linked to informative polymorphisms enabling effective high volume low cost discrimination between mismatch repair deficient and proficient tumours. PLoS One. 2018;13(8):e0203052. https://doi.org/10.1371/journal.pone.0203052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Salipante SJ, Scroggins SM, Hampel HL, Turner EH, Pritchard CC. Microsatellite instability detection by next generation sequencing. Clin Chem. 2014;60(9):1192–9. https://doi.org/10.1373/clinchem.2014.223677.

    Article  CAS  PubMed  Google Scholar 

  80. Schwarzenbach H, Hoon DS, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer. 2011;11(6):426–37. https://doi.org/10.1038/nrc3066.

    Article  CAS  PubMed  Google Scholar 

  81. Seo HM, Chang YS, Joo SH, Kim YW, Park YK, Hong SW, Lee SH. Clinicopathologic characteristics and outcomes of gastric cancers with the MSI-H phenotype. J Surg Oncol. 2009;99(3):143–7. https://doi.org/10.1002/jso.21220.

    Article  PubMed  Google Scholar 

  82. Stoffel EM, Mangu PB, Limburg PJ. Hereditary colorectal cancer syndromes: American Society of Clinical Oncology clinical practice guideline endorsement of the familial risk-colorectal cancer: European Society for Medical Oncology clinical practice guidelines. J Oncol Pract. 2015;11(3):e437–41. https://doi.org/10.1200/JOP.2015.003665.

    Article  PubMed  Google Scholar 

  83. Tae H, Kim DY, McCormick J, Settlage RE, Garner HR. Discretized Gaussian mixture for genotyping of microsatellite loci containing homopolymer runs. Bioinformatics. 2014;30(5):652–9. https://doi.org/10.1093/bioinformatics/btt595.

    Article  CAS  PubMed  Google Scholar 

  84. Thibodeau SN, Bren G, Schaid D. Microsatellite instability in cancer of the proximal colon. Science. 1993;260(5109):816–9.

    Article  CAS  Google Scholar 

  85. Thibodeau SN, French AJ, Cunningham JM, Tester D, Burgart LJ, Roche PC, McDonnell SK, Schaid DJ, Vockley CW, Michels VV, Farr GH Jr, O'Connell MJ. Microsatellite instability in colorectal cancer: different mutator phenotypes and the principal involvement of hMLH1. Cancer Res. 1998;58(8):1713–8.

    CAS  PubMed  Google Scholar 

  86. Umar A, Boland CR, Terdiman JP, Syngal S, de la Chapelle A, Ruschoff J, Fishel R, Lindor NM, Burgart LJ, Hamelin R, Hamilton SR, Hiatt RA, Jass J, Lindblom A, Lynch HT, Peltomaki P, Ramsey SD, Rodriguez-Bigas MA, Vasen HF, Hawk ET, Barrett JC, Freedman AN, Srivastava S. Revised Bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst. 2004;96(4):261–8.

    Article  CAS  Google Scholar 

  87. Vanderwalde A, Spetzler D, Xiao N, Gatalica Z, Marshall J. Microsatellite instability status determined by next-generation sequencing and compared with PD-L1 and tumor mutational burden in 11,348 patients. Cancer Med. 2018;7(3):746–56. https://doi.org/10.1002/cam4.1372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Waalkes A, Smith N, Penewit K, Hempelmann J, Konnick EQ, Hause RJ, Pritchard CC, Salipante SJ. Accurate pan-cancer molecular diagnosis of microsatellite instability by single-molecule molecular inversion probe capture and high-throughput sequencing. Clin Chem. 2018;64(6):950–8. https://doi.org/10.1373/clinchem.2017.285981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang C, Liang C. MSIpred: a python package for tumor microsatellite instability classification from tumor mutation annotation data using a support vector machine. Sci Rep. 2018;8(1):17546. https://doi.org/10.1038/s41598-018-35682-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang L, Ajani JA. Ushering in liquid biopsy for the microsatellite status: advantages and caveats. Clin Cancer Res. 2019;25(23):6887–9. https://doi.org/10.1158/1078-0432.CCR-19-2585.

    Article  CAS  PubMed  Google Scholar 

  91. Willis J, Lefterova MI, Artyomenko A, Kasi PM, Nakamura Y, Mody K, Catenacci DVT, Fakih M, Barbacioru C, Zhao J, Sikora M, Fairclough SR, Lee H, Kim KM, Kim ST, Kim J, Gavino D, Benavides M, Peled N, Nguyen T, Cusnir M, Eskander RN, Azzi G, Yoshino T, Banks KC, Raymond VM, Lanman RB, Chudova DI, Talasaz A, Kopetz S, Lee J, Odegaard JI. Validation of microsatellite instability detection using a comprehensive plasma-based genotyping panel. Clin Can Res. 2019;25(23):7035–45. https://doi.org/10.1158/1078-0432.CCR-19-1324.

    Article  CAS  Google Scholar 

  92. Wimmer K, Etzler J. Constitutional mismatch repair-deficiency syndrome: have we so far seen only the tip of an iceberg? Hum Genet. 2008;124(2):105–22. https://doi.org/10.1007/s00439-008-0542-4.

    Article  PubMed  Google Scholar 

  93. Wimmer K, Kratz CP, Vasen HF, Caron O, Colas C, Entz-Werle N, Gerdes AM, Goldberg Y, Ilencikova D, Muleris M, Duval A, Lavoine N, Ruiz-Ponte C, Slavc I, Burkhardt B, Brugieres L. Diagnostic criteria for constitutional mismatch repair deficiency syndrome: suggestions of the European consortium 'care for CMMRD' (C4CMMRD). J Med Genet. 2014;51(6):355–65. https://doi.org/10.1136/jmedgenet-2014-102284.

    Article  CAS  PubMed  Google Scholar 

  94. Yamamoto H, Imai K. An updated review of microsatellite instability in the era of next-generation sequencing and precision medicine. Semin Oncol. 2019;46(3):261–70. https://doi.org/10.1053/j.seminoncol.2019.08.003.

    Article  PubMed  Google Scholar 

  95. Zavodna M, Bagshaw A, Brauning R, Gemmell NJ. The accuracy, feasibility and challenges of sequencing short tandem repeats using next-generation sequencing platforms. PLoS One. 2014;9(12):e113862. https://doi.org/10.1371/journal.pone.0113862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zeinalian M, Hashemzadeh-Chaleshtori M, Salehi R, Emami MH. Clinical aspects of microsatellite instability testing in colorectal cancer. Adv Biomed Res. 2018;7:28. https://doi.org/10.4103/abr.abr_185_16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhu L, Huang Y, Fang X, Liu C, Deng W, Zhong C, Xu J, Xu D, Yuan Y. A novel and reliable method to detect microsatellite instability in colorectal cancer by next-generation sequencing. J Mol Diagn. 2018;20(2):225–31. https://doi.org/10.1016/j.jmoldx.2017.11.007.

    Article  CAS  PubMed  Google Scholar 

  98. Zighelboim I, Goodfellow PJ, Gao F, Gibb RK, Powell MA, Rader JS, Mutch DG. Microsatellite instability and epigenetic inactivation of MLH1 and outcome of patients with endometrial carcinomas of the endometrioid type. J Clin Oncol. 2007;25(15):2042–8. https://doi.org/10.1200/JCO.2006.08.2107.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre How-Kit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Renault, V., Tubacher, E., How-Kit, A. (2022). Assessment of Microsatellite Instability from Next-Generation Sequencing Data. In: Laganà, A. (eds) Computational Methods for Precision Oncology. Advances in Experimental Medicine and Biology, vol 1361. Springer, Cham. https://doi.org/10.1007/978-3-030-91836-1_5

Download citation

Publish with us

Policies and ethics