Skip to main content

Heuristics for Cycle Packing of Adjacency Graphs for Genomes with Repeated Genes

  • Conference paper
  • First Online:
Book cover Advances in Bioinformatics and Computational Biology (BSB 2021)

Abstract

The Adjacency Graph is a structure used to model genomes in several rearrangement distance problems. In particular, most studies use properties of a maximum cycle packing of this graph to develop bounds and algorithms for rearrangement distance problems, such as the reversal distance and the Double Cut and Join (DCJ) distance. When each genome has no repeated genes, there exists only one cycle packing for the graph. However, when each genome may have repeated genes, the problem of finding a maximum cycle packing for the adjacency graph (Adjacency Graph Packing) is NP-hard. In this work, we developed a greedy random heuristic and a genetic algorithm heuristic for the Adjacency Graph Packing problem for genomes with repeated genes. We present experimental results and compare these heuristics with the SOAR framework. Furthermore, we show how the solutions from our algorithms can improve the estimation for the reversal distance when compared to the SOAR framework. Lastly, we applied our genetic algorithm heuristic in real genomic data to validate its practical use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Illustration created using treeio R package [14].

References

  1. Bafna, V., Pevzner, P.A.: Genome rearrangements and sorting by reversals. SIAM J. Comput. 25(2), 272–289 (1996)

    Article  Google Scholar 

  2. Bergeron, A., Mixtacki, J., Stoye, J.: A unifying view of genome rearrangements. In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS, vol. 4175, pp. 163–173. Springer, Heidelberg (2006). https://doi.org/10.1007/11851561_16

    Chapter  Google Scholar 

  3. Chen, X., et al.: Assignment of orthologous genes via genome rearrangement. IEEE/ACM Trans. Comput. Biol. Bioinf. 2(4), 302–315 (2005)

    Article  CAS  Google Scholar 

  4. Christie, D.A.: Genome Rearrangement Problems. Ph.D. thesis, Department of Computing Science, University of Glasgow (1998)

    Google Scholar 

  5. De Vienne, D.M., Giraud, T., Martin, O.C.: A congruence index for testing topological similarity between trees. Bioinformatics 23(23), 3119–3124 (2007)

    Article  Google Scholar 

  6. Garczarek, L., et al.: Cyanorak v2. 1: a scalable information system dedicated to the visualization and expert curation of marine and brackish picocyanobacteria genomes. Nucleic Acids Res. 1 (2020)

    Google Scholar 

  7. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals. J. ACM 46(1), 1–27 (1999)

    Article  Google Scholar 

  8. Kahn, C., Raphael, B.: Analysis of segmental duplications via duplication distance. Bioinformatics 24(16), i133–i138 (2008)

    Article  Google Scholar 

  9. Makarenkov, V., Leclerc, B.: Circular orders of tree metrics, and their uses for the reconstruction and fitting of phylogenetic trees. In: DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pp. 183–208. American Mathematical Society (1997)

    Google Scholar 

  10. Mitchell, M.: Introduction to Genetic Algorithms. Springer, Berlin Heidelberg, Cambridge, MA, USA (2008)

    Google Scholar 

  11. Pinheiro, P.O., Alexandrino, A.O., Oliveira, A.R., de Souza, C.C., Dias, Z.: Heuristics for breakpoint graph decomposition with applications in genome rearrangement problems. In: BSB 2020. LNCS, vol. 12558, pp. 129–140. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65775-8_12

    Chapter  Google Scholar 

  12. Radcliffe, A.J., Scott, A.D., Wilmer, E.L.: Reversals and transpositions over finite alphabets. SIAM J. Discrete Math. 19(1), 224–244 (2005)

    Article  Google Scholar 

  13. Shao, M., Lin, Y., Moret, B.M.: An exact algorithm to compute the double-cut-and-join distance for genomes with duplicate genes. J. Comput. Biol. 22(5), 425–435 (2015)

    Article  CAS  Google Scholar 

  14. Wang, L.G., et al.: Treeio: an R package for phylogenetic tree input and output with richly annotated and associated data. Mol. Biol. Evol. 37(2), 599–603 (2020)

    Article  CAS  Google Scholar 

  15. Willing, E., Stoye, J., Braga, M.D.: Computing the inversion-indel distance. IEEE/ACM Trans. Comput. Biol. Bioinf. (2020)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Council of Technological and Scientific Development, CNPq (grant 425340/2016-3), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, and the São Paulo Research Foundation, FAPESP (grants 2013/08293-7, 2015/11937-9, 2017/12646-3, and 2019/27331-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Siqueira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Siqueira, G., Oliveira, A.R., Alexandrino, A.O., Dias, Z. (2021). Heuristics for Cycle Packing of Adjacency Graphs for Genomes with Repeated Genes. In: Stadler, P.F., Walter, M.E.M.T., Hernandez-Rosales, M., Brigido, M.M. (eds) Advances in Bioinformatics and Computational Biology. BSB 2021. Lecture Notes in Computer Science(), vol 13063. Springer, Cham. https://doi.org/10.1007/978-3-030-91814-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91814-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91813-2

  • Online ISBN: 978-3-030-91814-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics