Skip to main content

Understanding Machine Learning

  • Chapter
  • First Online:
Machine Learning for Cyber Agents

Abstract

Machine Learning is an emerging field of the Artificial Intelligence and data science. It is yet to be conceptualised and operationalised to be fully understood in its complexity and entirety. This chapter will consider it in a more detailed way through providing definitions to its constituting elements and analysing the learning process itself, and will review the accompanying factors around it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Philosophy of Engineering, Volume 1 of the proceedings of a series of seminars, The Royal Academy of Engineering, 2010.

  2. 2.

    2018 UNDIR Report “The Weaponization of Increasingly Autonomous Technologies: Artificial Intelligence”, as adapted from Shane Legg and Marcus Hutter, “A Collection of Definitions of Intelligence”, Technical Report IDSIA-07–07, 15 June 2007, p. 9, last accessed on 16 March 2019 at http://www.unidir.ch/files/publications/pdfs/the-weaponization-of-increasingly-autonomous-technologies-artificial-intelligence-en-700.pdf.

  3. 3.

    John McCarthy, What is Artificial Intelligence? 24 November 2004, p. 2, http://jmc.stanford.edu/articles/whatisai/whatisai.pdf.

  4. 4.

    Richmond Thomason. Logic and artificial intelligence. In Edward N. Zalta, editor, The Stanford Encyclopedia of Philosophy. 2003. http://plato.stanford.edu/entries/logic-ai/.

  5. 5.

    Artificial Intelligence (AI), last accessed 2021-09-01, https://www.ibm.com/cloud/learn/what-is-artificial-intelligence.

  6. 6.

    OECD AI policy Observatory, https://www.oecd.ai/.

  7. 7.

    Daniel S. Hoadley, updated by Kelley M. Sayler, “Artificial Intelligence and National Security”, 10 November 2020, Congressional Research Service Report, United States, pp. 1–2, https://fas.org/sgp/crs/natsec/R45178.pdf.

  8. 8.

    Regulation of the European Parliament and of the Council Laying Down Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act) and amending certain Union Legislative Acts, Brussels, 21.4.2021, at https://eur-lex.europa.eu/resource.html?uri=cellar:e0649735-a372-11eb-9585-01aa75ed71a1.0001.02/DOC_1&format=PDF.

  9. 9.

    Annex 1 to Regulation of the European Parliament and of the Council Laying Down Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act) and amending certain Union Legislative Acts, Brussels, 21.4.2021, at https://eur-lex.europa.eu/resource.html?uri=cellar:e0649735-a372-11eb-9585-01aa75ed71a1.0001.02/DOC_1&format=PDF.

  10. 10.

    Regulation of the European Parliament and of the Council Laying Down Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act) and amending certain Union Legislative Acts, Brussels, 21.4.2021, at https://eur-lex.europa.eu/resource.html?uri=cellar:e0649735-a372-11eb-9585-01aa75ed71a1.0001.02/DOC_1&format=PDF.

  11. 11.

    Report on artificial intelligence: questions of interpretation and application of international law in so far as the EU is affected in the areas of civil and military uses and of state authority outside the scope of criminal justice (2020/2013(INI)). Committee on Legal Affairs Rapporteur: Gilles Lebreton, 4.1.2021, p. 6, https://www.europarl.europa.eu/doceo/document/A-9-2021-0001_EN.pdf.

  12. 12.

    UNESCO AI ethical regulations https://unesdoc.unesco.org/ark:/48223/pf0000374266/PDF/374266eng.pdf.multi.

  13. 13.

    Poole et al. [2].

  14. 14.

    Kurzweil [3].

  15. 15.

    V. C. Muller, N. Bostrom Future Progress in Artificial Intelligence: A Survey of Expert Opinion, 2013, at https://nickbostrom.com/papers/survey.pdf.

  16. 16.

    K. Grace et al., When will AI exceed human performance? Evidence from AI experts, 3 May 2018, https://arxiv.org/abs/1705.08807.

  17. 17.

    John Launchbury, A DARPA Perspective on Artificial Intelligence, https://www.darpa.mil/attachments/AIFull.pdf.

  18. 18.

    Cyber Grand Challenge (CGC) (Archived), last accessed 2021-09-02, https://www.darpa.mil/program/cyber-grand-challenge.

  19. 19.

    Oscar Schwartz, 2016, Microsoft’s Racist Chatbot Revealed the Dangers of Online Conversation, 25 November 2019, IEEE Spectrum, https://spectrum.ieee.org/tech-talk/artificial-intelligence/machine-learning/in-2016-microsofts-racist-chatbot-revealed-the-dangers-of-online-conversation.

  20. 20.

    John Launchbury, A DARPA Perspective on Artificial Intelligence, https://www.darpa.mil/attachments/AIFull.pdf.

  21. 21.

    A. M. Turing, I. Computing machinery and intelligence. Mind, Volume LIX, Issue 236, October 1950, p. 454 https://doi.org/10.1093/mind/LIX.236.433; Norbert Wiener, The Human Use of Human Beings, Da Capo Press, 1950.

  22. 22.

    IBM official web-site, The IBM 700 Series Computing Comes to Business, https://www.ibm.com/ibm/history/ibm100/us/en/icons/ibm700series/impacts/#:~:text=Playing%20checkers%20on%20the%20701,on%20an%20IBM%207094%20computer.

  23. 23.

    Samuel Arthur (1959). “Some Studies in Machine Learning Using the Game of Checkers”. IBM Journal of Research and Development. 3(3): 210–229. CiteSeerX 10.1.1.368.2254. https://doi.org/10.1147/rd.33.0210.

  24. 24.

    R. Kohavi and F. Provost, “Glossary of terms,” Machine Learning, vol. 30, no. 2–3, pp. 271–274, 1998.

  25. 25.

    Feigenbaum and Feldman [4].

  26. 26.

    Nilsson [5].

  27. 27.

    Duda and Hart [6].

  28. 28.

    S. Bozinovski “Teaching space: A representation concept for adaptive pattern classification” COINS Technical Report No. 81–28, Computer and Information Science Department, University of Massachusetts at Amherst, MA, 1981. https://web.cs.umass.edu/publication/docs/1981/UM-CS-1981-028.pdf.

  29. 29.

    Sarle Warren (1994). “Neural Networks and statistical models”. CiteSeerX 10.1.1.27.699.

  30. 30.

    Stuart and Peter [7], p. 488. ISBN 978-0137903955.

  31. 31.

    Langley Pat (2011). “The changing science of machine learning”. Machine Learning. 82(3): 275–279. https://doi.org/10.1007/s10994-011-5242-y.

  32. 32.

    Nilsson and Kaufman [8], Poole et al. [2].

  33. 33.

    Greg Allen, Understanding AI Technology: A concise, practical, and readable overview of Artificial Intelligence and Machine Learning technology designed for non-technical managers, officers, and executives, Joint Artificial Intelligence Center, April 2020, p. 8, https://www.ai.mil/docs/Understanding%20AI%20Technology.pdf.

  34. 34.

    John McCarthy, What is Artificial Intelligence? 24 November 2004, p. 12, http://jmc.stanford.edu/articles/whatisai/whatisai.pdf.

  35. 35.

    Yoshua Bengio, Yann Lecun, Geoffrey Hinton. “Turing lecture: Deep Learning for AI”, Communications of the ACM, July 2021, Vol. 64, No. 7, pp. 58–65, 10.1145/3448250 at https://cacm.acm.org/magazines/2021/7/253464-deep-learning-for-ai/fulltext.

  36. 36.

    International Aerial Robotics Competition, IARC, http://www.aerialroboticscompetition.org/.

  37. 37.

    The Grand Challenge, DARPA, https://www.darpa.mil/about-us/timeline/-grand-challenge-for-autonomous-vehicles.

  38. 38.

    Overview of FRGC, https://web.archive.org/web/20080410072057/http://face.nist.gov/frgc/.

  39. 39.

    The Pittsburgh Brain Activity Interpretation Competition, https://web.archive.org/web/20080310070925/http://www.ebc.pitt.edu/PBAIC.html.

  40. 40.

    2008 AMS Artificial Intelligence Competition, https://web.archive.org/web/20091113074224/http://www.nssl.noaa.gov/ai2008/.

  41. 41.

    British Computer Society Machine Intelligence Competition, http://www.bcs-sgai.org/micomp/intro.php.

  42. 42.

    What is Battlecode?, MIT Admissions, https://mitadmissions.org/help/faq/battle-code/.

  43. 43.

    Roborace, https://roborace.com/.

  44. 44.

    XPrize AI, https://www.xprize.org/prizes/artificial-intelligence.

  45. 45.

    Google Tensor debuts on the new Pixel 6 this fall, Google, 2 August 2021, https://blog.google/products/pixel/google-tensor-debuts-new-pixel-6-fall/.

  46. 46.

    Explainable Artificial Intelligence (XAI), DARPA, https://www.darpa.mil/program/explainable-artificial-intelligence.

  47. 47.

    Valiant [9], Chap. 7, NY 2013, e.

  48. 48.

    SAS, analytical agency, https://www.sas.com/en_gb/insights/analytics/machine-learning.html#:~:text=Machine%20learning%20is%20a%20method,decisions%20with%20minimal%20human%20intervention.

  49. 49.

    Machine Learning, SAS, https://www.sas.com/en_us/insights/analytics/machine-learning.html.

  50. 50.

    Mitchell [10], ISBN 0-07-042807-7. OCLC 36417892.

  51. 51.

    Machine learning, Investopedia, https://www.investopedia.com/terms/m/machine-learning.asp.

  52. 52.

    Machine learning, explained, Sloan School, MIT, https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained.

  53. 53.

    Machine learning, Coursera, https://www.coursera.org/learn/machine-learning.

  54. 54.

    Jacopo Bellasio, Erik Silfversten, “The Impact of New and Emerging Technologies on the Cyber Threat Landscape and Their Implications for NATO”, in Cyber Threats and NATO 2030: Horizon Scanning and Analysis’, ed. by A. Ertan, K. Floyd, P. Pernik, Tim Stevens, CCDCOE, NATO Cooperative Cyber Defence Centre of Excellence, King’s College London, Williams and Mary, 2020, p. 90 at https://ccdcoe.org/uploads/2020/12/Cyber-Threats-and-NATO-2030_Horizon-Scanning-and-Analysis.pdf.

  55. 55.

    Algorithm, Cambridge dictionary, https://dictionary.cambridge.org/dictionary/english/algorithm.

  56. 56.

    For more detail, see Das, K., & Behera, R. N. (2017). A survey on machine learning: concept, algorithms and applications. International Journal of Innovative Research in Computer and Communication Engineering, 5(2), 1301–1309.

  57. 57.

    Mitchell [10], p. 2. ISBN 978-0-07-042807-2.

  58. 58.

    John McCarthy, What is Artificial Intelligence? 24 November 2004, p. 7, http://jmc.stanford.edu/articles/whatisai/whatisai.pdf.

  59. 59.

    Hebb [11].

  60. 60.

    ibid.

  61. 61.

    Cangelosi and Fischer [12], https://www.researchgate.net/publication/283812826_Embodied_Intelligence.

  62. 62.

    Barbara Kenner et al., Artificial Intelligence and Early Detection of Pancreatic Cancer, Pancreas, Volume 50, Issue 3, March 2021, pp. 251–279, https://doi.org/10.1097/MPA.0000000000001762 (https://journals.lww.com/pancreasjournal/Fulltext/2021/03000/Artificial_Intelligence_and_Early_Detection_of.1.aspx).

  63. 63.

    Greg Allen, Understanding AI Technology: A concise, practical, and readable overview of Artificial Intelligence and Machine Learning technology designed for non-technical managers, officers, and executives, Joint Artificial Intelligence Center, April 2020, p. 3, https://www.ai.mil/docs/Understanding%20AI%20Technology.pdf.

  64. 64.

    Tensorflow, https://www.tensorflow.org/.

  65. 65.

    PyTorch, https://pytorch.org/.

  66. 66.

    Neural Network Libraries by Sony, https://nnabla.org.

  67. 67.

    Apache MXNet, library for deep learning, http://mxnet.incubator.apache.org/index.html.

  68. 68.

    Buskirk, T. D., Kirchner, A., Eck, A., & Signorino, C. S. (2018). An introduction to machine learning methods for survey researchers. Survey Practice, 11(1), 2718.

  69. 69.

    Alpaydin [13], pp. xix, 1–3, 13–18.

  70. 70.

    Facial recognition technology falsely identifies famous athletes, 21 October 2019, https://www.aclum.org/en/news/facial-recognition-technology-falsely-identifies-famous-athletes/#athletes.

  71. 71.

    2020 in Review, 10 AI Failures, https://syncedreview.com/2021/01/01/2020-in-review-10-ai-failures/.

  72. 72.

    A. M. Turing, I. Computing machinery and intelligence. Mind, Volume LIX, Issue 236, October 1950, p. 458. https://doi.org/10.1093/mind/LIX.236.433.

  73. 73.

    What is Artificial Intelligence, IBM, https://www.ibm.com/cloud/learn/what-is-artificial-intelligence.

  74. 74.

    Yoshua Bengio, Yann Lecun, Geoffrey Hinton, “Turing lecture: Deep Learning for AI”, Communications of the ACM, July 2021, Vol. 64 No. 7, pp. 58–65 10.1145/3448250 at https://cacm.acm.org/magazines/2021/7/253464-deep-learning-for-ai/fulltext.

  75. 75.

    Artur D’Avila Garcez, Luis C. Lamb, Neurosymbolic AI: The 3rd Wave, December 2020. p. 2–3 https://arxiv.org/pdf/2012.05876.pdf.

  76. 76.

    Asimov [14], p. 94.

  77. 77.

    U.S. Congress, Senate Subcommittee on Space, Science, and Competitiveness, Committee on Commerce, Science, and Transportation, Hearing on the Dawn of Artificial Intelligence, Statement of, 114th Congress, Second session, November 30, 2016, Annex, Letter of EPIC to the Congress, U.S. Government Publishing Office, Washington, 2017, p. 54, https://www.govinfo.gov/content/pkg/CHRG-114shrg24175/pdf/CHRG-114shrg24175.pdf.

  78. 78.

    EPIC—The Electronic Privacy Information Center.

  79. 79.

    Explainable Artificial Intelligence (XAI), DARPA, https://www.darpa.mil/program/explainable-artificial-intelligence.

  80. 80.

    Stacy Stanford, “The Best Public Datasets for Machine Learning and Data Science,” Medium.com, October 2, 2018, updated 7 August 2020, at https://medium.com/towards-artificial-intelligence/the-50-best-public-datasets-for-machine-learning-d80e9f030279; The 50 Best Free Datasets for Machine Learning, Lionbridge AI, https://lionbridge.ai/datasets/the-50-best-free-datasets-for-machine-learning/;Machine Learning and AI Datasets, Carnegie Mellon University, https://guides.library.cmu.edu/c.php?g=844845&p=6191907.

  81. 81.

    KDD Cup 1999 Data, http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

  82. 82.

    IDS 2017, University of New Brunswick, 2017, accessed on 27 March 2021, https://www.unb.ca/cic/datasets/ids-2017.html.

  83. 83.

    Datasets, University of Victoria, accessed on 14 June 2021, https://www.uvic.ca/engineering/ece/isot/datasets/.

  84. 84.

    Stanislav Abaimov, Towards a Privacy-preserving Deep Learning-based Network Intrusion Detection in Data Distribution Services, Technical report, 12 June 2021, https://arxiv.org/ftp/arxiv/papers/2106/2106.06765.pdf.

  85. 85.

    Note: by Stanislav Abaimov.

  86. 86.

    Sutton and Barto [15].

  87. 87.

    Cassie Kozyrkov, The simplest explanation of machine learning you’ll ever read, 15 October 2019, at https://www.linkedin.com/pulse/simplest-explanation-machine-learning-youll-ever-read-cassie-kozyrkov.

  88. 88.

    Stuart and Peter [16].

  89. 89.

    Vapnik [17].

  90. 90.

    Breiman, L. Random Forests. Machine Learning 45, 5–32 (2001). https://doi.org/10.1023/A:1010933404324.

  91. 91.

    Fix, Evelyn, and Joseph Lawson Hodges. “Discriminatory analysis. Nonparametric discrimination: Consistency properties.” International Statistical Review/Revue Internationale de Statistique 57, no. 3 (1989): 238–247.

  92. 92.

    Alpaydin [13].

  93. 93.

    Krizhevsky, A., Sutskever, I., and Hinton, G. ImageNet classification with deep convolutional neural networks. In Proceedings of NIPS’2012.

  94. 94.

    Stefan Seltz-Axmacher, The End of Starsky Robotics, 19 March 2020, https://medium.com/starsky-robotics-blog/the-end-of-starsky-robotics-acb8a6a8a5f5.

  95. 95.

    Goodfellow et al. [18], Deep Learning (Adaptive Computation and Machine Learning series). In Nature (Vol. 521, Issue 7553). https://doi.org/10.1038/nmeth.3707.

  96. 96.

    Goodfellow et al. [18], Deep Learning (Adaptive Computation and Machine Learning series). In Nature (Vol. 521, Issue 7553). https://doi.org/10.1038/nmeth.3707.

  97. 97.

    Jordan and Christopher [19].

  98. 98.

    A. M. Turing, I. Computing machinery and intelligence. Mind, Volume LIX, Issue 236, October 1950, p. 457, https://doi.org/10.1093/mind/LIX.236.433.

  99. 99.

    Sutton and Barto [15].

  100. 100.

    Lopez-Martin, M., Carro, B., & Sanchez-Esguevillas, A. (2020). Application of deep reinforcement learning to intrusion detection for supervised problems. Expert Systems with Applications, 141, 112,963. https://doi.org/10.1016/j.eswa.2019.112963.

  101. 101.

    Yang, T., Xiao, Y., Zhang, Z. et al. A soft artificial muscle driven robot with reinforcement learning. Sci Rep 8, 14,518 (2018). https://doi.org/10.1038/s41598-018-32757-9.

  102. 102.

    The cost will also depend on the data labelling. If the labelled data is used, it can be less expensive.

  103. 103.

    Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. Generative adversarial nets. In Advances in Neural Information Processing Systems, 2014, 2672–26,804.

  104. 104.

    Breiman, L. (1996). Bagging Predictors. Machine Learning, 24(2), 123–140. https://doi.org/10.1023/A:1018054314350.

  105. 105.

    Efron and Tibshirani [20].

  106. 106.

    Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5(2), 197–227. https://doi.org/10.1007/BF00116037.

  107. 107.

    Freund, Y. (1995). Boosting a Weak Learning Algorithm by Majority. Information and Computation, 121(2), 256–285. https://doi.org/10.1006/INCO.1995.1136.

  108. 108.

    Freund, Yoav, & Schapire, R. E. (1997). A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. Journal of Computer and System Sciences, 55(1), 119–139. https://doi.org/10.1006/JCSS.1997.1504.

  109. 109.

    Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2), 241–259. https://doi.org/10.1016/S0893-6080(05)80023-1.

  110. 110.

    Breiman, L. (1996). Stacked regressions. Machine Learning, 24(1), 49–64. https://doi.org/10.1007/BF00117832.

  111. 111.

    Chicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics, 21(1). https://doi.org/10.1186/s12864-019-6413-7.

  112. 112.

    Deutsch David, Quantum theory, the Church–Turing principle and the universal quantum computer, Proc. R. Soc. Lond. A40097–117, 1985, https://doi.org/10.1098/rspa.1985.0070.

  113. 113.

    Feynman, R.P. Simulating physics with computers. Int J Theor Phys 21, 467–488 (1982). https://doi.org/10.1007/BF02650179.

  114. 114.

    https://www.newscientist.com/question/what-is-a-quantum-computer/.

  115. 115.

    D. Ventura, T. Martinez, An artificial neuron with quantum mechanical properties, in: Proc. Intl. Conf. Artificial Neural Networks and Genetic Algorithms, 1997, pp. 482–485.

  116. 116.

    Michael Martina, Chinese quantum satellite sends ‘unbreakable’ code, Reuters, 10 August 2017, https://www.reuters.com/article/us-china-space-satellite-idUSKBN1AQ0C9.

  117. 117.

    Google, web-site, May 2021, https://blog.google/technology/ai/unveiling-our-new-quantum-ai-campus/.

  118. 118.

    Edwin Pednault et al. “On Quantum Supremacy”, IBM blog, 21 October 2019, https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/.

  119. 119.

    China Reaches New Milestone in Space-Based Quantum Communications, 25 June 2020, https://www.scientificamerican.com/article/china-reaches-new-milestone-in-space-based-quantum-communications/.

  120. 120.

    The superposition principle is often considered to be a postulate.

  121. 121.

    IBM promises 1000-qubit quantum computer—a milestone—by 2023, accessed on 02 May 2021, https://www.sciencemag.org/news/2020/09/ibm-promises-1000-qubit-quantum-computer-milestone-2023.

  122. 122.

    Oxford Dictionary.

  123. 123.

    Using Grover’s algorithm for quantum search.

  124. 124.

    The Race to Sell True Quantum Computers Begins Before They Really Exist, Wired, 6 March 2017, https://www.wired.com/2017/03/race-sell-true-quantum-computers-begins-really-exist/.

  125. 125.

    Schuld, Maria; Petruccione, Francesco (2018). Supervised Learning with Quantum Computers. Quantum Science and Technology. https://doi.org/10.1007/978-3-319-96424-9.

  126. 126.

    N. Matsui, M. Takai, H. Nishimura, A network model based on qubit-like neuron corresponding to quantum circuit, Inst. Electron. Inf. Commun. Jpn. III: Fundam. Electron. Sci. 83 (10) (2000), pp. 67–73.

  127. 127.

    Reversible/Quantum Machine Learning and Simulation (RQMLS), DARPA, https://www.darpa.mil/program/reversible-quantum-machine-learning-and-simulation.

  128. 128.

    Ram Shankar Siva Kumar et al. Failure Modes in Machine Learning, 25 November 2019, at https://arxiv.org/abs/1911.11034.

  129. 129.

    “Deep Neural Networks Are Easily Fooled: High Confidence Predictions for Unrecognizable Images”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 427–436.

  130. 130.

    A. Gidon, T. Zolnik, P. Fidzinski, F. Bolduan, A. Papoutsi, P. Poirazi, M. Holtkamp, I. Vida, and M.E. Larkum. Dendritic action potentials and computation in human layer 2/3 cortical neurons. Science, 367(6473):83–87, 2020.

  131. 131.

    Yoshua Bengio, Yann Lecun, Geoffrey Hinton. “Turing lecture: Deep Learning for AI”, Communications of the ACM, July 2021, Vol. 64 No. 7, Pages 58–65. 10.1145/3448250 at https://cacm.acm.org/magazines/2021/7/253464-deep-learning-for-ai/fulltext.

  132. 132.

    Bahdanau, D., Murty, S., Noukhovitch, M., Nguyen, T., Vries, H., and Courville, A. Systematic generalization: What is required and can it be learned? 2018; arXiv:1811.12889.

  133. 133.

    Bahdanau, D., de Vries, H., O’Donnell, T., Murty, S., Beaudoin, P., Bengio, Y., and Courville, A. Closure: Assessing systematic generalization of clever models, 2019; arXiv:1912.05783.

  134. 134.

    Lake, B., Ullman, T., Tenenbaum, J., and Gershman, S. Building machines that learn and think like people. Behavioral and Brain Sciences 40 (2017).

  135. 135.

    Roller, S., et al. Recipes for building an open domain chatbot, 2020; arXiv: 2004.13637.

  136. 136.

    Adiwardana, D., Luong, M., So, D., Hall, J., Fiedel, N., Thoppilan, R., Yang, Z., Kulshreshtha, A., Nemade, G., Lu, Y., et al. Towards a human-like open-domain chatbot 2020; arXiv preprint arXiv: 2001.09977.

  137. 137.

    Brown, T. et al. Language models are few-shot learners, 2020; arXiv:2005.14165.

  138. 138.

    Michael C. Horowitz, Paul Scharre and Alexander Velez-Green, A Stable Nuclear Future? The Impact of Autonomous Systems and Artificial Intelligence, working paper, December 2019, pp. 5–6, https://arxiv.org/ftp/arxiv/papers/1912/1912.05291.pdf.

References

  1. Abaimov S, Martellini M (2020) Cyber arms: security in cyberspace. CRC Press

    Google Scholar 

  2. Poole D, Mackworth A, Goebel R (1998) Computational intelligence. Oxford

    Google Scholar 

  3. Kurzweil R (2005) The singularity is near: when humans transcend biology. Viking Penguin, New York

    Google Scholar 

  4. Feigenbaum E, Feldman J (eds) (1963) Computers and thought

    Google Scholar 

  5. Nilsson N (1965) Learning machines. McGraw Hill

    Google Scholar 

  6. Duda R, Hart P (1973) Pattern recognition and scene analysis. Wiley Interscience

    Google Scholar 

  7. Stuart R, Peter N (2003) [1995] Artificial intelligence: a modern approach, 2nd ed. Prentice Hall

    Google Scholar 

  8. Nilsson N, Kaufman M (1998) Artificial intelligence: a new synthesis. Morgan Kaufmann Publishers Inc

    Google Scholar 

  9. Valiant LG (2013) Probably approximately correct. Basic Books

    Google Scholar 

  10. Mitchell T (1997) Machine learning. McGraw Hill, New York

    MATH  Google Scholar 

  11. Hebb D (1949) The organization of behavior: a neuropsychological theory. John Wiley and Sons, New York

    Google Scholar 

  12. Cangelosi A, Fischer MH (2015) Embodied intelligence. Springer

    Google Scholar 

  13. Alpaydin E (2020) Introduction to machine learning, Fourth ed. MIT

    Google Scholar 

  14. Asimov I (1942) Runaround, astounding science fiction (March 1942)

    Google Scholar 

  15. Sutton RS, Barto AG (2018) Reinforcement learning: an introduction. MIT Press

    Google Scholar 

  16. Stuart R, Peter N (2009) Artificial intelligence: a modern approach, 3rd ed. Prentice Hall Press

    Google Scholar 

  17. Vapnik V (2013) The nature of statistical learning theory. Springer Science and Business Media

    Google Scholar 

  18. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press

    Google Scholar 

  19. Jordan MI, Bishop CM (2004) Neural networks. In: Tucker AB (ed) Computer science handbook, Second edition (Section VII: Intelligent Systems). Chapman & Hall/CRC Press LLC, Boca Raton, Florida

    Google Scholar 

  20. Efron B, Tibshirani RJ (1994) An introduction to the bootstrap. CRC Press

    Book  Google Scholar 

  21. Watkins CJCH, Dayan P (1992) Q-learning. Machine learning 8(3–4): 279–292

    Google Scholar 

  22. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G, Petersen S (2015) Human-level control through deep reinforcement learning. Nature, 518(7540): 529–533

    Google Scholar 

  23. Schulman J, Levine S, Abbeel P, Jordan M, Moritz P (2015, June) Trust region policy optimization. In: International conference on machine learning (1889–1897). PMLR

    Google Scholar 

  24. Feynman RP, Kleinert H (1986) Effective classical partition functions. Physical Review A 34(6), 5080

    Google Scholar 

  25. Schuld M, Sinayskiy I, Petruccione F (2014) The quest for a quantum neural network. Quantum Information Processing 13(11): 2567–2586

    Google Scholar 

  26. Abbas A, Sutter D, Zoufal C, Lucchi A, Figalli A, Woerner S (2020) The power of quantum neural networks

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav Abaimov .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abaimov, S., Martellini, M. (2022). Understanding Machine Learning. In: Machine Learning for Cyber Agents. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-91585-8_2

Download citation

Publish with us

Policies and ethics