Skip to main content

Heteroploidy in Brassica juncea: Basics and Applications

  • Chapter
  • First Online:
The Brassica juncea Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 523 Accesses

Abstract

Heteroploidy is a condition in which cells, tissues and whole organisms exhibit a chromosome number that constitutes a deviation from the species constant. And, individuals with aberrant chromosome number are termed as heteroploids. Changes in chromosome numbers may result from polyploidy and aneuploidy or dysploidy. These arise due to spontaneous or induced errors of cell division and also through hybridizations across species domains. Aberrant meiosis may lead to the formation of aneuploids with change in one or a few numbers of chromosomes relative to euploid form of the species (e.g., trisomics and monosomics). Upward or downward shifts in ploidy along with the gains and losses of single chromosomes can have strong evolutionary consequences, if these are stabilized and selected for by natural selection. Reticulate evolution through hybridization, introgression and polyploidization has been the most potent force of evolution in angiosperms as it facilitated the establishment of new euploid species by bringing together highly differentiated gene pools. The emergence of a new species adds to the genetic and landscape diversity through shifts in allele frequencies and niche specialization. Heteroploids have been extensively synthesized for their use in genetic, evolutionary and plant breeding investigations. Aneuploid stocks such as monosomics and trisomics have allowed mechanistic processes underlying homoeologous chromosome pairing, pairing regulation and structural chromosomal rearrangements. These were also used as potent tools for assigning genes to the chromosomes in the pre-genomic era. Chromosome addition lines and double ditelosomic stocks have been used in the development and refinement of a draft assembly of highly complex and redundant wheat genome by allowing flow-sorted isolation, sequencing and de novo assembly of each individual chromosome or chromosome arms. A wide variety of heteroploids (including haploids, aneuploids, autopolyploids and novel polyploids) have been developed in Brassicas for genetic studies and development of synthetic species. Haploids are most commonly produced through anther or microspore culture for use in instant production of pure lines and cutting short of breeding cycles in various crop Brassica species. Doubled-haploid populations are considered ideal for genetic mapping as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel S, Becker HC (2007) The effect of autopolyploidy on biomass production in homozygous lines of Brassica rapa and Brassica oleracea. Plant Breed 126:642–643

    Google Scholar 

  • Agarwal PK, Agarwal P, Custers JB, Liu CM, Bhojwani SS (2006) PCIB an antiauxin enhances microspore embryogenesis in microspore culture of Brassica juncea. Plant Cell Tiss Org Cult 86:201–210

    CAS  Google Scholar 

  • Agrawal N, Gupta M, Banga SS, Heslop-Harrison JP (2020) Identification of chromosomes and chromosome rearrangements in crop Brassicas and Raphanus sativus: a cytogenetic toolkit using synthesized massive oligonucleotide libraries. Front Plant Sci 11:598039

    Google Scholar 

  • Aionesei T, Touraev A, Heberle-Bors E (2005) Pathways to microspore embryogenesis. In: Palmer CE, Keller WA, Kasha KJ (eds) Haploids in crop improvement II. Springer, Berlin, pp 11–34

    Google Scholar 

  • Ajisaka H, Kuginuki Y, Shiratori M, Ishiguro K, Enomoto S, Hirai M (1999) Mapping of loci affecting the culturing efficiency of microspore culture of Brassica rapa L. syn. campestris L. using DNA polymorphism. Breed Sci 49:187–192

    CAS  Google Scholar 

  • Albertin W, Balliau T, Brabant P, Chevre AM, Eber F, Malosse C, Thiellement H (2006) Numerous and rapid nonstochastic modifications of gene products in newly synthesized Brassica napus allotetraploids. Genetics 173:1101–1113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ali SNH, Ramanna MS, Jacobsen E, Visser RGF (2001) Establishment of a complete series of a monosomic tomato chromosome addition lines in the cultivated potato using RFLP and GISH analyses. Theor Appl Genet 103:687–695

    CAS  Google Scholar 

  • Ali MM, Mian MAK, Custers JBM, Khuram MMH (2008) Microspore culture and the performance of microspore derived doubled haploid in Brassica juncea (L.). Bang J Agric Res 33:571–578

    Google Scholar 

  • Armstrong KC, Keller WA (1982) Chromosome pairing in haploids of Brassica oleracea. Can J Genet Cytol 24:735–739

    Google Scholar 

  • Armstrong SJ, Caryl AP, Jones GH, Franklin FCH (2002) Asy 1, a protein required for meiotic chromosome synapsis, localizes to axis-associated chromatin in Arabidopsis and Brassica. J Cell Sci 115:3644–3655

    Google Scholar 

  • Arora H, Padmaja KL, Paritosh K, Mukhi N, Tewari AK, Mukhopadhyay A, Gupta V, Pradhan AK, Pental D (2019) BjuWRR1, a CC–NB–LRR gene identified in Brassica juncea, confers resistance to white rust caused by Albugo candida. Theor Appl Genet 132:2223–2236

    CAS  PubMed  Google Scholar 

  • Attia T, Busso C, Robbelen G (1987) Digenomic triploid for an assessment of chromosome relationships in the cultivated diploid Brassica species. Genome 29:326–330

    Google Scholar 

  • Axelsson T, Bowman CM, Sharpe AG, Lydiate DJ, Lagercrantz U (2000) Amphidiploids Brassica juncea contains conserved progenitor genomes. Genome 43:679–688

    CAS  PubMed  Google Scholar 

  • Babbar SB, Agarwal PK, Sahay S, Bhojwani SS (2004) Isolated microspore culture of Brassica: an experimental tool for developmental studies and crop improvement. Indian J Plant Biotechnol 3:185–202

    Google Scholar 

  • Baduel P, Bray S, Vallejo-Marin M, Kola F, Yant L (2018) The “polyploid hop”: shifting challenges and opportunities over the evolutionary lifespan of genome duplications. Front Ecol Evol 6:117

    Google Scholar 

  • Banga SS (1988) C-genome chromosome substitution lines in Brassica juncea. Genetica 77:81–86

    Google Scholar 

  • Bansal P, Banga SK, Banga SS (2012) Heterosis as investigated in terms of polyploidy and genetic diversity using designed Brassica juncea amphiploid and its progenitor diploid species. PLoS ONE 7(2):e29607. https://doi.org/10.1371/journal.pone.0029607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barker MS, Arrigo N, Baniaga AE, Li Z, Levin DA (2016) On the relative abundance of autopolyploids and allopolyploids. New Phytol 2:391–398

    Google Scholar 

  • Bento M, Gustafson P, Viegas W, Silva M (2010) Genome merger: from sequence rearrangements in triticale to their elimination in wheat-rye addition lines. Theor Appl Genet 121:489–497

    CAS  PubMed  Google Scholar 

  • Bertioli DJ, Jenkins J, Clevenger J, Dudchenko O, Gao D, Seijo G et al (2019) The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat Genet 51:877–884

    CAS  PubMed  Google Scholar 

  • Bhayana L, Paritosh K, Arora H, Yadava SK, Singh P, Nandan D, Mukhopadhyay A, Gupta V, Pradhan AK, Pental D (2019) A mapped locus on LG A6 of Brassica juncea line Tumida conferring resistance to white rust contains a CNL type R gene. Front Plant Sci 10:1690

    PubMed  Google Scholar 

  • Bhojwani SS, Razdan MK (1996) Plant tissue culture: theory and practice. Elsevier, Amsterdam, pp 177–201

    Google Scholar 

  • Birchler JA, Newton KJ (1981) Modulation of protein levels in chromosomal dosage series of maize: the biochemical basis of aneuploid syndromes. Genetics 99:247–266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Birchler JA, Veitia RA (2007) The gene balance hypothesis: from classical genetics to modern genomics. Plant Cell 19:395–402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blakeslee AF, Belling J, Farnham ME, Bergner AD (1922) A haploid mutant in the Jimson weed, Datura stramonium. Science 55:646–647

    CAS  PubMed  Google Scholar 

  • Blanc G, Wolfe KH (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16:1679–1691

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bottani S, Zabet NR, Wendel JF, Veitia RA (2018) Gene expression dominance in allopolyploids: hypotheses and models. Trends Plant Sci 23:393–402

    CAS  PubMed  Google Scholar 

  • Boyko EV, Badaev NS, Maximov NG, Zelenin AV (1984) Does DNA content change in the course of Triticale breeding? Cereal Res Commun 12:99–100

    Google Scholar 

  • Boyko EV, Badaev NS, Maximov NG, Zelenin AV (1988) Regularities of genome formation and organization in cereals. I. DNA quantitative changes in the process of allopolyploidization. Genetika 24:89–97

    Google Scholar 

  • Brewer GJ, Sing CF, Sears ER (1969) Studies of isozyme patterns in nullisomic-tetrasomic combinations of hexaploid wheat. Proc Natl Acad Sci USA 64(4):1224–1229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Britt AB, Kuppu S (2016) Cenh3: an emerging player in haploid induction technology. Front Plant Sci 7:357

    PubMed  PubMed Central  Google Scholar 

  • Buggs RJA, Renny-Byfield S, Chester M, Jordon-Thaden IE, Viccini LF, Chamala S, Leitch AR, Schnable PS, Barbazuk WB, Soltis PS, Soltis DE (2012) Next-generation sequencing and genome evolution in allopolyploids. Amer J Bot 99:372–382

    Google Scholar 

  • Carter CR (1978) The cytology of Brachycome 8. The inheritance, frequency and distribution of B chromosomes in B. dichromosomatica (n = 2), formerly included in B. lineariloba. Chromosoma 67:109–121

    Google Scholar 

  • Carvalho A, Delgado M, Barao A, Frescatada M, Ribeiro E, Pikaard CS, Viegas W, Neves N (2010) Chromosome and DNA methylation dynamics during meiosis in the autotetraploid Arabidopsis arenosa. Sex Plant Reprod 23:29–37

    CAS  PubMed  Google Scholar 

  • Cegielska-Taras T, Pniewski T, Szala L (2008) Transformation of microspore–derived embryos of winter oilseed rape (Brassica napus L.) by using Agrobacterium tumefaciens. J Appl Genet 49:343–347

    PubMed  Google Scholar 

  • Chaikam V, Molenaar W, Melchinger AE, Boddupalli PM (2019) Doubled haploid technology for line development in maize: technical advances and prospects. Theor Appl Genet 132:3227–3243

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H et al (2014) Early allopolyploid evolution in the post–Neolithic Brassica napus oilseed genome. Science 345:950–953

    CAS  PubMed  Google Scholar 

  • Chanana NP, Dhawan V, Bhojwani SS (2005) Morphogenesis in isolated microspore cultures of Brassica juncea. Plant Cell Tiss Org Cult 83:169–177

    Google Scholar 

  • Chang R, Tai W, Fan Z (1987) Cytogenetic studies of aneuploids in rapeseed. II. Morphology, fertility, and cytology of self-pollinated progenies of monosomic plants of Brassica napus L. Genome 29:174–179

    Google Scholar 

  • Chang PL, Dilkes BP, McMahon M, Comai L, Nuzhdin SV (2010) Homoeolog-specific retention and use in allotetraploid Arabidopsis suecica depends on parent of origin and network partners. Genome Biol 11:R125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee D, Banga SK, Gupta M, Bharti S, Salisbury PA, Banga SS (2016) Resynthesis of Brassica napus through hybridization between B. juncea and B. carinata. Theor Appl Genet 129:977–990

    CAS  PubMed  Google Scholar 

  • Chen ZJ (2007) Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol 58:377–406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen BY, Simonsen V, Lannrr-Herrera C, Heneen WK (1992) A Brassica campestris-alboglabra addition line and its use for gene mapping, intergenomic gene transfer and generation of trisomics. Theor Appl Genet 84:592–599

    CAS  PubMed  Google Scholar 

  • Chen B, Cheng B, Jorgensen R, Heneen WK (1997) Production and cytogenetics of Brassica campestris-alboglabra chromosome addition lines. Theor Appl Genet 94:633–640

    Google Scholar 

  • Chen CC, Chen SK, Liu MC, Kao YY (2002) Mapping of DNA markers to arms and sub-arm regions of Nicotiana sylvestris chromosomes using aberrant alien addition lines. Theor Appl Genet 105:8–15

    CAS  PubMed  Google Scholar 

  • Chen JF, Luo XD, Qian CT, Jahn MM, Staub JE, Zhuang FY, Lou QF, Ren G (2004) Cucumis monosomic alien addition lines: morphological, cytological, and genotypic analyses. Theor Appl Genet 108:1343–1348

    PubMed  Google Scholar 

  • Chen HF, Wang H, Li ZY (2007) Production and genetic analysis of partial hybrids in intertribal crosses between Brassica species (B. rapa, B. napus) and Capsella bursa-pastoris. Plant Cell Rep 26:1791–1800

    CAS  PubMed  Google Scholar 

  • Chen JP, Ge XH, Yao XC, Li ZY (2012) Genome affinity and meiotic behaviour in trigenomic hybrids and their doubled allohexaploids between three cultivated Brassica allotetraploids and Brassica fruticulosa. Genome 55:164–171

    CAS  PubMed  Google Scholar 

  • Cheng BF, Olin-Fatih M, Heneen WK (1993) Cytogenetic studies on Brassica campestris primary trisomics. Hereditas 119:143–148

    Google Scholar 

  • Cheng BF, Seguin-Swartz G, Somers DJ, Rakow G (2001) Low glucosinolate Brassica juncea breeding line revealed to be nullisomic. Genome 44:738–741

    CAS  PubMed  Google Scholar 

  • Cheng F, Mandakova T, Wu J, Xie Q, Lysak MA, Wang X (2013) Deciphering the diploid ancestral genome of the mesohexaploid Brassica rapa. Plant Cell 25:1541–1554

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng F, Sun C, Wu J, Schnable J, Woodhouse WR, Liang J, Cai C, Freeling M, Wang X (2016) Epigenetic regulation of subgenome dominance following whole genome triplication in Brassica rapa. New Phytol 211:288–299

    CAS  PubMed  Google Scholar 

  • Cheng F, Wu J, Cai X, Liang J, Freeling M, Wang X (2018) Gene retention, fractionation and subgenome differences in polyploid plants. Nat Plants 4:258–268

    CAS  PubMed  Google Scholar 

  • Chester M, Gallagher JP, Symonds VV, Cruz da Silva AV, Mavrodiev EV, Leitch AR, Soltis PS, Douglas ES (2012) Extensive chromosomal variation in a recently formed natural allopolyploid species, Tragopogon miscellus (Asteraceae). Proc Natl Acad Sci USA 109:1176–1181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chevre AM, This P, Eber F, Deschamps M, Renard M, Delseny M, Quiros CF (1991) Characterization of disomic addition lines Brassica napus-Brassica nigra by isozyme, fatty acid, and RFLP markers. Theor Appl Genet 81:43–49

    CAS  PubMed  Google Scholar 

  • Choudhary BR, Joshi P, Singh K (2000) Synthesis, morphology and cytogenetics of Raphanofortii (TTRR, 2n = 38): a new amphidiploid of hybrid Brassica tournefortii (TT, 2n = 20) 9 Raphanus caudatus (RR, 2n = 18). Theor Appl Genet 101:990–999

    Google Scholar 

  • Chuong PV, Deslauriers C, Kott LS, Beversdorf WD (1988) Effects of donor genotype and bud sampling on microspore culture of Brassica napus. Can J Bot 6:1653–1657

    Google Scholar 

  • Cifuentes M, Benavente E (2009) Wheat-alien metaphase I pairing of individual wheat genomes and D genome chromosomes in interspecific hybrids between Triticum aestivum L. and Aegilops geniculata Roth. Theor Appl Genet 119:805–813

    CAS  PubMed  Google Scholar 

  • Cifuentes M, Eber F, Lucas MO, Lode M, Chevre AM, Jenczewski E (2010) Repeated polyploidy drove different levels of crossover suppression between homoeologous chromosomes in Brassica napus allohaploids. Plant Cell 22:2265–2276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clausen RE, Mann MC (1924) Inheritance in Nicotiana tabacum: V. The occurrence of haploid plants in interspecific progenies. Proc Natl Acad Sci USA 10:121–124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cloutier S, Cappadocia M, Landry BS (1995) Study of microspore-culture responsiveness in oilseed rape (Brassica napus L.) by comparative mapping of a F2 population and two microspore–derived populations. Theor Appl Genet 91:841–847

    CAS  PubMed  Google Scholar 

  • Coe EH (1959) A line of maize with high haploid frequency. Amer Nat 93:381–382. https://doi.org/10.1086/282098

    Article  Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836–846

    CAS  PubMed  Google Scholar 

  • Couvreur TLP, Franzke A, Al-Shehbaz IA, Bakker FT, Koch MA, Mummenhoff K (2010) Molecular phylogenetics, temporal diversification, and principles of evolution in the mustard family (Brassicaceae). Mol Biol Evol 27:55–71

    CAS  PubMed  Google Scholar 

  • Crismani W, Portemer V, Froger N, Chelysheva L, Horlow C, Vrielynck N, Mercier R (2013) MCM8 is required for a pathway of meiotic double-strand break repair independent of DMC1 in Arabidopsis thaliana. PLoS Genet 9:e1003165

    Google Scholar 

  • Cui C, Ge X, Gautam M, Kang L, Li Z (2012) Cytoplasmic and genomic effects on meiotic pairing in Brassica hybrids and allotetraploids from pair crosses of three cultivated diploids. Genetics 191:725–738

    CAS  PubMed  PubMed Central  Google Scholar 

  • Devaux P (2003) The Hordeum bulbosum (L.) method. In: Maluszynski M, Kasha K, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Springer, Netherlands, pp 15–19

    Google Scholar 

  • Dhaka N, Rout K, Yadava SK, Sodhi YS, Gupta V, Pental D, Pradhan AK (2017) Genetic dissection of seed weight by QTL analysis and detection of allelic variation in Indian and east European gene pool lines of Brassica juncea. Theor Appl Genet 130:293–307

    PubMed  Google Scholar 

  • Ding M, Chen ZJ (2018) Epigenetic perspectives on the evolution and domestication of polyploid plant and crops. Curr Opin Plant Biol 42:37–48

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong YJ, Tsuzuki E, Terao H (2001) Trisomic genetic analysis of aroma in three Japanese native rice varieties (Oryza sativa L.). Euphytica 117:191–196

    CAS  Google Scholar 

  • Doyle JJ, Coate JE (2019) Polyploidy, the nucleotype, and novelty: the impact of genome doubling on the biology of the cell. Int J Plant Sci 180:1–52

    Google Scholar 

  • Du XZ, Ge XH, Zhao ZG, Li ZY (2008) Chromosome elimination and fragment introgression and recombination producing intertribal partial hybrids from Brassica napus × Lesquerella fendleri crosses. Plant Cell Rep 27:261–271

    CAS  PubMed  Google Scholar 

  • Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316:1862–1866

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dunwell JM (2010) Haploid in flowering plants: origin and exploitation. Plant Biotechnol J 8:377–424

    CAS  PubMed  Google Scholar 

  • Dwivedi SL, Britt AB, Tripathi L, Sharma S, Upadhyaya HD, Ortiz R (2015) Haploids: constraints and opportunities in plant breeding. Biotechnol Adv 33(6):812–829

    PubMed  Google Scholar 

  • Fan Z, Tai W (1985) A cytogenetic study of monosomics in Brassica napus L. Can J Genet Cytol 27:683–688

    Google Scholar 

  • Feldman M, Levy AA (2012) Genome evolution due to allopolyploidization in wheat. Genetics 192(3):763–774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrie AMR, Möllers C (2011) Haploids and doubled haploids in Brassica spp. for genetic and genomic research. Plant Cell Tiss Org Cult 104:375–386

    Google Scholar 

  • Ferrie AMR, Taylor DC, Mackenzie SL, Keller WA (1999) Microspore embryogenesis of high sn-2 erucic acid Brassica oleracea germplasm. Plant Cell Tiss Org Cult 57:79–84

    CAS  Google Scholar 

  • Ferrie AMR, Taylor DC, MacKenzie SL, Rakow G, Raney JP, Keller WA (2008) Microspore mutagenesis of Brassica species for fatty acid modifications: a preliminary evaluation. Plant Breed 127:501–506

    Google Scholar 

  • Flannery ML, Mitchell FJG, Coyne S, Kavanagh TA, Burke JI, Salamin N, Dowding P, Hodkinson TR (2006) Plastid genome characterization in Brassica and Brassicaceae using a new set of nine SSR. Theor Appl Genet 113:1221–1231

    CAS  PubMed  Google Scholar 

  • Freeling M, Scanlon MJ, Fowler JE (2015) Fractionation and sub-functionalization following genome duplications: mechanisms that drive gene content and their consequences. Curr Opin Genet Dev 35:110–118

    CAS  PubMed  Google Scholar 

  • Fu S, Lv Z, Qi B, Guo X, Li J, Liu B, Han F (2012) Molecular Cytogenetic characterization of wheat-Thinopyrum elongatum addition, substitution and translocation lines with a novel source of resistance to wheat Fusarium head blight. J Genet Genom 39:103–110

    CAS  Google Scholar 

  • Fu S, Yin L, Xu M, Li Y, Wang M, Yang J, Tingdong F, Wang J, Shen J, Ali A, Zou Q, Yi B, Wen J, Tao L, Kang Z, Tang R (2018) Maternal doubled haploid production in interploidy hybridization between Brassica napus and Brassica allooctaploids. Planta 247:113–125

    CAS  PubMed  Google Scholar 

  • Gaebelein R, Mason AS (2018) Allohexaploids in the genus Brassica. Crit Rev Plant Sci 37(5):422–437

    Google Scholar 

  • Gaebelein R, Alnajar D, Koopmann B, Mason AS (2019a) Hybrids between Brassica napus and B. nigra show frequent pairing between the B and A/C genomes and resistance to blackleg. Chrom Res 27(3):221–236

    Google Scholar 

  • Gaebelein R, Schiessl SV, Samans B, Batley J, Mason AS (2019b) Inherited allelic variants and novel karyotype changes influence fertility and genome stability in Brassica allohexaploids. New Phytol 223(2):965–978

    Google Scholar 

  • Gaeta RT, Pires CJ (2010) Homoeologous recombination in allopolyploids: the polyploid ratchet. New Phytol 186:18–28

    CAS  PubMed  Google Scholar 

  • Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC (2007) Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell 19:3403–3417

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaines EF, Aase HC (1926) A haploid wheat plant. Amer J Bot 13(6):373–385

    Google Scholar 

  • Gao D, Guo D, Jung C (2001) Monosomic addition lines of Beta corolliflora Zoss in sugar beet: cytological and molecular-marker analysis. Theor Appl Genet 103:240–247

    CAS  Google Scholar 

  • Gao ZH, Wang RQ, Mao LP (2003) Chromosome location of dwarf gene in foxtail millet. Acta Agron Sin 29:152–154

    Google Scholar 

  • Gardner ME, Hymowitz T, Xu SJ, Hartman GL (2001) Physical map location of the Rps1-k allele in soybean. Crop Sci 41:1435–1438

    CAS  Google Scholar 

  • Gaut BS, Doebley JF (1997) DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci USA 94(13):6809–6814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Geleta M, Heneen WK, Stoute AI, Muttucumaru N, Scott RJ, King GJ, Kurup S, Bryngelsson T (2012) Assigning Brassica microsatellite markers to the nine C-genome chromosomes using Brassica rapa var. trilocularisB. oleracea var. alboglabra monosomic alien addition lines. Theor Appl Genet 125:455–466

    CAS  PubMed  Google Scholar 

  • Germana MA (2006) Doubled haploid production in fruit crops. Plant Cell Tiss Org Cult 86:131–146

    Google Scholar 

  • Gil-Humanes J, Barro F (2009) Production of doubled haploids in Brassica. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher pants. Springer, Dordrecht, pp 65–73

    Google Scholar 

  • Gilles LM, Khaled A, Laffaire JB, Chaignon S, Gendrot G, Laplaige J, Berges H, Beydon G, Bayle V, Barret P, Comadran J, Martinant JP, Rogowsky PM, Widiez T (2017) Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. EMBO J 36(6):707–717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Campo C, Prakash S (1999) The phylogeny of Brassica and allied genera. Domestication of cultivated Brassicas and allies. In: Gomez-Campo C (ed) Biology of Brassica coenospecies. Elsevier, Amsterdam, pp 33–58

    Google Scholar 

  • Gong L, Salmon A, Yoo MJ, Grupp KK, Wang Z, Paterson AH, Wendel JF (2012) The cytonuclear dimension of allopolyploid evolution: an example from cotton using RUBISCO. Mol Biol Evol 29:3023–3036

    CAS  PubMed  Google Scholar 

  • Gonzalo A, Lucas MO, Charpentier C, Sandmann G, Lloyd A, Jenczewski E (2019) Reducing MSH4 copy number prevents meiotic crossovers between non-homologous chromosomes in Brassica napus. Nat Commun 10:2354. https://doi.org/10.1038/s41467-019-10010-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grover CE, Gallagher JP, Szadkowski EP, Yoo MJ, Flagel LE, Wendel JF (2012) Homoeolog expression bias and expression level dominance in allopolyploids. New Phytol 196:966–971

    CAS  PubMed  Google Scholar 

  • Gu H, Sheng X, Zhao Z, Yu H, Wang J (2014) Initiation and development of microspore embryogenesis and plant regeneration of Brassica nigra. In Vitro Cell Dev Biol Plant 50:534–540

    CAS  Google Scholar 

  • Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of Datura. Nature 204:497

    Google Scholar 

  • Guo M, Davis D, Birchler JA (1996) Dosage effects on gene expression in a maize ploidy series. Genetics 142:1349–1355

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta M, Banga SS (2020) Exploiting alien genetic variation for germplasm enhancement in Brassica oilseeds. In: Kang MS (ed) Quantitative genetics, genomics and plant breeding. CABI, UK, pp 338–384

    Google Scholar 

  • Gupta V, Mukhopadhyay A, Arumugam N, Sodhi YS, Pental D, Pradhan AK (2004) Molecular tagging of erucic acid trait in oilseed mustard (Brassica juncea) by QTL mapping and single nucleotide polymorphisms in FAE1 gene. Theor Appl Genet 108:743–749

    CAS  PubMed  Google Scholar 

  • Gupta P, Kulwal P, Rustgi S (2005) Wheat cytogenetics in the genomics era and its relevance to breeding. Cytogenet Genome Res 109:315–327

    CAS  PubMed  Google Scholar 

  • Gupta M, Atri C, Banga SS (2014) Cytogenetic stability and genome size variations in newly developed derived Brassica juncea allopolyploid lines. J Oilseeds Brassica 5(2):118–127

    Google Scholar 

  • Gupta M, Gupta S, Kumar H, Kumar N, Banga SS (2015) Population structure and breeding value of a new type of Brassica juncea created by combining A and B genomes from related allotetraploids. Theor Appl Genet 128(2):221–234

    PubMed  Google Scholar 

  • Gupta M, Atri C, Agarwal N, Banga SS (2016a) Development and molecular-genetic characterization of a stable Brassica allohexaploid. Theor Appl Genet 129:2085–2100

    Google Scholar 

  • Gupta M, Mason AS, Batley J, Bharti S, Banga S, Banga SS (2016b) Molecular-cytogenetic characterization of C-genome chromosome substitution lines in Brassica juncea (L.) Czern and Coss. Theor Appl Genet 129:1153–1166

    Google Scholar 

  • Gupta S, Sharma N, Akhatar J, Atri C, Kaur J, Kaur G, Banga SS (2019) Analysis of epigenetic landscape in a recombinant inbred line population developed by hybridizing natural and resynthesized Brassica juncea (L.) with stable C genome introgressions. Euphytica 215:174

    Google Scholar 

  • Hamant O, Ma H, Cande WZ (2006) Genetics of meiotic prophase I in plants. Annu Rev Plant Biol 57:267–302

    CAS  PubMed  Google Scholar 

  • Hasan MJ, Rahman H (2018) Resynthesis of Brassica juncea for resistance to Plasmodiophora brassicae pathotype 3. Breed Sci 68(3):385–391. https://doi.org/10.1270/jsbbs.18010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hazarika RR, Mishra KV, Chaturvedi R (2013) In vitro haploid production—a fast and reliable approach for crop improvement. In: Tuteja N, Gill SS (eds) Crop improvement under adverse conditions. Springer, New York, pp 171–212

    Google Scholar 

  • Hegarty MJ, Hiscock SJ (2008) Genomic clues to the evolutionary success of polyploid plants. Curr Biol 18(10):435–444

    Google Scholar 

  • Henry IM, Dilkes BP, Miller ES, Burkart-Waco D, Comai L (2010) Phenotypic consequences of aneuploidy in Arabidopsis thaliana. Genetics 186:1231–1245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Higgins JD, Armstrong SJ, Franklin FCH, Jones GH (2004) The Arabidopsis MutS homolog AtMSH4 functions at an early step in recombination: evidence for two classes of recombination in Arabidopsis. Genes Dev 18:2557–2570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Higgins EE, Howell EC, Armstrong SJ, Parkin IA (2021) A major quantitative trait locus on chromosome A9, BnaPh1, controls homoeologous recombination in Brassica napus. New Phytol 229:3281–3293

    CAS  PubMed  Google Scholar 

  • Hill CB, Tang K, Williamsp H (1986) Development of primary trisomics of rapid-cycling Brassica campestris. Crucferae Newsl 11:30

    Google Scholar 

  • Hohmann N, Eva MW, Lysak MA, Koch MA (2015) A time-calibrated road map of Brassicaceae species radiation and evolutionary history. Plant Cell 27:2770–2784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hua Y, Li Z (2006) Genomic in situ hybridization analysis of Brassica napus × Orychophragmus violaceus hybrids and production of B. napus aneuploids. Plant Breed 125:144–149

    CAS  Google Scholar 

  • Huettel B, Kreil DP, Matzke M, Matzke AJ (2008) Effects of aneuploidy on genome structure, expression, and interphase organization in Arabidopsis thaliana. PLoS Genet 4:e1000226

    Google Scholar 

  • Huo DA, Zhu B, Tian GF, Du XY, Guo J, Cai MX (2019) Assignment of unanchored scaffolds in genome of Brassica napus by RNA-seq analysis in a complete set of Brassica rapa-Brassica oleracea monosomic addition lines. J Integr Agri 18:1541–1546

    CAS  Google Scholar 

  • Hurgobin B, Golicz AA, Bayer PE, Chan CKK, Tirnaz S, Dolatabadian A, Schiessl SV, Samans B, Montenegro JD, Parkin IAP, Pires JC, Chalhoub B, King GJ, Snowdon R, Batley J, Edwards D (2018) Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus. Plant Biotechnol J 16:1265–1274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Husband BC, Baldwin SJ, Suda J (2013) The incidence of polyploidy in natural plant populations: major patterns and evolutionary processes. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity 2: physical structure, behaviour and evolution of plant genomes. Springer, Wien, pp 255–276

    Google Scholar 

  • Ishii T, Karimi-Ashtiyani R, Houben A (2016) Haploidization via chromosome elimination: means and mechanisms. Annu Rev Plant Biol 67:421–438

    CAS  PubMed  Google Scholar 

  • Iwasa S (1964) Cytogenetic studies on the artificially raised trigenomic hexaploid hybrid forms in the genus Brassica. J Fac Agric Kyushu Univ 13:309–352

    Google Scholar 

  • Jenczewski E, Eber F, Grimaud A, Huet S, Lucas MO, Monod H, Chevre AM (2003) PrBn, a major gene controlling homoeologous pairing in oilseed rape (Brassica napus) haploids. Genetics 164:645–653

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Tian E, Li R, Chen L, Meng J (2007) Genetic diversity of Brassica carinata with emphasis on the interspecific crossability with B. rapa. Plant Breed 126:487–491

    CAS  Google Scholar 

  • Jiang H, Wang F-F, Wu Y-T, Zhou X, Huang X-Y, Zhu J, Gao J-F, Dong R-B, Cao K-M, Yang Z-N (2009) Multipolar Spindle 1 (MPS1), a novel coiled-coil protein of Arabidopsis thaliana, is required for meiotic spindle organization. Plant J 59:1001–1010

    CAS  PubMed  Google Scholar 

  • Jiao Y (2018) Double the genome, double the fun: Genome duplications in angiosperms. Mol Plant 11(3):357–358

    CAS  PubMed  Google Scholar 

  • Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS, Soltis DE, Clifton SW, Schlarbaum SE, Schuster SC, Ma H, Leebens-Mack J, Depamphilis CW (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100

    CAS  PubMed  Google Scholar 

  • Jourdan PS, Salazar E (1993) Brassica carinata resynthesized by protoplast fusion. Theor Appl Genet 86:567–572

    CAS  PubMed  Google Scholar 

  • Kapoor R, Kaur G, Banga SK, Banga SS (2011) Generation of Brassica rapa—B. nigra chromosome addition stocks: cytology and microsatellite (SSR) based characterization. New Biotechnol 28:407–417

    CAS  Google Scholar 

  • Karimi-Ashtiyani R, Ishii T, Niessen M, Stein N, Heckmann S, Gurushidze M, Banaei-Moghaddam AM, Fuchs J, Schubert V, Koch K, Weiss O, Demidov D, Schmidt K, Kumlehn J, Houben A (2015) Point mutation impairs centromeric CENH3 loading and induces haploid plants. Proc Natl Acad Sci USA 112:11211–11216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karpechenko GD (1928) Polyploid hybrids of Raphanus sativus L. × Brassica oleracea L. Z Ind Abst Vererbgsl 48:1–85

    Google Scholar 

  • Kasha KJ, Kao KN (1970) High frequency haploid production in barley (Hordeum vulgare L). Nature 225:874

    CAS  PubMed  Google Scholar 

  • Kasha KJ, Maluszynski M (2003) Production of doubled haploids in crop plants an introduction. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Springer, Netherlands, pp 1–4

    Google Scholar 

  • Kaur H, Banga SS (2015) Genetic divergence in novel determinate variants of resynthesized Indian mustard (Brassica juncea (L.) Czern & Coss). Indian J Genet 75(2):260–263

    Google Scholar 

  • Kelliher T, Starr D, Richbourg L, Chintamanani S, Delzer B, Nuccio ML, Green J, Chen Z, McCuiston J, Wang W, Liebler T, Bullock P, Martin B (2017) MATRILINEAL, a sperm–specific phospholipase, triggers maize haploid induction. Nature 542:105–109

    CAS  PubMed  Google Scholar 

  • Khasdan V, Yaakov B, Kraitshtein Z, Kashkush K (2010) Developmental timing of DNA elimination following allopolyploidization in wheat. Genetics 185:387–390

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khush CS, Singh RJ, Sur SC, Librojo AL (1984) Primary trisomics of rice: origin, morphology, cytology and use in linkage mapping. Genetics 107:141–163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kihara H, Ono T (1926) Chromosomenzahlen und systematische gruppierung der Rumex arten. Zeitschr Zellf Mikrosk Anat 4:475–481

    Google Scholar 

  • Kixmoeller K, Allu PK, Black BE (2020) The centromere comes into focus: from CENP-A nucleosomes to kinetochore connections with the spindle. Open Biol 10:200051

    Google Scholar 

  • Koduru PRK, Rao KM (1981) Cytogenetics of synaptic mutants in higher plants. Theor Appl Genet 59:197–214

    CAS  PubMed  Google Scholar 

  • Kong F, Wang H, Cao A, Qin B, Ji J, Wang S, Wang X (2008) Characterization of T. aestivum-H. californicum chromosome addition lines DA2H and MA5H. J Genet Genom 35:673–678

    CAS  Google Scholar 

  • Kovarik A, Dadejova M, Lim YK, Chase MW, Clarkson JJ, Knapp S, Leitch AR (2008) Evolution of rDNA in Nicotiana allopolyploids: a potential link between rDNA homogenization and epigenetics. Ann Bot 101(6):815–823

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar P, Singhal VK (2011) Chromosome number, male meiosis and pollen fertility in selected angiosperms of the cold deserts of Lahaul Spiti and adjoining areas (Himachal Pradesh, India). Plant Syst Evol 297:271–297

    Google Scholar 

  • Kumari P, Bisht DS, Bhat SR (2018) Stable, fertile somatic hybrids between Sinapis alba and Brassica juncea show resistance to Alternaria brassicae and heat stress. Plant Cell Tiss Org Cult 133:77–86

    Google Scholar 

  • Kumari P, Singh KP, Bisht D, Kumar S (2020) Somatic hybrids of Sinapis alba + Brassica juncea: study of backcross progenies for morphological variations, chromosome constitution and reaction to Alternaria brassicae. Euphytica 216:93. https://doi.org/10.1007/s10681-020-02629-3

    Article  CAS  Google Scholar 

  • Kuppu S, Tan EH, Nguyen H, Rodgers A, Comai L, Chan SW, Britt AB (2015) Point mutations in centromeric histone induce post–zygotic incompatibility and uniparental inheritance. PLoS Genet 11:e1005494

    Google Scholar 

  • Kuppu S, Ron M, Marimuthu MPA, Li G, Huddleson A, Siddeek MH, Terry J, Buchner R, Shabek N, Comai L, Britt AB (2020) A variety of changes, including CRISPR/Cas9 mediated deletions, in CENH3 lead to haploid induction on outcrossing. Plant Biotechnol J 18:2068–2080

    CAS  PubMed Central  Google Scholar 

  • Kynast RG, Riera-Lizarazu O, Vales MI, Okagaki RJ, Maquieira S, Chen G, Ananiev EV, Odland WE, Russell CD, Stec AO, Livingston SM, Zaia HA, Rines HW, Phillips RL (2001) A complete set of maize individual chromosome additions to the oat genome. Plant Physiol 125:1216–1227

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kynast RG, Okagaki RJ, Galatowitsch MW, Granath SR, Jacobs MS, Stec AO, Rines HW, Phillips RL (2004) Dissecting the maize genome by using chromosome addition and radiation hybrid lines. Proc Natl Acad Sci USA 101:9921–9926

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lambing C, Heckmann S (2018) Tackling plant meiosis: from model research to crop improvement. Front Plant Sci 9:829. https://doi.org/10.3389/fpls.2018.00829

    Article  PubMed  PubMed Central  Google Scholar 

  • Lashermes P, Combes MC, Hueber Y, Severac D, Dereeper A (2014) Genome rearrangements derived from homoeologous recombination following allopolyploidy speciation in coffee. Plant J 78:674–685

    CAS  PubMed  Google Scholar 

  • Laurie DA (1989) The frequency of fertilization in wheat × pearl millet crosses. Genome 32:1063–1067

    Google Scholar 

  • Laurie DA, Bennett MD (1986) Wheat × maize hybridization. Can J Genet Cytol 28:313–316

    Google Scholar 

  • Laurie DA, Bennett MD (1988) The production of haploid wheat plants from wheat × maize crosses. Theor Appl Genet 76:393–397

    CAS  PubMed  Google Scholar 

  • Leflon M, Grandont L, Eber F, Huteau V, Coriton O, Chelysheva L, Jenczewski E, Chevre AM (2010) Crossovers get a boost in Brassica allotriploid and allotetraploid hybrids. Plant Cell 22:2253–2264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leitch IJ, Bennett MD (1997) Polyploidy in angiosperms. Trends Plant Sci 2:470–476

    Google Scholar 

  • Leitch IJ, Hanson L, Lim KY, Kovarik A, Chase MW, Clarkson JJ, Leitch AR (2008) The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae). Ann Bot 101(6):805–814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li ZY, Ge XH (2007) Unique chromosome behavior and genetic control in Brassica × Orychophragmus wide hybrids: a review. Plant Cell Rep 26:701–710

    CAS  PubMed  Google Scholar 

  • Li Z, Heneen WK (1999) Production and cytogenetics of intergeneric hybrids between the three cultivated Brassica diploids and Orychophragmus violaceus. Theor Appl Genet 99:694–704

    CAS  PubMed  Google Scholar 

  • Li Z, Liu H, Luo P (1995) Production and cytogenetics of intergeneric hybrids between Brassica napus and Orychophragmus violaceus. Theor Appl Genet 91:131–136

    CAS  PubMed  Google Scholar 

  • Li Z, Wu JG, Liu Y, Liu HL, Heneen WK (1998) Production and cytogenetics of intergeneric hybrids Brassica juncea × Orychophragmus violaceus and B. carinata × O. violaceus. Theor Appl Genet 96:251–265

    Google Scholar 

  • Li X, Meng D, Chen S, Luo H, Zhang Q, Jin W, Yan J (2017) Single nucleus sequencing reveals spermatid chromosome fragmentation as a possible cause of maize haploid induction. Nat Commun 8:991

    PubMed  PubMed Central  Google Scholar 

  • Li M, Wang R, Wu X, Wang J (2020) Homoeolog expression bias and expression level dominance (ELD) in four tissues of natural allotetraploid Brassica napus. BMC Genomics 21:330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lichter R (1982) Induction of haploid plants from isolated pollen of Brassica napus. Z Pflanzenphysiol 105:427–434

    Google Scholar 

  • Lionneton E, Beuret W, Delaitre C, Ochatt S, Rancillac M (2001) Improved microspore culture and doubled haploid plant regeneration in the brown condiment mustard (Brassica juncea). Plant Cell Rep 20:126–130

    CAS  PubMed  Google Scholar 

  • Liu F (2014) Creation of autopolyploidy germplasm of Brassica rapa, Brassica oleracea and Brassica nigra. Hebei Agricultural University, Hebei, China

    Google Scholar 

  • Liu M, Li ZY (2007) Genome doubling and chromosome elimination with fragment recombination leading to the formation of Brassica rapa-type plants with genomic alterations in crosses with Orychophragmus violaceus. Genome 50:985–993

    CAS  PubMed  Google Scholar 

  • Liu Z, Adamczyk K, Manzanares-Dauleux M, Eber F, Lucas MO, Delourme R, Chevre AM, Jenczewski E (2006) Mapping PrBn and other quantitative trait loci responsible for the control of homoeologous chromosome pairing in oilseed rape (Brassica napus L.) haploids. Genetics 174:1583–1596

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Li X, Meng D, Zhong Y, Chen C, Dong X, Xu X, Chen B, Li W, Li L, Tian X, Zhao H, Song W, Luo H, Zhang Q, Lai J, Jin W, Yan J, Chen S (2017) A 4-bp insertion at ZmPLA1 encoding a putative phospholipase A generates haploid induction in maize. Mol Plant 10(3):520–522

    CAS  PubMed  Google Scholar 

  • Liu H, Wang K, Jia Z, Gong Q, Lin Z, Du L, Pei X, Ye X (2020) Efficient induction of haploid plants in wheat by editing of TaMTL using an optimized Agrobacterium-mediated CRISPR system. J Exp Bot 71:1337–1349

    CAS  PubMed  Google Scholar 

  • Lloyd A, Bomblies K (2016) Meiosis in autopolyploid and allopolyploid Arabidopsis. Curr Opin Plant Biol 30:116–122

    PubMed  Google Scholar 

  • Lukens LN, Pires JC, Leon E, Vogelzang R, Oslach L, Osborn TC (2006) Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassica napus allopolyploids. Plant Physiol 140:336–348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15(4):516–525

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma XF, Gustafson JP (2005) Genome evolution of allopolyploids: a process of cytological and genetic diploidization. Cytogenet Genome Res 109:236–249

    CAS  PubMed  Google Scholar 

  • Madlung A (2013) Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity 110:99–104

    CAS  PubMed  Google Scholar 

  • Maheshwari S, Tan EH, West A, Franklin FC, Comai L, Chan SW (2015) Naturally occurring diferences in CENH3 affect chromosome segregation in zygotic mitosis of hybrids. PLoS Genet 11:e1004970

    Google Scholar 

  • Maluszynski M, Kasha KJ, Forster BP, Szarejko I (2003) Doubled haploid production in crop plants: a manual. Springer, Netherlands, p 428

    Google Scholar 

  • Mandakova T, Li Z, Barker MS, Lysak MA (2017) Diverse genome organization following 13 independent mesopolyploid events in Brassicaceae contrasts with convergent patterns of gene retention. Plant J 91:3–21

    CAS  PubMed  Google Scholar 

  • Marcinska I, Nowakowska A, Skrzypek E, Czyczyło-Mysza I (2013) Production of double haploids in oat (Avena sativa L.) by pollination with maize (Zea mays L.). Cent Eur J Biol 8:306–313

    CAS  Google Scholar 

  • Martin R, Ernst S, Rademaker A, Barclay L, Ko E, Summers N (1997) Chromosomal abnormalities in sperm from testicular cancer patients before and after chemotherapy. Hum Genet 99:214–218

    CAS  PubMed  Google Scholar 

  • Mason AS, Wendel JF (2020) Homoeologous exchanges, segmental allopolyploidy, and polyploid genome evolution. Front Genet 11:1014

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mason AS, Nelson MN, Yan G, Cowling WA (2011) Production of viable male unreduced gametes in Brassica interspecific hybrids is genotype specific and stimulated by cold temperatures. BMC Plant Biol 11:103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mason AS, Yan G, Cowling WA, Nelson MN (2012) A new method for producing allohexaploid Brassica through unreduced gametes. Euphytica 186:277–287

    CAS  Google Scholar 

  • Mayer KF, Rogers J, Dolezel J, Pozniak C, Eversole K, Feuillet C et al (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788. https://doi.org/10.1126/science.1251788

    Article  CAS  Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801

    CAS  PubMed  Google Scholar 

  • McGrath JM, Quiros CF (1990) Generation of alien chromosome addition lines from synthetic Brassica napus: morphology, cytology, fertility, and chromosome transmission. Genome 33:374–383

    Google Scholar 

  • Meng J, Shi S, Gan L, Li Z, Qu X (1998) The production of yellow-seeded Brassica napus (AACC) through crossing interspecific hybrids of B. campestris (AA) and B. carinata (BBCC) with B. napus. Euphytica 103:329–333

    Google Scholar 

  • Mercier R, Mezard C, Jenczewski E, Macaisne N, Grelon M (2015) The molecular biology of meiosis in plants. Annu Rev Plant Biol 66:297–327

    CAS  PubMed  Google Scholar 

  • Mestiri I, Chague V, Tanguy AM, Huneau C, Huteau V, Belcram H, Coriton O, Chalhoub B, Jahier J (2010) Newly synthesized wheat allohexaploids display progenitor-dependent meiotic stability and aneuploidy but structural genomic additivity. New Phytol 186:86–101

    CAS  PubMed  Google Scholar 

  • Molnar I, Molnar LM (2010) GISH reveals different levels of meiotic pairing with wheat for individual Aegilops biuncialis chromosomes. Bilo Plant 54:259–264

    CAS  Google Scholar 

  • Multani DS, Khush GS, delos Reyes BG, Brar DS (2003) Alien genes introgression and development of monosomic alien addition linesfrom Oryza latifolia Desv. to rice Oryza sativa L. Theor Appl Genet 107:395–405

    Google Scholar 

  • Murovec J, Bohanec B (2011) Haploids and doubled haploids in plant breeding. In: Abdurakhmonov IY (eds) Plant breeding. InTech, Rijeka, Croatia, pp 87–106

    Google Scholar 

  • Musacchio A, Desai A (2017) A molecular view of kinetochore assemby and function. Biology 6:5

    PubMed Central  Google Scholar 

  • Musacchio A, Salmon ED (2007) The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 8(5):379–393

    CAS  PubMed  Google Scholar 

  • Mwathi MW, Gupta M, Atri C, Banga SS, Batley J, Mason AS (2017) Segregation for fertility and meiotic stability in novel Brassica allohexaploids. Theor Appl Genet 130:767–776

    CAS  PubMed  Google Scholar 

  • Mwathi MW, Gupta M, Quezada D, Pradhan A, Batley J, Mason AS (2020) Fertile allohexaploid Brassica hybrids obtained from crosses between B. oleracea and B. juncea via ovule rescue and colchicine treatment of cuttings. Plant Cell Tiss Org Cult 140:301–313

    CAS  Google Scholar 

  • Nagaharu U (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Naseem S, Kumar G (2013) Induced desynaptic variation in poppy (Papaver somniferum L.). Crop Breed Appl Biotechnol 13:363–366

    Google Scholar 

  • Nieto Feliner G, Casacuberta J, Wendel JF (2020) Genomics of evolutionary novelty in hybrids and polyploids. Front Genet 11:792

    PubMed  PubMed Central  Google Scholar 

  • Niroula RK, Bimb HP (2009) Overview of wheat × maize system of crosses for dihaploid induction in wheat. World Appl Sci J 7(8):1037–1045

    CAS  Google Scholar 

  • Nonomura K, Nakano M, Fukuda T, Eiguchi M, Miyao A, Hirochika H, Kurata N (2004) The novel gene homologous pairing aberration in rice meiosis I of rice encodes a putative coiled-coil protein required for homologous chromosome pairing in meiosis. Plant Cell 16:1008–1020

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohkawa Y, Suenaga K, Ogawa T (1992) Production of haploid wheat plants through pollination of sorghum pollen. Jpn J Breed 42(4):891–894

    Google Scholar 

  • Olsson G (1960a) Species crosses within the genus Brassica. I. Artificial Brassica juncea coss. Hereditas 46:171–223

    Google Scholar 

  • Olsson G (1960b) Species crosses within the genus Brassica. II. Artificial Brassica napus L. Hereditas 46:351–386

    Google Scholar 

  • Osborn TC, Butruille DV, Sharpe AG, Pickering KJ, Parkin IAP, Parker JS, Lydiate DJ (2003) Detection and effects of a homoeologous reciprocal transposition in Brassica napus. Genetics 165:1569–1577

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ozkan H, Feldman M (2009) Rapid cytological diploidization in newly formed allopolyploids of the wheat (Aegilops-Triticum) group. Genome 52:926–934

    CAS  PubMed  Google Scholar 

  • Pagliarini MS (2000) Meiotic behavior of economically important plant species: the relationship between fertility and male sterility. Genet Mol Biol 23:997–1002

    Google Scholar 

  • Palmer DK, O’Day K, Wener MH, Andrews BS, Margolis RL (1987) A 17–kD centromere protein (CENP–A) copurifies with nucleosome core particles and with histones. J Cell Biol 104(4):805–815

    CAS  PubMed  Google Scholar 

  • Parisod C, Alix K, Just J, Petit M, Sarilar V, Mhiri C, Ainouche M, Chalhoub B, Grandbastien MA (2010a) Impact of transposable elements on the organization and function of allopolyploid genomes. New Phytol 186:37–45

    Google Scholar 

  • Parisod C, Holderegger R, Brochmann C (2010b) Evolutionary consequences of autopolyploidy. New Phytol 186:5–17

    Google Scholar 

  • Paritosh K, Yadava SK, Singh P, Bhayana L, Mukhopadhyay A, Gupta V, Bisht NC, Zhang J, Kudrna DA, Copetti D, Wing RA, Bhaskar V, Lachagari R, Pradhan AK, Pental D (2021) A chromosome–scale assembly of allotetraploid Brassica juncea (AABB) elucidates comparative architecture of the A and B genomes. Plant Biotechnol J 19:602–614

    CAS  PubMed  Google Scholar 

  • Park HR, Park JE, Kim JH, Shin H, Yu SH, Son S et al (2020) Meiotic chromosome stability and suppression of crossover between non-homologous chromosomes in xBrassicoraphanus, an intergeneric allotetraploid derived from a cross between Brassica rapa and Raphanus sativus. Front Plant Sci 11:851

    PubMed  PubMed Central  Google Scholar 

  • Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin D, Llewellyn D et al (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492:423–427

    CAS  PubMed  Google Scholar 

  • Pecinka A, Fang W, Rehmsmeier M, Levy AA, Scheid OM (2011) Polyploidization increases meiotic recombination frequency in Arabidopsis. BMC Biol 9:24. https://doi.org/10.1186/1741-7007-9-24

    Article  PubMed  PubMed Central  Google Scholar 

  • Pele A, Rousseau-Gueutin M, Chevre AM (2018) Speciation success of polyploid plants closely relates to the regulation of meiotic recombination. Front Plant Sci 9:907

    PubMed  PubMed Central  Google Scholar 

  • Pertuze RA, Ji Y, Chetelat RT (2003) Transmission and recombination of homoeologous Solanum sitiens chromosomes in tomato. Theor Appl Genet 107:1391–1401

    PubMed  Google Scholar 

  • Pignatta D, Dilkes BP, Yoo SY, Henry IM, Madlung A, Doerge RW et al (2010) Differential sensitivity of the Arabidopsis thaliana transcriptome and enhancers to the effects of genome doubling. New Phytol 186:194–206

    CAS  PubMed  Google Scholar 

  • Pires JC, Zhao J, Schranz ME, Leon EJ, Quijada PA, Lukens LN, Osborn TC (2004) Flowering time divergence and genomic rearrangements in resynthesized Brassica polyploids (Brassicaceae). Biol J Lin Soc 82:675–688

    Google Scholar 

  • Polgári D, Cseh A, Szakacs E, Jager K, Molnar-Lang M, Sagi L (2014) High frequency generation and characterization of intergeneric hybrids and haploids from new wheat-barley crosses. Plant Cell Rep 33:1323–1331

    PubMed  Google Scholar 

  • Pont C, Murat F, Confolent C, Balzergue S, Salse J (2011) RNA-seq in grain unveils fate of neo- and paleopolyploidization events in bread wheat (Triticum aestivum L.). Genome Biol 12:119

    Google Scholar 

  • Pradhan A, Plummer JA, Nelson MN, Cowling WA, Yan G (2010) Trigenomic hybrids from interspecific crosses between Brassica napus and B. nigra. Crop Pasture Sci 61:464–474

    Google Scholar 

  • Pradillo M, Lopez E, Romero C, Sanchez-Moran E, Cunado N, Santos JL (2007) An analysis of univalent segregation in meiotic mutants of Arabidopsis thaliana: a possible role for synaptonemal complex. Genetics 175:505–511

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prakash S (1973a) Haploidy in Brassica nigra Koch. Euphytica 22:613–614

    Google Scholar 

  • Prakash S (1973b) Non-homologous meiotic pairing in the A and B genomes of Brassica: its breeding significance in the production of variable amphidiploids. Genet Res Camb 21:133–137

    Google Scholar 

  • Prakash S, Bhat SR, Quiros CF, Kirti PB, Chopra VL (2009) Brassica and its close allies: cytogenetics and evolution. Plant Breed Rev 31:21–187

    CAS  Google Scholar 

  • Prigge V, Melchinger AE (2012) Production of haploids and doubled haploids in maize. In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Plant cell culture protocols. Humana Press, Totowa, NJ, pp 161–172

    Google Scholar 

  • Quijada PA, Udall JA, Lambert B, Osborn TC (2006) Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 1. Identification of genomic regions from winter germplasm. Theor Appl Genet 113:549–561

    CAS  PubMed  Google Scholar 

  • Rahman MH (2001) Production of yellow-seeded Brassica napus through interspecific crosses. Plant Breed 120:463–472

    Google Scholar 

  • Rahman M, de Jimenez MM (2016) Behind the scenes of microspore-based double haploid development in Brassica napus: a review. J Plant Sci Mol Breed 5:1

    Google Scholar 

  • Ramanna MS, Hermsen JGT (1979) Unique meiotic behavior in F1 plants from a cross between a non-tuberous and a tuberous Solanum species in section Petota. Euphytica 28:9–15

    Google Scholar 

  • Ramchiary N, Padmaja KL, Sharma S, Gupta V, Sodhi YS, Mukhopadhyay A, Arumugam N, Pental D, Pradhan AK (2007) Mapping of yield influencing QTL in Brassica juncea: implications for breeding of a major oilseed crop of dryland areas. Theor Appl Genet 115:807–817

    CAS  PubMed  Google Scholar 

  • Ramsey J, Ramsey TS (2014) Ecological studies of polyploidy in the 100 years following its discovery. Phil Trans Roy Soc B 369:20130352. https://doi.org/10.1098/rstb.2013.0352

    Article  Google Scholar 

  • Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Annu Rev Ecol Syst 33:589–639

    Google Scholar 

  • Rao SR, Kumar A (2003) Cytological investigations in a synaptic variant of Anogeissus sericea var. sericea Brandis (Combretaceae), an important hardwood tree of Rajasthan. Bot J Linn Soc 142:103–109

    Google Scholar 

  • Rashid H, Bowei C, Yang Z, Qingyong Y, Xianhong G, Zaiyun L (2021) Asymmetrical effects of autopolyploidization on organ size and gene expression in Brassica rapa and B. oleracea. Sci Hort 282:109991

    Google Scholar 

  • Ravi M, Chan SW (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 464:615–618

    CAS  PubMed  Google Scholar 

  • Reiss E, Schubert J, Scholze P, Kramer R, Sonntag K (2009) The barley thaumatin-like protein Hv-TLP8 enhances resistance of oilseed rape plants to Plasmodiophora brassicae. Plant Breed 128:210–212

    CAS  Google Scholar 

  • Ren R, Wang H, Guo C, Zhang N, Zeng L, Chen Y, Ma H, Qi J (2018) Widespread whole genome duplications contribute to genome complexity and species diversity in angiosperms. Mol Plant 11:414–428

    CAS  PubMed  Google Scholar 

  • Rey E, Abrouk M, Keeble-Gagnere G, Karafiatova M, Vrana J, Balzergue S, Taconnat LS, Brunaud V, Magniette MM, Endo TR, Bartos J (2018) Transcriptome reprogramming due to the introduction of a barley telosome into bread wheat affects more barley genes than wheat. Plant Biotechnol J 16:1767–1777

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riera-Lizarazu O, Mujeeb-Kazi A (1993) Polyhaploid production in the Triticeae: wheat × Tripsacum crosses. Crop Sci 33(5):973–976

    Google Scholar 

  • Riley R, Chapman V (1958) Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 182:713–715

    Google Scholar 

  • Riley R, Chapman V, Kimber G (1959) Genetic control of chromosome pairing in intergeneric hybrids with wheat. Nature 183:1244–1246

    CAS  PubMed  Google Scholar 

  • Rousseau-Gueutin M, Morice J, Coriton O, Huteau V, Trotoux G, Negre S et al (2017) The impact of open pollination on the structural evolutionary dynamics, meiotic behavior and fertility of resynthesized allotetraploid Brassica napus L. G3-Genes Genom Genet 7:705–717

    Google Scholar 

  • Rout K, Sharma M, Gupta V, Mukhopadhyay A, Sodhi YS, Pental D, Pradhan AK (2015) Deciphering allelic variations for seed glucosinolate traits in oilseed mustard (Brassica juncea) using two bi–parental mapping populations. Theor Appl Genet 128:657–666

    CAS  PubMed  Google Scholar 

  • Rout K, Yadav BG, Yadava SK, Mukhopadhyay A, Gupta V, Pental D, Pradhan AK (2018) QTL landscape for oil content in Brassica juncea: analysis in multiple bi–parental populations in high and “0” erucic background. Front Plant Sci 9:1448

    PubMed  PubMed Central  Google Scholar 

  • Salmon A, Flagel L, Ying B, Udall JA, Wendel JF (2010) Homoeologous non-reciprocal recombination in polyploid cotton. New Phytol 186:123–134

    CAS  PubMed  Google Scholar 

  • Samans B, Chalhoub B, Snowdon RJ (2017) Surviving a genome collision: genomic signatures of allopolyploidization in the recent crop species. Plant Genome 10. https://doi.org/10.3835/plantgenome2017.02.0013

  • Samans B, Snowdon R, Mason AS (2018) Homoeologous exchanges and gene losses generate diversity and differentiate the B. napus genome from that of its ancestors. In: Liu S, Snowdon R, Chalhoub B (eds) The Brassica napus genome. Springer, Cham, pp 131–148

    Google Scholar 

  • Sanei M, Pickering R, Kumke K, Nasuda S, Houben A (2011) Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proc Natl Acad Sci USA 108:E498-505

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sankoff D, Zheng C, Zhu Q (2010) The collapse of gene complement following whole genome duplication. BMC Genomics 11:313. https://doi.org/10.1186/1471-2164-11-313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarla N, Raut RN (1988) Synthesis of B. carinata from B. nigra × B. oleracea hybrids obtained by ovary culture. Theor Appl Genet 76:846–849

    CAS  PubMed  Google Scholar 

  • Schneider H, Liu HM, Chang YF, Ohlsen D, Perrie LR, Shepherd L et al (2017) Neo-and paleopolyploidy contribute to the species diversity of Asplenium-the most species-rich genus of ferns. J Syst Evol 55:353–364

    Google Scholar 

  • Schranz ME, Osborn TC (2000) Novel flowering time variation in the resynthesized polyploid Brassica napus. J Hered 91:242–246

    CAS  PubMed  Google Scholar 

  • Schranz ME, Osborn TC (2004) De novo variation in life-history traits and responses to growth conditions of resynthesized polyploid Brassica napus (Brassicaceae). Amer J Bot 91:174–183

    Google Scholar 

  • Sears ER (1952) Homoeologous chromosomes in Triticum aestivum. Genetics 37:624

    Google Scholar 

  • Sears ER (1954) The aneuploids of common wheat. Agric Exp State Res Bull 572:1–58

    Google Scholar 

  • Sharbrough J, Conover JL, Tate JA, Wendel JF, Sloan DB (2017) Cytonuclear responses to genome doubling. Amer J Bot 104:1277–1280

    CAS  Google Scholar 

  • Shen SX, Hou XL, Zhang CH (2006) A study on obtaining primary trisomics by the isolated microspore culture of autotetraploid Chinese cabbage. Acta Hort Sin 33:1209–1214

    Google Scholar 

  • Shen D, Suhrkamp I, Wang Y, Liu S, Menkhaus J, Verreet JA, Fan L, Cai D (2014) Identification and characterization of micro RNAs in oilseed rape (Brassica napus) responsive to infection with the pathogenic fungus Verticillium longisporum using Brassica AA (Brassica rapa) and CC (Brassica oleracea) as reference genomes. New Phytol 204:577–594

    CAS  PubMed  Google Scholar 

  • Shim J, Panaud O, Vitte C, Mendioro MS, Brar DS (2010) RDA derived Oryza minuta-specific clones to probe genomic conservation across Oryza and introgression into rice (O. sativa L.). Euphytica 176:269–279

    CAS  Google Scholar 

  • Shmykova NA, Shumilina DV, Suprunova TP (2016) Doubled haploid production in Brassica L. species. Russ J Genet Appl Res 6:68–77

    Google Scholar 

  • Shumilina D, Kornyukhin D, Domblides E, Soldatenko A, Artemyeva A (2020) Effects of genotype and culture conditions on microspore embryogenesis and plant regeneration in Brassica rapa ssp. rapa L. Plants 9(2):278

    Google Scholar 

  • Siegel JJ, Amon A (2012) New insights into the troubles of aneuploidy. Annu Rev Cell Dev Biol 28:189–214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siebel J, Pauls KP (1989) A comparison of anther and microspore culture as a breeding tool in Brassica napus. Theor Appl Genet 78:473–479

    CAS  PubMed  Google Scholar 

  • Singh RJ (2002) Plant cytogenetics. CRC Press, London, p 398

    Google Scholar 

  • Singh RJ, Ikehashi H (1981) Monogenic male sterility in rice: induction, identification and inheritance. Crop Sci 21:286–289

    Google Scholar 

  • Singh K, Multani D, Khush GS (1996) Secondary trisomics and telotrisomics of rice: origin, characterization, and use in determining the orientation of chromosome map. Genetics 143:517–529

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singhal VK, Kumar P (2010) Variable sized pollen grains due to impaired male meiosis in the cold desert plants of Northwest Himalayas (India). In: Kaiser BJ (ed) Pollen: structure, types and effects. Nova Science Publishers Inc., New York, pp 101–126

    Google Scholar 

  • Singhal VK, Kaur M, Himshikha KP, Gupta RC (2012) High pollen sterility and 2n pollen grains in an asynaptic 4× cytotype (2n = 48) of solanum nigrum L. Cytologia 77(3):333–342

    Google Scholar 

  • Soltis PS, Soltis DE (2000) The role of genetic and genomic attributes in the success of polyploids. Proc Natl Acad Sci 97:7051–7057

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soltis PS, Soltis DE (2016) Ancient WGD events as drivers of key innovations in angiosperms. Curr Opin Plant Biol 30:159–165

    PubMed  Google Scholar 

  • Song KM, Lu P, Tang KL, Osborn TC (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci USA 92:7719–7723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sosnowska K, Majka M, Majka J, Bocianowski J, Kasprowicz M, Ksiązczyk T, Szała L, Cegielska-Taras T (2020) Chromosome instabilities in resynthesized Brassica napus revealed by FISH. J Appl Genet 61:323–335

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spoelhof J, Soltis P, Soltis D (2017) Pure polyploidy: Closing the gaps in autopolyploid research: pure polyploidy. J Syst Evol 55:340–352

    Google Scholar 

  • Srinivasan K, Malathi V, Kirti P, Prakash S, Chopra VL (1998) Generation and characterisation of monosomic chromosome addition lines of Brassica campestrisB. oxyrrhina. Theor Appl Genet 97:976–981

    CAS  Google Scholar 

  • Srivastava PS, Narula A, Srivastava S (2004) Plant biotechnology and molecular markers. Springer, Dordrecht, p 400

    Google Scholar 

  • Stebbins GL (1947) Types of polyploids: their classification and significance. Adv Genet 1:403–429

    PubMed  Google Scholar 

  • Stein A, Coriton O, Rousseau-Gueutin M, Samans B, Schiessl SV, Obermeier C, Parkin IAP, Chevre AM, Snowdon RJ (2017) Mapping of homoeologous chromosome exchanges influencing quantitative trait variation in Brassica napus. Plant Biotechnol J 15:1478–1489

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Wu Y, Yang C, Sun S, Lin X, Liu L (2017) Segmental allotetraploidy generates extensive homoeologous expression rewiring and phenotypic diversity at the population level in rice. Mol Ecol 26:5451–5466

    CAS  PubMed  Google Scholar 

  • Szadkowski E, Eber F, Huteau V, Lode M, Huneau C, Belcram H, Coriton O, Manzanares-Dauleux MJ, Delourme R, King GJ, Chalhoub B, Jenczewski E, Chevre AM (2010) The first meiosis of resynthesized Brassica napus, a genome blender. New Phytol 186:102–112

    CAS  PubMed  Google Scholar 

  • Szadkowski E, Eber F, Huteau V, Lode M, Coriton O, Jenczewski E, Chebvre AM (2011) Polyploid formation pathways have an impact on genetic rearrangements in resynthesized Brassica napus. New Phytol 191:884–894

    CAS  PubMed  Google Scholar 

  • Takeda T, Takahata Y (1996) Production of alloplasmic Chinese cabbage using synthesized trigenomic hexaploid (AABBCC) in Brassica. Acta Hort 407:151–154

    Google Scholar 

  • Tang K, Hill CB, Williamsp H (1988) Development of trisomics of rapid-cycling Brassica rapa. Eucarpia Cruciferae Newsl 13:60–61

    Google Scholar 

  • Tank DC, Eastman JM, Pennell MW, Soltis PS, Soltis DE, Hinchliff CE, Brown JW, Sessa EB, Harmon LJ (2015) Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications. New Phytol 207(2):454–467

    PubMed  Google Scholar 

  • Tepperberg JH, Moses MJ, Nath J (1999) Colchicine effects on meiosis in the male mouse II. Inhibition of synapsis induction of nondisjunction. Mutat Res 429:93–105

    CAS  PubMed  Google Scholar 

  • This P, Ochoa O, Quiros CF (1990) Dissection of the Brassica nigra genome by monosomic addition lines. Plant Breed 105:211–220

    Google Scholar 

  • Tian E, Jiang Y, Chen L, Zou J, Liu F, Meng J (2010) Synthesis of a Brassica trigenomic allohexaploid (B. carinata_B. rapa) de novo and its stability in subsequent generations. Theor Appl Genet 121:1431–1440

    CAS  PubMed  Google Scholar 

  • Tokumasu S (1976) The increase of seed fertility of Brassicoraphamus through cytological irregularity. Euphytica 25:463–470

    Google Scholar 

  • Touraev A, Forster BP, Jain SM (2009) Advances in haploid production in higher plants. Springer, Netherlands, p 348

    Google Scholar 

  • Trentin HU, Frei UK, Lubberstedt T (2020) Breeding maize maternal haploid inducers. Plants 9:614

    Google Scholar 

  • Tu YQ, Sun J, Ge X, Li ZY (2009) Chromosome elimination, addition and introgression in intertribal partial hybrids between Brassica rapa and Isatis indigotica. Ann Bot 103:1039–1048

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tu YQ, Sun J, Ge XH, Li ZY (2010) Production and genetic analysis of partial hybrids from intertribal sexual crosses between Brassica napus and Isatis indigotica and progenies. Genome 53:146–156

    CAS  PubMed  Google Scholar 

  • Udall JA, Quijada PA, Lambert B, Osborn TC (2006) Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 2. Identification of alleles from unadapted germplasm. Theor Appl Genet 113:597–609

    CAS  PubMed  Google Scholar 

  • Valdes A, Clemens R, Mollers C (2018) Mapping of quantitative trait loci for microspore embryogenesis-related traits in the oilseed rape doubled haploid population DH4069 × express 617. Mol Breed 38:65

    Google Scholar 

  • Van de Peer Y, Mizrachi E, Marchal K (2017) The evolutionary significance of polyploidy. Nat Rev Genet 18:411–424

    PubMed  Google Scholar 

  • Vicient CM, Casacuberta JM (2017) Impact of transposable elements on polyploid plant genomes. Ann Bot 120(2):195–207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walczak CE, Cai S, Khodjakov A (2010) Mechanisms of chromosome behaviour during mitosis. Nat Rev Mol Cell Biol 11(2):91–102

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang N, Dawe RK (2018) Centromere size and its relationship to haploid formation in plants. Mol Plant 11:398–406

    CAS  PubMed  Google Scholar 

  • Wang RQ, Gao JH, Mao LP, Du RH (2002) Chromosome location of the male-sterility and yellow seedling gene in line 1066A of foxtail millet. Acta Bot Sin 44:1209–1212

    CAS  Google Scholar 

  • Wang Y, Sonntag K, Rudloff E, Wehling P, Snowdon RJ (2006) GISH analysis of disomic Brassica napus-Crambe abyssinica chromosome addition lines produced by microspore culture from monosomic addition lines. Plant Cell Rep 25:35–40

    PubMed  Google Scholar 

  • Wang RQ, Gao ZH, Guan ZB, Mao LP (2007) Chromosome location and linkage analysis of a few agronomically important traits in foxtail millet. Acta Agron Sin 33:9–14

    Google Scholar 

  • Wang Y, Jha AK, Chen R, Doonan JH, Yang M (2010) Polyploidy-associated genomic instability in Arabidopsis thaliana. Genesis 48:254–263

    Google Scholar 

  • Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun JH, Bancroft I, Cheng F, Huang S, Li X, Hua W, Wang J, Wang X, Freeling M, Pires JC, Paterson AH, Chalhoub B, Wang B et al (2011) Brassica rapa genome sequencing project consortium. The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43(10):1035–1039

    Google Scholar 

  • Wang K, Wu YF, Zhang WL, Dawe RK, Jiang JM (2014) Maize centromeres expand and adopt a uniform size in the genetic background of oat. Genome Res 24:107–116

    PubMed  PubMed Central  Google Scholar 

  • Wang S, Jin W, Wang K (2019) Centromere histone H3-and phospholipase-mediated haploid induction in plants. Plant Methods 15:1–10

    Google Scholar 

  • Wang N, Gent JI, Dawe RK (2021) Haploid induction by a maize cenh3 null mutant. Sci Adv 7:eabe2299. https://doi.org/10.1126/sciadv.abe2299

  • Warwick SI, Francis A, Al-Shehbaz IA (2006) Brassicaceae: species checklist and database on CD-Rom. Plant Syst Evol 259:249–258

    Google Scholar 

  • Watts A, Sankaranarayanan S, Raipuria RK, Watts A (2020) Production and application of doubled haploid in Brassica improvement. In: Wani SH, Thakur AK, Khan YJ (eds) Brassica improvement. Springer, Cham, pp 67–84

    Google Scholar 

  • Wedzony M, Forster BP, Zur I, Golemiec E, Szechynska-Hebda M, Dubas E, Gotebiowska G, Wedzony M (2009) Progress in doubled haploid technology in higher plants. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer, Dordrecht, pp 1–33

    Google Scholar 

  • Wen J, Zeng XH, Pu YY, Qi LP, Li ZY, Tu JX, Ma CZ, Shen JX, Fu TD (2010) Meiotic nondisjunction in resynthesized Brassica napus and generation of aneuploids through microspore culture and their characterization. Euphytica 173:99–111

    Google Scholar 

  • Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42:225–249

    CAS  PubMed  Google Scholar 

  • Wendel JF, Jackson SA, Meyers BC, Wing RA (2016) Evolution of plant genome architecture. Genome Biol 17:37. https://doi.org/10.1186/s13059-016-0908-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong Z, Gaeta RT, Pires JC (2011) Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc Natl Acad Sci USA 108:7908–7913

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong Z, Gaeta RT, Edger PP, Cao Y, Zhao K, Zhang S, Pires JC (2021) Chromosome inheritance and meiotic stability in allopolyploid Brassica napus. G3-Genes Genom Genet 11(2):jkaa011. https://doi.org/10.1093/g3journal/jkaa011

  • Xu CY, Li ZY (2007) Origin of new Brassica types from single intergeneric hybrid between B. rapa and Orychophragmus violaceus by rapid chromosome evolution and introgression. J Genet 86:249–257

    CAS  PubMed  Google Scholar 

  • Xu Y, Zhong L, Wu X, Fang X, Wang J (2009) Rapid alterations of gene expression and cytosine methylation in newly synthesized Brassica napus allopolyploids. Planta 229:471–483

    CAS  PubMed  Google Scholar 

  • Xu Z, Xie B, Wu T, Xin X, Man L, Tan G, Xiong Z (2016) Karyotyping and identifying all of the chromosomes of allopolyploid Brassica juncea using multicolor FISH. Crop J 4:266–274

    Google Scholar 

  • Xu Y, Zhang W, Chen G, Wang J (2017) DNA methylation alteration is a major consequence of genome doubling in autotetraploid Brassica rapa. Arch Biol Sci 69:689–697

    Google Scholar 

  • Xu C, Huang Q, Ge X, Li Z (2019) Phenotypic, cytogenetic, and molecular marker analysis of Brassica napus introgressants derived from an intergeneric hybridization with Orychophragmus. PLoS ONE 14(1):e0210518

    Google Scholar 

  • Yadava SK, Arumugam N, Mukhopadhyay A, Sodhi YS, Gupta V, Pental D, Pradhan AK (2012) QTL mapping of yield–associated traits in Brassica juncea: meta-analysis and epistatic interactions using two different crosses between east European and Indian gene pool lines. Theor Appl Genet 125:1553–1564

    CAS  PubMed  Google Scholar 

  • Yan G, Liu H, Wang H, Lu Z, Wang Y, Mullan D, Hamblin J, Liu C (2017) Accelerated generation of selfed pure line plants for gene identification and crop breeding. Front Plant Sci 8:1786

    PubMed  PubMed Central  Google Scholar 

  • Yang SJ (1964) Numerical chromosome instability in Nicotiana hybrids I. Interplant variation among offspring of amphiploids. Genetics 50:745–756

    Google Scholar 

  • Yang GS, Robbelen G, Fu TD (1994) Effects of B genome on chromosome pairing among the 3 homologous genomes A, B and C in Brassica. Huazhong Agric Univ 13:111–117

    Google Scholar 

  • Yang J, Liu D, Wang X, Ji C, Cheng F, Liu B, Hu Z, Chen S, Pental D, Ju Y, Yao P, Li X, Xie K, Zhang J, Wang J, Liu F, Ma W, Shopan J, Zheng H, Mackenzie SA, Zhang M (2016) The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nat Genet 48:1225–1232

    Google Scholar 

  • Yang S, Chen S, Zhang K, Li L, Yin Y, Gill RA, Yan G, Meng J, Cowling WA, Zhou W (2018) A high-density genetic map of an allohexaploid Brassica doubled haploid population reveals quantitative trait loci for pollen viability and fertility. Front Plant Sci 9:1161

    Google Scholar 

  • Yant L, Hollister JD, Wright KM, Arnold BJ, Higgins JD, Franklin FCH, Bomblies K (2013) Meiotic adaptation to genome duplication in Arabidopsis arenosa. Curr Biol 23:2151–2156

    CAS  PubMed  Google Scholar 

  • Yao XC, Ge XH, Li ZY (2012) Different fertility and meiotic regularity in allohexaploids derived from trigenomic hybrids between three cultivated Brassica allotetraploids and B. maurorum. Plant Cell Rep 31:781–788

    PubMed  Google Scholar 

  • Yao L, Zhang Y, Liu C, Liu Y, Wang Y, Liang D, Liu J, Sahoo G, Kelliher T (2018) OsMATL mutation induces haploid seed formation in indica rice. Nat Plants 4:530–533

    CAS  PubMed  Google Scholar 

  • Yin L, Zhu Z, Luo X, Huang L, Li Y, Mason AS, Yang J, Ge X, Long Y, Wang J, Zou Q, Tao L, Kang Z, Tang R, Wang M, Fu S (2020) Genome wide duplication of allotetraploid Brassica napus produces novel characteristics and extensive ploidy variation in self-pollinated progeny. G3-Genes Genom Genet 10:3687–3699

    Google Scholar 

  • Yoo MJ, Szadkowski E, Wendel JF (2013) Homoeolog expression bias and expression level dominance in allopolyploid cotton. Heredity 110:171–180

    CAS  PubMed  Google Scholar 

  • Yoo MJ, Liu X, Pires JC, Soltis PS, Soltis DE (2014) Nonadditive gene expression in polyploids. Annu Rev Genet 48:485–517

    CAS  PubMed  Google Scholar 

  • Zhang Y, Xu GH, Guo XY, Fan LJ (2005) Two ancient rounds of polyploidy in rice genome. J Zhejiang Univ Sci B 6:87–90

    Google Scholar 

  • Zhang CH, Zhu HY, Li XF, Shen SX, Chen XP, Hong MAN, Xuan SX (2006) Obtaining and cytological identification of a set of primary trisomics in cabbage. Agric Sci China 5:655–660

    Google Scholar 

  • Zhang Z, Qiu F, Liu Y, Ma K, Li Z, Xu S (2008) Chromosome elimination and in vivo haploid production induced by Stock 6-derived inducer line in maize (Zea mays L.). Plant Cell Rep 27:1851–1860

    Google Scholar 

  • Zhang CH, Li XF, Shen SX, Yuan H, Xuan SX (2009) Determination of n+1 gamete transmission rate of trisomics and location of gene controlling 2n gamete formation in Chinese cabbage (Brassica rapa). J Integr Plant Biol 51(1):29–34

    Google Scholar 

  • Zhang H, Bian Y, Gou X, Zhu B, Xu C, Qi B, Li N, Rustgi S, Zhou H, Han F, Jiang J, Wettstein D, Liu B (2013) Persistent whole-chromosome aneuploidy is generally associated with nascent allohexaploid wheat. Proc Natl Acad Sci USA 110:3447–3452

    Google Scholar 

  • Zhang J, Liu Y, Xia EH, Yao QY, Liu XD, Gao LZ (2015) Autotetraploid rice methylome analysis reveals methylation variation of transposable elements and their effects on gene expression. Proc Natl Acad Sci USA 112(50):E7022–E7029. https://doi.org/10.1073/pnas.1515170112

  • Zhang A, Li N, Gong L, Gou X, Wang B, Deng X, Li C, Dong Q, Zhang H, Liu B (2017) Global analysis of gene expression in response to whole-chromosome aneuploidy in hexaploid wheat. Plant Physiol 175:828–847

    Google Scholar 

  • Zhang K, Wang X, Cheng F (2019a) Plant polyploidy: origin, evolution, and its influence on crop domestication. Hortic Plant J 5(6):231–239

    Google Scholar 

  • Zhang R, Geng S, Qin Z, Tang Z, Liu C, Liu D, Song G, Li Y, Zhang S, Li W, Gao J, Han X, Li G (2019b) The genome-wide transcriptional consequences of the nullisomic-tetrasomic stocks for homoeologous group 7 in bread wheat. BMC Genomics 20:29. https://doi.org/10.1186/s12864-018-5421-3

  • Zhao J, Udall JA, Quijada PA, Grau CR, Meng J, Osborn TC (2006) Quantitative trait loci for resistance to Sclerotinia sclerotiorum and its association with a homoeologous non-reciprocal transposition in Brassica napus L. Theor Appl Genet 112:509–516

    Google Scholar 

  • Zhao X, Xu X, Xie H, Chen S, Jin W (2013) Fertilization and uniparental chromosome elimination during crosses with maize haploid inducers. Plant Physiol 163:721–731

    Google Scholar 

  • Zhong CX, Marshall JB, Topp C, Mroczek R, Kato A, Nagaki K, Birchler JA, Jiang J, Dawe RK (2002) Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14:2825–2836

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou JJ, Sing RJ, Lee SJ (2003) Assignment of molecular linkage groups to soybean chromosomes by primary trisomics. Theor Appl Genet 107:745–750

    Google Scholar 

  • Zhou J, Chen T, Cheng C, Xianhong G, Zaiyun L (2016) Distinct subgenome stabilities in synthesized Brassica allohexaploids. Theor Appl Genet 129:1257–1271

    CAS  PubMed  Google Scholar 

  • Zhu B, Shao Y, Pan Q, Ge X, Li Z (2015) Genome-wide gene expression perturbation induced by loss of C2 chromosome in allotetraploid Brassica napus L. Front Plant Sci 6:763

    PubMed  PubMed Central  Google Scholar 

  • Zhu B, Tu Y, Zeng P, Ge X, Li Z (2016) Extraction of the constituent subgenomes of the natural allopolyploid rapeseed (Brassica napus L.). Genetics 204(3):1015–1027

    Google Scholar 

  • Zhu B, Xiang Y, Zeng P, Cai B, Huang X, Ge X, Weng Q, Li Z (2018) Genome-wide gene expression disturbance by single A1/C1 chromosome substitution in Brassica rapa restituted from natural B. napus. Front Plant Sci 9:377. https://doi.org/10.3389/fpls.2018.00377

  • Zou JJ, Singh RJ, Lee J, Xu SS, Hymowitz T (2006) SSR markers exhibit trisomic segregation distortion in soybean [Glycine max (L.) Merr.]. Crop Sci 46:1456–1461

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surinder S. Banga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, M., Banga, S.S. (2022). Heteroploidy in Brassica juncea: Basics and Applications. In: Kole, C., Mohapatra, T. (eds) The Brassica juncea Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-91507-0_7

Download citation

Publish with us

Policies and ethics