Skip to main content

Higher-Order Description of Brain Function

  • Chapter
  • First Online:
Higher-Order Systems

Part of the book series: Understanding Complex Systems ((UCS))

  • 2015 Accesses

Abstract

Higher-order interactions have long figured both at the microscopic and macroscopic level in neuronal and whole-brain descriptions, with the aim to capture structural, functional, and ultimately cognitive aspects. They are systematizing the paradigm shift that graph theory introduced by moving from studying neural and brain activation to co-activation patterns. Recently, topology has emerged as a central tool in this context due to its natural capacity to describe relations beyond pairwise interactions, and to recent advances in its computational applications. In this chapter, we summarize fundamental concepts and results of the application of higher-order descriptions to neuroscience. We start from the microscopic scale, describing how higher-order interactions have been introduced and measured in the context of neuronal populations activation patterns and in neural coding theory. We then move to the macroscopic scale, discussing recent applications of topological data analysis to whole-brain data, and finally highlight the challenges related to extracting higher-order signals from low-order ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Babichev, D. Morozov, Y. Dabaghian, R. spatial memory maps encoded by networks with transient connections. PLOS Comput. Biol. 14(9), e1006433 (2018)

    Google Scholar 

  2. A. Babichev, D. Morozov, Y. Dabaghian, Replays of spatial memories suppress topological fluctuations in cognitive map. Network Neurosc. (Cambridge, Mass.), 3(3):707–724, 2019

    Google Scholar 

  3. A. Babichev, D. Morozov, Y. Dabaghian, Replays of spatial memories suppress topological fluctuations in cognitive map. Netw. Neurosci. 3(3), 707–724 (2019)

    Article  Google Scholar 

  4. H.C. Barron, R.B. Mars, D. Dupret, J.P. Lerch, Cassandra sampaio-baptista. Cross-species neuroscience: closing the explanatory gap. Philosoph. Trans. of the Royal Society B, 376(1815), 20190633 (2021)

    Google Scholar 

  5. J.M. Beggs, D. Plenz, Neuronal avalanches in neocortical circuits. J. Neurosci. Official J. Soc. Neurosc. 23(35), 11167–11177 (2003)

    Article  Google Scholar 

  6. J. Billings, M. Saggar, J. Hlinka, S. Keilholz, G. Petri, Simplicial and topological descriptions of human brain dynamics. Network Neurosci. 5(2), 549–568 (2021)

    Google Scholar 

  7. N.A. Cayco-Gajic, J. Zylberberg, E. Shea-Brown, Triplet correlations among similarly tuned cells impact population coding. Front. Comput. Neurosci. 9, 57 (2015)

    Article  Google Scholar 

  8. K.K.A. Cho, R. Hoch, A.T. Lee, T. Patel, J.L.R. Rubenstein, V.S. Sohal, Gamma rhythms link prefrontal interneuron dysfunction with cognitive inflexibility in Dlx5/6+/- Mice. Neuron. 85(6), 1332–1343 (2015)

    Article  Google Scholar 

  9. A. Choudhary, A. Saha, S. Krueger, C. Finke, Phys. Rev., (A curious case of weak interactions (Weak-winner phase synchronization, Physical Review Research, 2021), p. 2021

    Google Scholar 

  10. M.K. Chung, H. Lee, A. DiChristofano, H. Ombao, V. Solo, Exact topological inference of the resting-state brain networks in twins. Netw. Neurosci. 3(3), 674–694 (2019)

    Article  Google Scholar 

  11. M.K. Chung, V. Villalta-Gil, H. Lee, P.J. Rathouz, B.B. Lahey, D.H. Zald, Exact topological inference for paired brain networks via persistent homology. in International Conference on Information Processing in Medical Imaging (Springer, 2017), pp. 299–310

    Google Scholar 

  12. C. Curto, V. Itskov, Cell groups reveal structure of stimulus space. PLoS Comput. Biol. 4(10), e1000205 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  13. Y. Dabaghian, V.L. Brandt, L.M. Frank, Reconceiving the hippocampal map as a topological template. Elife 3, e03476 (2014)

    Article  Google Scholar 

  14. Y. Dabaghian, F. Mémoli, L. Frank, G. Carlsson, A topological paradigm for hippocampal spatial map formation using persistent homology. PLOS Comput. Biol. 8(8), e1002581 (2012)

    Article  ADS  Google Scholar 

  15. F. de Vico Fallani, J. Richiardi, M. Chavez, S. Achard, Graph analysis of functional brain networks: practical issues in translational neuroscience. Philosoph. Trans. Royal Soc. B: Biolog. Sciences, 369(1653), 20130521 (2014)

    Google Scholar 

  16. P. Expert, L.-D. Lord, M.L. Kringelbach, G. Petri, Editorial: topological neuroscience. Netw. Neurosci. 3(3), 653–655 (2019)

    Article  Google Scholar 

  17. T. Ezaki, T. Watanabe, M. Ohzeki, N. Masuda, Energy landscape analysis of neuroimaging data. Philosoph. Trans. Royal Soc. A: Mathe. Phys. Eng. Sci. 375(2096), 20160287 (2017)

    Google Scholar 

  18. J. Faskowitz, F.Z. Esfahlani, Y. Jo, O. Sporns, R.F. Betzel, Edge-centric functional network representations of human cerebral cortex reveal overlapping system-level architecture. Nat. Neurosc. 23(12), 1644–1654 (2020)

    Article  Google Scholar 

  19. E. Ganmor, R. Segev, E. Schneidman, Sparse low-order interaction network underlies a highly correlated and learnable neural population code. Proc. Natl. Acad. Sci. U.S.A. 108(23), 9679–9684 (2011)

    Article  ADS  Google Scholar 

  20. M. Gatica, R. Cofré, P.A.M. Mediano, F.E. Rosas, P. Orio, I. Diez, S.P. Swinnen, J.M. Cortes (High-order interdependencies in the aging brain, Brain connectivity, 2021)

    Google Scholar 

  21. R. Ghrist, Barcodes: the persistent topology of data. Bull. Am. Math. Soc. 45(1), 61–75 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. C. Giusti, E. Pastalkova, C. Curto, V. Itskov, Clique topology reveals intrinsic geometric structure in neural correlations. Proc. Natl. Acad. Sci. U.S.A. 112(44), 13455–13460 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. M.S. Granovetter, The strength of weak ties. Am. J. Sociol. 1–22 (1973)

    Google Scholar 

  24. T. Hafting, M. Fyhn, S. Molden, M.-B. Moser, E.I. Moser, Microstructure of a spatial map in the entorhinal cortex. Nature 436(7052), 801–806 (2005)

    Article  ADS  Google Scholar 

  25. X. Huang, X. Kaibin, C. Chu, T. Jiang, Y. Shan, Weak higher-order interactions in macroscopic functional networks of the resting brain. J. Neurosci. 37(43), 10481–10497 (2017)

    Article  Google Scholar 

  26. E. Ibáñez-Marcelo, L. Campioni, D. Manzoni, E.L. Santarcangelo, G. Petri, Spectral and topological analyses of the cortical representation of the head position: does hypnotizability matter? Brain Behav. 9(6), e01277 (2019)

    Article  Google Scholar 

  27. E. Ibáñez-Marcelo, L. Campioni, A. Phinyomark, G. Petri, E.L. Santarcangelo, Topology highlights mesoscopic functional equivalence between imagery and perception: the case of hypnotizability. NeuroImage 200, 437–449 (2019)

    Article  Google Scholar 

  28. V. Itskov, C. Curto, E. Pastalkova, G. Buzsáki, Cell assembly sequences arising from spike threshold adaptation keep track of time in the hippocampus. J. Neurosc?: Official J. Soc. Neurosci. 31(8), 2828–2834 (2011)

    Google Scholar 

  29. L. Kanari, S. Ramaswamy, Y. Shi, S. Morand, J. Meystre, R. Perin, M. Abdellah, Y. Wang, K. Hess, H. Markram, Objective morphological classification of neocortical pyramidal cells. Cerebral Cortex (New York, N.Y. 1991), 29(4), 1719–1735 (2019)

    Google Scholar 

  30. P.S. Katz, Neural mechanisms underlying the evolvability of behaviour. Philosoph. Trans. Royal Soc. B: Biolog. Sci. 366(1574), 2086–2099 (2011)

    Google Scholar 

  31. U. Köster, J. Sohl-Dickstein, C.M. Gray, B.A. Olshausen, Modeling higher-order correlations within cortical microcolumns. PLOS Comput. Biol. 10(7), e1003684 (2014)

    Article  ADS  Google Scholar 

  32. B. Kralemann, A. Pikovsky, M. Rosenblum, Reconstructing effective phase connectivity of oscillator networks from observations. New J. Phys. 16(8), 085013 (2014)

    Article  ADS  Google Scholar 

  33. H. Lee, M.K. Chung, H. Choi, H. Kang, S. Ha, Y.K. Kim, D.S. Lee, Harmonic holes as the submodules of brain network and network dissimilarity, in International Workshop on Computational Topology in Image Context (Springer, 2019), pp. 110–122

    Google Scholar 

  34. H. Lee, M.K. Chung, H. Kang, B.-N. Kim, D.S. Lee. Discriminative persistent homology of brain networks, in 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro (IEEE, 2011), , pp. 841–844

    Google Scholar 

  35. H. Lee, M.K. Chung, H. Kang, D.S. Lee, Hole detection in metabolic connectivity of Alzheimer’s disease using k- Laplacian, in International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, 2014), pp. 297–304

    Google Scholar 

  36. H. Lee, H. Kang, M.K. Chung, B.-N. Kim, D.S. Lee, Persistent brain network homology from the perspective of dendrogram. IEEE Trans. Med. Imaging 31(12), 2267–2277 (2012)

    Article  Google Scholar 

  37. H. Lee, H. Kang, M.K. Chung, S. Lim, B.-N. Kim, D.S. Lee, Integrated multimodal network approach to PET and MRI based on multidimensional persistent homology. Hum. Brain Mapp. 38(3), 1387–1402 (2017)

    Article  Google Scholar 

  38. L.-D. Lord, P. Expert, H.M. Fernandes, G. Petri, T.J. Van Hartevelt, F. Vaccarino, G. Deco, F. Turkheimer, M.L. Kringelbach, Insights into brain architectures from the homological scaffolds of functional connectivity networks. Front. Syst. Neurosci. 10, 85 (2016)

    Article  Google Scholar 

  39. A. Montalto, L. Faes, D. Marinazzo, Mute: a matlab toolbox to compare established and novel estimators of the multivariate transfer entropy. PloS one 9(10), e109462 (2014)

    Article  ADS  Google Scholar 

  40. M.E.J. Newman, Modularity and community structure in networks. Proc. Natl. Acad. Sci. U.S.A. 103(23), 8577–8582 (2006)

    Article  ADS  Google Scholar 

  41. J. O’Keefe, J. Dostrovsky, The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34(1), 171–175 (1971)

    Google Scholar 

  42. F. Orhan, H. Fatouros-Bergman, M. Goiny, A. Malmqvist, F. Piehl, K. Schizophrenia Project (KaSP) Consortium, S. Cervenka, K. Collste, P. Victorsson, C.M. Sellgren, L. Flyckt, S. Erhardt, G. Engberg CSF GABA is reduced in first-episode psychosis and associates to symptom severity. Mol. Psych. 23(5), 1244–1250 (2018)

    Google Scholar 

  43. A. Patania, P. Selvaggi, M. Veronese, O. Dipasquale, P. Expert, G. Petri, Topological gene expression networks recapitulate brain anatomy and function. Netw. Neurosci. (Cambridge, Mass.) 3(3), 744–762 (2019)

    Google Scholar 

  44. G. Petri, P. Expert, F. Turkheimer, R. Carhart-Harris, D. Nutt, P.J. Hellyer, F. Vaccarino, Homological scaffolds of brain functional networks. J. R. Soc. Interface 11(101), 20140873 (2014)

    Article  Google Scholar 

  45. G. Petri, S. Musslick, B. Dey, K. Özcimder, D. Turner, N.K. Ahmed, T.L. Willke, J.D. Cohen, Topological limits to the parallel processing capability of network architectures. Nat. Phys. 17(5), 646–651 (2021)

    Article  Google Scholar 

  46. G. Petri, M. Scolamiero, I. Donato, F. Vaccarino. Topological strata of weighted complex networks. PLOS ONE, 8(6) (2013)

    Google Scholar 

  47. A. Phinyomark, E. Ibanez-Marcelo, G. Petri, Resting-state fMRI functional connectivity: big data preprocessing pipelines and topological data analysis. IEEE Trans. Big Data 3(4), 415–428 (2017)

    Article  Google Scholar 

  48. S.M. Plis, J. Sui, T. Lane, S. Roy, V.P. Clark, V.K. Potluru, R.J. Huster, A. Michael, S.R. Sponheim, M.P Weisend et al. High-order interactions observed in multi-task intrinsic networks are dominant indicators of aberrant brain function in schizophrenia. Neuroimage 102, 35–48 (2014)

    Google Scholar 

  49. B. Rasch, J. Born, About sleep’s role in memory. Physiolog. Rev. 93(2), 681–766 (2013)

    Article  Google Scholar 

  50. M.W. Reimann, M. Nolte, M. Scolamiero, K. Turner, R. Perin, G. Chindemi, P. Dłotko, R. Levi, K. Hess, H. Markram, Cliques of neurons bound into cavities provide a missing link between structure and function. Front. Comput. Neurosci. 11, 48 (2017)

    Article  Google Scholar 

  51. J. Richiardi, A. Altmann, A.-C. Milazzo, C. Chang, M.M. Chakravarty, T. Banaschewski, G.J. Barker, A.L.W. Bokde, U. Bromberg, C. Büchel, P. Conrod, M. Fauth-Bühler, H. Flor, V. Frouin, J. Gallinat, H. Garavan, P. Gowland, A. Heinz, H. Lemaître, K.F. Mann, J.-L. Martinot, F. Nees, T. Paus, Z. Pausova, M. Rietschel, T.W. Robbins, M.N. Smolka, R. Spanagel, A. Ströhle, G. Schumann, M. Hawrylycz, M.D. Greicius, IMAGEN consortium, L. Albrecht, C. Andrew, M. Arroyo, E. Artiges, S. Aydin, C. Bach, T. Banaschewski, A. Barbot, G. Barker, N. Boddaert, A. Bokde, Z. Bricaud, U. Bromberg, R. Bruehl, C. Büchel, A. Cachia, A. Cattrell, P. Conrod, P. Constant, J. Dalley, B. Decideur, S. Desrivieres, T. Fadai, H.Flor, J. Gallinat, H. Garavan, F.G. Briand, P. Gowland, B. Heinrichs, A. Heinz, N. Heym, T. Hübner, J. Ireland, B. Ittermann, T. Jia, M. Lathrop, D. Lanzerath, C. Lawrence, H. Lemaitre, K. Lüdemann, C. Macare, C. Mallik, J.-F. Mangin, K. Mann, J.-L. Martinot, E. Mennigen, F.M. de Carvahlo, X. Mignon, R. Miranda, K. Müller, F. Nees, C. Nymberg, M.-L. Paillere, Z. Pausova, J.-B. Poline, L. Poustka, M. Rapp, G. Robert, J. Reuter, M. Rietschel, S. Ripke, T. Robbins, S. Rodehacke, J. Rogers, A. Romanowski, B. Ruggeri, C. Schmäl, D. Schmidt, S. Schneider, M. Schumann, F. Schubert, Y. Schwartz, M. Smolka, W. Sommer, R. Spanagel, C. Speiser, T. Spranger, A. Stedman, S. Steiner, D. Stephens, N. Strache, A. Ströhle, M. Struve, N. Subramaniam, L. Topper, R. Whelan, S. Williams, J. Yacubian, M. Zilbovicius, C.P. Wong, S. Lubbe, L. Martinez-Medina, A. Fernandes, A. Tahmasebi, Correlated gene expression supports synchronous activity in brain networks. Science 348(6240), 1241–1244 (2015)

    Google Scholar 

  52. B. Rieck, T. Yates, C. Bock, K. Borgwardt, G. Wolf, N. Turk-Browne, S. Krishnaswamy, Uncovering the topology of time-varying fmri data using cubical persistence (2020). ArXiv preprint arXiv:2006.07882

  53. F.E. Rosas, P.A.M. Mediano, M. Gastpar, H.J. Jensen, Quantifying high-order interdependencies via multivariate extensions of the mutual information. Phys. Rev. E. 100(3), 032305 (2019)

    Article  ADS  Google Scholar 

  54. Y. Roudi, J. Tyrcha, J. Hertz, Ising model for neural data: model quality and approximate methods for extracting functional connectivity. Phys. Rev. E 79(5), 051915–12 (2009)

    Article  ADS  Google Scholar 

  55. E. Rybakken, N. Baas, B. Dunn, Decoding of neural data using cohomological feature extraction. Neural Comput. 31(1), 68–93 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  56. M. Saggar, O. Sporns, J. Gonzalez-Castillo, P.A. Bandettini, G. Carlsson, G. Glover, A.L. Reiss, Towards a new approach to reveal dynamical organization of the brain using topological data analysis. Nat. Commun. 9(1), 1–14 (2018)

    Article  Google Scholar 

  57. F.A.N. Santos, E.P. Raposo, M.D. Coutinho-Filho, M. Copelli, C.J. Stam, L. Douw, Topological phase transitions in functional brain networks. Phys. Rev. E 100(3), 032414 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  58. E. Schneidman, M.J. Berry II., R. Segev, W. Bialek, Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440(7087), 1007 (2006)

    Article  ADS  Google Scholar 

  59. W.L. Shew, H. Yang, S. Yu, R. Roy, D. Plenz, Information capacity and transmission are maximized in balanced cortical networks with neuronal avalanches 31(1), 55–63 (2011)

    Google Scholar 

  60. H. Shimazaki, S. Amari, E.N. Brown, S. Grün, State-space analysis of time-varying higher-order spike correlation for multiple neural spike train data. PLOS Comput. Biol. 8(3), e1002385 (2012)

    Article  MathSciNet  Google Scholar 

  61. H. Shimazaki, K. Sadeghi, T. Ishikawa, Y. Ikegaya, T. Toyoizumi, Simultaneous silence organizes structured higher-order interactions in neural populations. Sci. Rep. 5, 9821 (2015)

    Article  ADS  Google Scholar 

  62. A.E. Sizemore, C. Giusti, A. Kahn, J.M. Vettel, R.F. Betzel, D.S. Bassett, Cliques and cavities in the human connectome. J. Comput. Neurosci. 44(1), 115–145 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  63. T.H. Sun, Linear dependence structure of the entropy space. Inf. Control. 29(4), 337–68 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  64. E. Tagliazucchi, P. Balenzuela, D. Fraiman, D.R. Chialvo, Criticality in large-scale brain fMRI dynamics unveiled by a novel point process analysis. Front. Phys. 1–12 (2013)

    Google Scholar 

  65. F.E. Turkheimer, R. Leech, P. Expert, L.-D. Lord, A.C. Vernon, The brain’s code and its canonical computational motifs. From sensory cortex to the default mode network: a multi-scale model of brain function in health and disease. Neurosc. Biobehav. Rev. 55, 211–222 (2015)

    Google Scholar 

  66. F.E. Turkheimer, F.E. Rosas, O. Dipasquale, D. Martins, E.D. Fagerholm, P. Expert, F. Váša, L.-D. Lord, R. Leech, A Complex systems perspective on neuroimaging studies of behavior and its disorders. The Neuroscientist: a Rev J. Bring. Neurob. Neurol. Psychiatry pp. 1073858421994784 (2021)

    Google Scholar 

  67. S. Watanabe, Information theoretical analysis of multivariate correlation. IBM J. Res. Dev. 4(1), 66–82 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  68. T. Watanabe, S. Hirose, H. Wada, Y. Imai, T. Machida, I. Shirouzu, S. Konishi, Y. Miyashita, N. Masuda, Energy landscapes of resting-state brain networks. Front. Neuroinformatics 8, 12 (2014)

    Article  Google Scholar 

  69. T. Watanabe, N. Masuda, F. Megumi, R. Kanai, G. Rees, Energy landscape and dynamics of brain activity during human bistable perception. Nature 5, 4765 (2014)

    Google Scholar 

  70. S. Yu, H. Yang, H. Nakahara, G.S. Santos, D. Nikolić, D. Plenz, Higher-order interactions characterized in cortical activity. J. Neurosci. 31(48), 17514–17526 (2011)

    Article  Google Scholar 

  71. H. Zhang, X. Chen, F. Shi, G. Li, M. Kim, P. Giannakopoulos, S. Haller, D. Shen, Topographical information-based high-order functional connectivity and its application in abnormality detection for mild cognitive impairment. J. Alzheimers Dis. 54(3), 1095–1112 (2016)

    Article  Google Scholar 

  72. H. Zhang, Y. Xiaobo Chen, Zhang, D. Shen, Test-retest reliability of “high-order” functional connectivity in young healthy adults. Front. Neurosci. 11, 439 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Expert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Expert, P., Petri, G. (2022). Higher-Order Description of Brain Function. In: Battiston, F., Petri, G. (eds) Higher-Order Systems. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-91374-8_17

Download citation

Publish with us

Policies and ethics