Skip to main content

A Distributed Simplex Architecture for Multi-agent Systems

  • Conference paper
  • First Online:
Dependable Software Engineering. Theories, Tools, and Applications (SETTA 2021)

Abstract

We present the Distributed Simplex Architecture (DSA), a new runtime assurance technique that provides safety guarantees for multi-agent systems (MASs). DSA is inspired by the Simplex control architecture of Sha et al., but with some significant differences. The traditional Simplex approach is limited to single-agent systems or a MAS with a centralized control scheme. DSA addresses this limitation by extending the scope of Simplex to include MASs under distributed control. In DSA, each agent runs a local instance of traditional Simplex such that the preservation of safety in the local instances implies safety for the entire MAS. Control Barrier Functions play a critical role. They are used to define DSA’s core components (the baseline controller and the decision module’s switching logic between advanced and baseline controllers) and to verify the safety of a DSA instance in a distributed manner. We provide a general proof of safety for DSA, and present experimental results for several case studies, including flocking with collision avoidance, safe navigation of ground rovers through way-points, and the safe operation of a microgrid.

This work is supported in part by NSF awards OIA-2040599, CCF-1918225, CCF-1954837, CPS-1446832 and ONR award N000142012751.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://youtu.be/E_ufaJRnfvo, https://youtu.be/PZz6nUA5fD8.

  2. 2.

    https://youtu.be/AcC8iUI0TjU.

References

  1. Nasir, M., Jin, Z., Khan, H.A., Zaffar, N.A., Vasquez, J.C., Guerrero, J.M.: A decentralized control architecture applied to DC nanogrid clusters for rural electrification in developing regions. IEEE Trans. Power Electron. 34(2), 1773–1785 (2019)

    Article  Google Scholar 

  2. Boussaada, Z., Curea, O., Camblong, H., Bellaaj Mrabet, N., Hacala, A.: Multi-agent systems for the dependability and safety of microgrids. Int. J. Interact. Design Manuf. (IJIDeM) 10(1), 1–13 (2014). https://doi.org/10.1007/s12008-014-0257-9

    Article  Google Scholar 

  3. Tahir, A., Böling, J., Haghbayan, M.-H., Toivonen, H.T., Plosila, J.: Swarms of unmanned aerial vehicles - a survey. J. Ind. Inf. Integr. 16, 100106 (2019)

    Google Scholar 

  4. Tynan, R., O’Hare, G.M.P., Marsh, D., O’Kane, D.: Multi-agent system architectures for wireless sensor networks. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2005. LNCS, vol. 3516, pp. 687–694. Springer, Heidelberg (2005). https://doi.org/10.1007/11428862_94

    Chapter  Google Scholar 

  5. Seto, D., Sha, L.: A case study on analytical analysis of the inverted pendulum real-time control system. Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, Technical report CMU/SEI-99-TR-023 (1999)

    Google Scholar 

  6. Sha, L.: Using simplicity to control complexity. IEEE Softw. 18(4), 20–28 (2001)

    Article  Google Scholar 

  7. Phan, D.T., Grosu, R., Jansen, N., Paoletti, N., Smolka, S.A., Stoller, S.D.: Neural simplex architecture. In: Lee, R., Jha, S., Mavridou, A., Giannakopoulou, D. (eds.) NFM 2020. LNCS, vol. 12229, pp. 97–114. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55754-6_6

    Chapter  Google Scholar 

  8. Gurriet, T., Singletary, A., Reher, J., Ciarletta, L., Feron, E., Ames, A.: Towards a framework for realizable safety critical control through active set invariance. In: 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS), pp. 98–106 (2018)

    Google Scholar 

  9. Egerstedt, M., Pauli, J.N., Notomista, G., Hutchinson, S.: Robot ecology: constraint-based control design for long duration autonomy. Annu. Rev. Control. 46, 1–7 (2018)

    Article  MathSciNet  Google Scholar 

  10. Wang, L., Ames, A.D., Egerstedt, M.: Safety barrier certificates for heterogeneous multi-robot systems. In: 2016 American Control Conference (ACC), pp. 5213–5218. IEEE (2016)

    Google Scholar 

  11. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certificates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24743-2_32

    Chapter  MATH  Google Scholar 

  12. Prajna, S.: Barrier certificates for nonlinear model validation. Autom. 42(1), 117–126 (2006)

    Article  MathSciNet  Google Scholar 

  13. Wieland, P., Allgöwer, F.: Constructive safety using control barrier functions. IFAC Proc. Vol. 40(12), 462–467 (2007). 7th IFAC Symposium on Nonlinear Control Systems

    Article  Google Scholar 

  14. Ames, A.D., Coogan, S., Egerstedt, M., Notomista, G., Sreenath, K., Tabuada, P.: Control barrier functions: Theory and applications. In: 18th European Control Conference, ECC 2019, pp. 3420–3431. IEEE, Naples (2019)

    Google Scholar 

  15. Borrmann, U., Wang, L., Ames, A.D., Egerstedt, M.: Control barrier certificates for safe swarm behavior. In: Egerstedt, M., Wardi, Y. (eds.) ADHS. Series IFAC-PapersOnLine, vol. 48, no. 27, pp. 68–73. Elsevier (2015)

    Google Scholar 

  16. Blanchini, F., Miani, S.: Set-Theoretic Methods in Control. 1st edn. Birkhäuser Basel (2007)

    Google Scholar 

  17. Blanchini, F.: Set invariance in control. Automatica 35(11), 1747–1767 (1999)

    Article  MathSciNet  Google Scholar 

  18. Wang, L., Han, D., Egerstedt, M.: Permissive barrier certificates for safe stabilization using sum-of-squares. In: 2018 Annual American Control Conference, ACC 2018, pp. 585–590. IEEE (2018)

    Google Scholar 

  19. Mehmood, U., et al.: Declarative vs rule-based control for flocking dynamics. In: Proceedings of 33rd Annual ACM Symposium on Applied Computing (2018)

    Google Scholar 

  20. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. SIGGRAPH Comput. Graph. 21(4), 25–34 (1987)

    Article  Google Scholar 

  21. Pogaku, N., Prodanovic, M., Green, T.C.: Modeling, analysis and testing of autonomous operation of an inverter-based microgrid. IEEE Trans. Power Electron. 22(2), 613–625 (2007)

    Article  Google Scholar 

  22. Schiffer, J., Ortega, R., Astolfi, A., Raisch, J., Sezi, T.: Conditions for stability of droop-controlled inverter-based microgrids. Automatica 50(10), 2457–2469 (2014)

    Article  MathSciNet  Google Scholar 

  23. Coelho, E.A.A., Cortizo, P.C., Garcia, P.F.D.: Small-signal stability for parallel-connected inverters in stand-alone AC supply systems. IEEE Trans. Ind. Appl. 38(2), 533–542 (2002)

    Article  Google Scholar 

  24. Kundu, S., Geng, S., Nandanoori, S.P., Hiskens, I.A., Kalsi, K.: Distributed barrier certificates for safe operation of inverter-based microgrids. In: 2019 American Control Conference (ACC), pp. 1042–1047 (2019)

    Google Scholar 

  25. Kundur, P., Balu, N., Lauby, M.: Power System Stability and Control. EPRI Power System Engineering Series. McGraw-Hill Education (1994)

    Google Scholar 

  26. Seto, D., Krogh, B., Sha, L., Chutinan, A.: The simplex architecture for safe online control system upgrades. In: Proceedings of the 1998 American Control Conference, vol. 6, pp. 3504–3508 (1998)

    Google Scholar 

  27. Aiello, M., Berryman, J., Grohs, J., Schierman, J.: Run-time assurance for advanced flight-critical control systems (2010)

    Google Scholar 

  28. Schierman, J., et al.: Run-time verification and validation for safety-critical flight control systems (2012)

    Google Scholar 

  29. Lim, Y.J., Hong, G., Shin, D., Jee, E., Bae, D.-H.: A runtime verification framework for dynamically adaptive multi-agent systems. In: 2016 International Conference on Big Data and Smart Computing (BigComp), pp. 509–512 (2016)

    Google Scholar 

  30. Alotaibi, H., Zedan, H.: Runtime verification of safety properties in multi-agents systems. In: 2010 10th International Conference on Intelligent Systems Design and Applications, pp. 356–362 (2010)

    Google Scholar 

  31. Ames, A.D., Xu, X., Grizzle, J.W., Tabuada, P.: Control barrier function based quadratic programs for safety critical systems. IEEE Trans. Autom. Control 62(8), 3861–3876 (2017)

    Article  MathSciNet  Google Scholar 

  32. Raju, D., Bharadwaj, S., Topcu, U.: Online synthesis for runtime enforcement of safety in multi-agent systems. Preprint ArXiv:1910.10380 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Usama Mehmood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mehmood, U., Stoller, S.D., Grosu, R., Roy, S., Damare, A., Smolka, S.A. (2021). A Distributed Simplex Architecture for Multi-agent Systems. In: Qin, S., Woodcock, J., Zhang, W. (eds) Dependable Software Engineering. Theories, Tools, and Applications. SETTA 2021. Lecture Notes in Computer Science(), vol 13071. Springer, Cham. https://doi.org/10.1007/978-3-030-91265-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91265-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91264-2

  • Online ISBN: 978-3-030-91265-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics