Skip to main content

Robotics in Stereotactic Neurosurgery

  • Chapter
  • First Online:
Introduction to Robotics in Minimally Invasive Neurosurgery

Abstract

Stereotactic neurosurgery is a minimally invasive procedure with high accuracy for diagnosis and treatment of intracranial pathologies. While surgery is typically performed with mechanical aiming devices, the increasing indication spectrum coupled with a growing demand for fast, reliable, and accurate treatment has instigated the search for alternatives to conventional stereotactic guiding systems. Following its first introduction in 1985, stereotactic robotic devices have increasingly gained popularity in neurosurgery, promising high accuracy, and reliability during complex stereotactic procedures such as deep brain stimulation (DBS), stereoelectroencephalography (SEEG), stereotactic laser ablation/MRI-guided interstitial laser thermotherapy (MRgLITT), and also brain biopsy. The present review seeks to provide a comprehensive analysis of the strengths and weaknesses associated with the diverse indication spectrum underlying stereotactic neurosurgery and highlight the potential of robotic technologies moving forward. Notably, a trend toward time-efficiency, safety and accuracy, maneuverability, and cost-effectiveness will dictate the successful implementation of stereotactic robotic technologies in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Spiegel EA, Wycis HT, Marks M, Lee AJ. Stereotaxic apparatus for operations on the human brain. Science (80-). 1947;106(2754):349–50. https://www.sciencemag.org/lookup/doi/10.1126/science.106.2754.349

    Article  CAS  Google Scholar 

  2. Lozano AM, Gildenberg PL, Tasker RR. In: Lozano AM, Andres M, Gildenberg PL, Tasker RR, editors. Textbook of stereotactic and functional neurosurgery. 2nd ed. Berlin, Heidelberg: Springer; 2009.

    Chapter  Google Scholar 

  3. Mazoyer B. Jean Talairach (1911–2007): a life in stereotaxy. Hum Brain Mapp. 2008;29(2):250–2. http://doi.wiley.com/10.1002/hbm.20473

    Article  Google Scholar 

  4. Riechert T, Mundinger F. Beschreibung und Anwendung eines Zielgerätes für stereotaktische Hirnoperationen (II. Modell). In: Röntgendiagnostische Probl bei intrakraniellen Geschwülsten. Berlin, Heidelberg: Springer; 1955. p. 308–37. http://link.springer.com/10.1007/978-3-662-25077-8_45. Accessed 13 Oct 2016.

    Chapter  Google Scholar 

  5. Rahman M, Murad GJA, Mocco J. Early history of the stereotactic apparatus in neurosurgery. Neurosurg Focus. 2009;27(3):1. https://thejns.org/view/journals/neurosurg-focus/27/3/article-pE12.xml

    Article  Google Scholar 

  6. Schulder M, Jarchin L. MRI in image guided surgery. In: Lozano AM, Gildenberg PL, Tasker RR, editors. Textbook of stereotactic and functional neurosurgery. 2nd ed. Berlin, Heidelberg: Springer; 2009. p. 599–617. http://link.springer.com/10.1007/978-3-540-69960-6_39.

    Chapter  Google Scholar 

  7. Perry JH, Rosenbaum AE, Lunsford DL, Swink CA, Zorub DS. Computed tomography-guided stereotactic surgery. Neurosurgery. 1980;7(4):376–81. https://academic.oup.com/neurosurgery/article-lookup/doi/10.1227/00006123-198010000-00011

    Article  CAS  Google Scholar 

  8. Cardinale F, Rizzi M, Vignati E, et al. Stereoelectroencephalography: retrospective analysis of 742 procedures in a single Centre. Brain. 2019;142(9):2688–704. https://academic.oup.com/brain/article/142/9/2688/5532295

    Article  Google Scholar 

  9. Neudorfer C, Hunsche S, Hellmich M, El Majdoub F, Maarouf M. Comparative study of robot-assisted versus conventional frame-based deep brain stimulation stereotactic neurosurgery. Stereotact Funct Neurosurg. 2018;96:327–34. https://doi.org/10.1159/000494736.

    Article  PubMed  Google Scholar 

  10. Bradac O, Steklacova A, Nebrenska K, Vrana J, De Lacy P, Benes V. Accuracy of varioguide frameless stereotactic system against frame-based stereotaxy: prospective, randomized, single-center study. World Neurosurg. 2017;104:831–40. https://doi.org/10.1016/j.wneu.2017.04.104.

    Article  PubMed  Google Scholar 

  11. Vakharia VN, Sparks R, O’Keeffe AG, Rodionov R, Miserocchi A, Mcevoy A, et al. Accuracy of intracranial electrode placement for stereoencephalography: a systematic review and meta-analysis. Epilepsia. 2017;58:921–32. https://doi.org/10.1111/epi.13713.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mirzadeh Z, Chen T, Chapple KM, Lambert M, Karis JP, Dhall R, et al. Procedural variables influencing stereotactic accuracy and efficiency in deep brain stimulation surgery. Oper Neurosurg. 2019;17:70–8. https://doi.org/10.1093/ons/opy291.

    Article  Google Scholar 

  13. Shao HM, Chen JY, Truong TK, Reed IS, Kwoh YS. A new CT-aided robotic stereotaxis system. Proc Annu Symp Comput Appl Med Care. 1985;13:668–72.

    Google Scholar 

  14. Kwoh YS, Hou J, Jonckheere EA, Hayati S. A robot with improved absolute positioning accuracy or CT guided stereotactic brain surgery. IEEE Trans Biomed Eng. 1988;35(2):153–60.

    Article  CAS  Google Scholar 

  15. Haegelen C, Touzet G, Reyns N, et al. Stereotactic robot-guided biopsies of brain stem lesions: experience with 15 cases. Neurochirurgie. 2010;56(5):363–7.

    Article  CAS  Google Scholar 

  16. Lefranc M, Touzet G, Caron S, et al. Are stereotactic sample biopsies still of value in the modern management of pineal region tumours? Lessons from a single-department, retrospective series. Acta Neurochir. 2011;153(5):1111–22.

    Article  Google Scholar 

  17. Cossu M, Cardinale F, Castana L, et al. Stereoelectroencephalography in the presurgical evaluation of focal epilepsy: a retrospective analysis of 215 procedures. Neurosurgery. 2005;57(4):706–18.

    Article  Google Scholar 

  18. Wu C, Jermakowicz WJ, Chakravorti S, Cajigas I, Sharan AD, Jagid JR, et al. Effects of surgical targeting in laser interstitial thermal therapy for mesial temporal lobe epilepsy: a multicenter study of 234 patients. Epilepsia. 2019;60:1171–83. https://doi.org/10.1111/epi.15565.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lefranc M, Le Gars D. Robotic implantation of deep brain stimulation leads, assisted by intraoperative, flat-panel CT. Acta Neurochir. 2012 Nov;154(11):2069–74.

    Article  CAS  Google Scholar 

  20. Lefranc M, Capel C, Pruvot-Occean AS, Fichten A, Desenclos C, Toussaint P, et al. Frameless robotic stereotactic biopsies: a consecutive series of 100 cases. J Neurosurg. 2015;122(2):342–52.

    Article  Google Scholar 

  21. Limousin P, Pollak P, Benazzouz A, Hoff-Mann D, Le Bas JF, Broussolle E, et al. Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet. 1995;345(8942):91–5.

    Article  CAS  Google Scholar 

  22. Ellis TM, Foote KD, Fernandez HH, Sudhyadhom A, Rodriguez RL, Zeilman P, et al. Reoperation for suboptimal outcomes after deep brain stimulation surgery. Neurosurgery. 2008 Oct;63(4):754–60.

    Article  Google Scholar 

  23. Richardson RM, Ostrem JL, Starr PA. Surgical repositioning of misplaced subthalamic electrodes in Parkinson’s disease: location of effective and ineffective leads. Stereotact Funct Neurosurg. 2009;87(5):297–303.

    Article  Google Scholar 

  24. Steigerwald F, Müller L, Johannes S, Matthies C, Volkmann J. Directional deep brain stimulation of the subthalamic nucleus: a pilot study using a novel neurostimulation device. Mov Disord. 2016;31(8):1240–3.

    Article  Google Scholar 

  25. Hariz MI. Complications of deep brain stimulation surgery. Mov Disord. 2002;17(S3):162–6.

    Article  Google Scholar 

  26. Lefranc M, Capel C, Pruvot AS, Fichten A, Desenclos C, Toussaint P, et al. The impact of the reference imaging modality, registration method and intraoperative flat-panel computed tomography on the accuracy of the ROSA stereotactic robot. Stereotact Funct Neurosurg. 2014;92(4):242–50.

    Article  Google Scholar 

  27. Li QH, Zamorano L, Pandya A, Perez R, Gong J, Diaz F. The application accuracy of the NeuroMate robot - a quantitative comparison with frameless and frame-based surgical localization systems. Comput Aided Surg. 2002;7(2):90–8.

    Article  Google Scholar 

  28. Wiebe S, Blume WT, Girvin JP, Eliasziw M. A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med. 2001;345:311–8.

    Article  CAS  Google Scholar 

  29. Engel JJ, Wiebe S, French J, et al. Practice parameter: temporal lobe and localized neocortical resections for epilepsy: report of the Quality Standards Subcommittee of the American Academy of Neurology, in association with the American Epilepsy Society and the American Association of Neurology. Neurology. 2003;60:538–47.

    Article  Google Scholar 

  30. Engel JJ, McDermott MP, Wiebe S, et al. Early surgical therapy for drug-resistant temporal lobe epilepsy. JAMA. 2012;307:922–30.

    Article  CAS  Google Scholar 

  31. Dwivedi R, Ramanujam B, Chandra S, et al. Surgery for drug resistant epilepsy in children. N Engl J Med. 2018;378:398–9.

    Article  Google Scholar 

  32. Kilpatrick C, Cook M, Kaye A, Murphy M, Matkovic Z. Non-invasive investigations successfully select patients for temporal lobe surgery. J Neurol Neurosurg Psychiatry. 1997;63(3):327–33.

    Article  CAS  Google Scholar 

  33. Diehl B, Lüders HO. Temporal lobe epilepsy: when are invasive recordings needed? Epilepsia. 2000;41(Suppl 3):S61–74.

    Article  Google Scholar 

  34. Zumsteg D, Wieser HG. Presurgical evaluation: current role of invasive EEG. Epilepsia. 2000;41(Suppl 3):S55–60.

    Article  Google Scholar 

  35. Cossu M, Lo Russo G, Francione S, et al. Epilepsy surgery in children: results and predictors of outcome on seizures. Epilepsia. 2008;49(1):65–72.

    Article  Google Scholar 

  36. González-Martínez J, Bulacio J, Thompson S, et al. Technique, results, and complications related to robot-assisted stereoelectroencephalography. Neurosurgery. 2016;78(2):169–80. https://academic.oup.com/neurosurgery/article/78/2/169/2453610

    Article  Google Scholar 

  37. Cardinale F, Cossu M, Castana L, Casaceli G, Schiariti MP, Miserocchi A, et al. Stereoelectroencephalography: surgical methodology, safety, and stereotactic application accuracy in 500 procedures. Neurosurgery. 2013;72(3):353–66.

    Article  Google Scholar 

  38. Mullin JP, Shriver M, Alomar S, et al. Is SEEG safe? A systematic review and meta-analysis of stereo-electroencephalographyrelated complications. Epilepsia. 2016;57:386–401.

    Article  Google Scholar 

  39. Drane DL, Loring DW, Voets NL, Price M, Ojemann JG, Willie JT, et al. Better object recognition and naming outcome with MRI-guided stereotactic laser amygdalohippocampotomy for temporal lobe epilepsy. Epilepsia. 2015;56:101–13. https://doi.org/10.1111/epi.12860.

    Article  PubMed  Google Scholar 

  40. Voets NL, Alvarez I, Qiu D, Leatherday C, Willie JT, Sotiropoulos S, et al. Mechanisms and risk factors contributing to visual field deficits following stereotactic laser amygdalohippocampotomy. Stereotact Funct Neurosurg. 2019;97:255–65. https://doi.org/10.1159/000502701.

    Article  PubMed  Google Scholar 

  41. Jermakowicz WJ, Wu C, Neal E, Cajigas I, D’Haese PF, Donahue DJ, et al. Clinically significant visual deficits after laser interstitial thermal therapy for mesiotemporal epilepsy. Stereotact Funct Neurosurg. 2019;97:347–55. https://doi.org/10.1159/000504856.

    Article  PubMed  Google Scholar 

  42. Pauliah M, Saxena V, Haris M, Husain N, Rathore RKS, Gupta RK. Improved T1-weighted dynamic contrast-enhanced MRI to probe microvascularity and heterogeneity of human glioma. Magn Reson Imag. 2007;25(9):1292–9.

    Article  Google Scholar 

  43. Kunz M, Thon N, Eigenbrod S, et al. Hot spots in dynamic18FET- PET delineate malignant tumor parts within suspected WHO grade II gliomas. Neuro-Oncology. 2011;13(3):307–16.

    Article  CAS  Google Scholar 

  44. Zanello M, Roux A, Senova S, Peeters S, Edjlali M, Tauziede-Espariat A, Dezamis E, Parraga E, Zah-Bi G, Harislur M, Oppenheim C, Sauvageon X, Chretien F, Devaux B, Varlet P, Pallud J. Robot-assisted stereotactic biopsies in 377 consecutive adult patients with supratentorial diffuse gliomas: diagnostic yield, safety, and postoperative outcomes. World Neurosurg. 2021 Apr;148:e301–13. https://doi.org/10.1016/j.wneu.2020.12.127.

    Article  PubMed  Google Scholar 

  45. Marcus HJ, Vakharia VN, Ourselin S, Duncan J, Tisdall M, Aquilina K. Robot-assisted stereotactic brain biopsy: systematic review and bibliometric analysis. Childs Nerv Syst. 2018;34(7):1299–309. https://doi.org/10.1007/s00381-018-3821-y.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chen C, Lee I, Tatsui C, Elder T, Sloan AE. Laser interstitial thermotherapy (LITT) for the treatment of tumors of the brain and spine: a brief review. J Neuro-Oncol. 2021;151(3):429–42. https://doi.org/10.1007/s11060-020-03652-z.

    Article  Google Scholar 

  47. Schieferdecker S, Hunsche S, El Majdoub F, Maarouf M. Robot-assisted stereotactic shunting as a novel treatment for pontine glioependymal cysts. J Neurol Surg A Cent Eur Neurosurg. 2021; https://doi.org/10.1055/s-0041-1726109.

  48. Doddamani RS, Meena R, Sawarkar D, Singh P, Agrawal D, Singh M, Chandra PS. Robot-guided ventriculoperitoneal shunt in slit-like ventricles. Neurol India. 2021;69(2):446–50. https://doi.org/10.4103/0028-3886.314585.

    Article  PubMed  Google Scholar 

  49. Liu HG, Liu DF, Zhang K, Meng FG, Yang AC, Zhang JG. Clinical application of a neurosurgical robot in intracranial ommaya reservoir implantation. Front Neurorobot. 2021;26(15):638633. https://doi.org/10.3389/fnbot.2021.638633.

    Article  Google Scholar 

  50. Barua NU, Hopkins K, Woolley M, O’Sullivan S, Harrison R, Edwards RJ, et al. A novel implantable catheter system with transcutaneous port for intermittent convection-enhanced delivery of carboplatin for recurrent glioblastoma. Drug Deliv. 2016;23(1):167–73.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maarouf, M., Neudorf, C. (2022). Robotics in Stereotactic Neurosurgery. In: Al-Salihi, M.M., Tubbs, R.S., Ayyad, A., Goto, T., Maarouf, M. (eds) Introduction to Robotics in Minimally Invasive Neurosurgery. Springer, Cham. https://doi.org/10.1007/978-3-030-90862-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90862-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90861-4

  • Online ISBN: 978-3-030-90862-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics