Skip to main content

State Feedback, Performance, and Robustness

  • Chapter
  • First Online:
Analysis and Synthesis of Nonlinear Control Systems

Abstract

This chapter investigates state feedback design for models with a convex structure such as TS, polynomial, and descriptor; LFT is left for the next chapter. Similar to stability analysis, Lyapunov’s direct method and convexity are combined to derive sufficient stabilisation conditions. Based on the assumption that both the plant states and the membership functions are available, a variety of controller structures is presented along with quadratic and non-quadratic Lyapunov functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Throughout the chapter, all the numerical values are rounded to two decimal places.

  2. 2.

    For numerical integration, the ode45 MATLAB\(^{\text{\textregistered }}\)function has been used.

  3. 3.

    For the ease of notation, the explicit time dependence is omitted.

  4. 4.

    A full video of the session is available at https://pod.uphf.fr/video/1583-discrete-reference-tracking-control-to-swing-up-an-electric-wheelchair/

References

  1. Wang, H., Tanaka, K., Griffin, M.: An approach to fuzzy control of nonlinear systems: stability and design issues. IEEE Transactions on Fuzzy Systems 4(1), 14–23 (1996)

    Article  Google Scholar 

  2. Tanaka, K., Ikeda, T., Wang, H.: Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs. IEEE Transactions on Fuzzy Systems 6(2), 250–265 (1998)

    Article  Google Scholar 

  3. Tuan, H., Apkarian, P., Narikiyo, T., Yamamoto, Y.: Parameterized linear matrix inequality techniques in fuzzy control system design. IEEE Transactions on Fuzzy Systems 9(2), 324–332 (2001)

    Article  Google Scholar 

  4. Liu, X., Zhang, H.: Stability analysis of uncertain fuzzy large-scale system. Chaos, Solitons & Fractals 25(5), 1107–1122 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Tanaka, K., Wang, H.O.: Fuzzy Control System Design and Analysis: A Linear Matrix Inequality Approach. Wiley, New York (2001)

    Book  Google Scholar 

  6. Johansson, M., Rantzer, A.: Computation of piecewise quadratic Lyapunov functions for hybrid systems. IEEE Transactions on Automatic Control 43(4), 555–559 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Johansson, M., Rantzer, A., Arzen, K.: Piecewise quadratic stability of fuzzy systems. IEEE Transactions on Fuzzy Systems 7(6), 713–722 (1999)

    Article  MATH  Google Scholar 

  8. Feng, G.: Controller synthesis of fuzzy dynamic systems based on piecewise Lyapunov functions. IEEE Transactions on Fuzzy Systems 11(5), 605–612 (2003)

    Article  Google Scholar 

  9. Feng, G.: A survey on analysis and design of model-based fuzzy control systems. IEEE Transactions on Fuzzy Systems 14(5), 676–697 (2006)

    Article  Google Scholar 

  10. Hu, J., Han, Y., Zhao, L.: Synchronizing chaotic systems using control based on a special matrix structure and extending to fractional chaotic systems. Communications in Nonlinear Science and Numerical Simulation 15(1), 115–123 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Qiu, J., Feng, G., Gao, H.: Static-output-feedback \(H_{\infty }\) control of continuous-time T–S fuzzy affine systems via piecewise Lyapunov functions. IEEE Transactions on Fuzzy Systems 21(2), 245–261 (2013)

    Article  Google Scholar 

  12. Schulte, H., Hahn, H.: Fuzzy state feedback gain scheduling control of servo-pneumatic actuators. Control Engineering Practice 12, 639–650 (2004)

    Article  Google Scholar 

  13. Cuesta, F., Ollero, A.: Fuzzy control of reactive navigation with stability analysis based on conicity and Lyapunov theory. Control Engineering Practice 12(5), 625–638 (2004)

    Article  Google Scholar 

  14. Blanco, Y., Perruquetti, W., Borne, P.: Stability and stabilization of nonlinear systems and Takagi–Sugeno’s fuzzy models. Mathematical Problems in Engineering 7(3), 221–240 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pan, J.-T., Guerra, T.M., Fei, S.-M., Jaadari, A.: Nonquadratic stabilization of continuous T–S fuzzy models: LMI solution for a local approach. IEEE Transactions of Fuzzy Systems 20, 594–602 (2012)

    Article  Google Scholar 

  16. Mozelli, L., Palhares, R., Avellar, G.: A systematic approach to improve multiple Lyapunov function stability and stabilization conditions for fuzzy systems. Information Sciences 179(8), 1149–1162 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guelton, K., Guerra, T., Bernal, M., Bouarar, T., Manamanni, N.: Comments on fuzzy control systems design via fuzzy Lyapunov functions. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 40(3), 970–972 (2010)

    Article  Google Scholar 

  18. Guerra, T.M., Bernal, M.: A way to escape from the quadratic framework. In: Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 784–789. IEEE, New York (2009)

    Google Scholar 

  19. Guerra, T., Bernal, M., Guelton, K., Labiod, S.: Non-quadratic local stabilization for continuous-time Takagi–Sugeno models. Fuzzy Sets and Systems 201, 40–54 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lee, D., Kim, D.: Relaxed LMI conditions for local stability and local stabilization of continuous-time Takagi–Sugeno fuzzy systems. IEEE Transactions on Cybernetics 44(3), 394–405 (2014)

    Article  Google Scholar 

  21. Bernal, M., Guerra, T.M.: Generalized non-quadratic stability of continuous-time Takagi–Sugeno models. IEEE Transactions on Fuzzy Systems 18(4), 815–822 (2010)

    Article  Google Scholar 

  22. Aguiar, B., Márquez, R., Bernal, M.: Towards a global nonquadratic controller design for nonlinear systems via robust differentiators and Takagi–Sugeno models. In: 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–7. IEEE, New York (2015)

    Google Scholar 

  23. Levant, A.: Robust exact differentiation via sliding mode technique. Automatica 34(3), 379–384 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gonzalez, T., Bernal, M., Sala, A., Aguiar, B.: Cancellation-based nonquadratic controller design for nonlinear systems via Takagi–Sugeno models. IEEE Transactions on Cybernetics 47(9), 2628–2638 (2017)

    Article  Google Scholar 

  25. Rhee, B., Won, S.: A new fuzzy Lyapunov function approach for a Takagi–Sugeno fuzzy control system design. Fuzzy Sets and Systems 157(9), 1211–1228 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Marquez, R., Guerra, T., Kruszewski, A., Bernal, M.: Improvements on non-quadratic stabilization of Takagi–Sugeno models via line-integral Lyapunov functions. In: Proceedings of the 2013 IFAC International Conference on Intelligent Control and Automation Science, pp. 473–478 (2013)

    Google Scholar 

  27. Guerra, T.M., Vermeiren, L.: LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi–Sugeno’s form. Automatica 40(5), 823–829 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Guerra, T.M., Kerkeni, H., Lauber, J., Vermeiren, L.: An efficient Lyapunov function for discrete T–S models: observer design. IEEE Transactions of Fuzzy Systems 20(1), 187–192 (2012)

    Article  Google Scholar 

  29. Ding, B., Sun, H., Yang, P.: Further studies on LMI-based relaxed stabilization conditions for nonlinear systems in Takagi–Sugeno’s form. Automatica 42(3), 503–508 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lendek, Z., Guerra, T., Lauber, J.: Construction of extended Lyapunov functions and control laws for discrete-time TS systems. In: Proceedings of the 2012 IEEE World Congress on Computational Intelligence, IEEE International Conference on Fuzzy Systems, pp. 286–291. IEEE, New York (2012)

    Google Scholar 

  31. Lendek, Zs., Guerra, T., Lauber, J.: Controller design for TS models using delayed nonquadratic Lyapunov functions. IEEE Transactions on Cybernetics 45(3), 453–464 (2015)

    Article  Google Scholar 

  32. Guerra, T.M., Kruszewski, A., Bernal, M.: Control law proposition for the stabilization of discrete Takagi–Sugeno models. IEEE Transactions of Fuzzy Systems 17, 724–731 (2009)

    Article  Google Scholar 

  33. Skelton, R.E., Iwasaki, T., Grigoriadis, K.: A Unified Approach to Linear Control Design. Taylor & Francis, London (1998)

    Google Scholar 

  34. Ariño, C., Sala, A., Pérez, E., Bedate, F., Querol, A.: Asymptotically exact stabilization for constrained discrete Takagi–Sugeno systems via set-invariance. Fuzzy Sets and Systems 316, 117–138 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hu, T., Lin, Z.: Composite quadratic Lyapunov functions for constrained control systems. IEEE Transactions on Automatic Control 48(3), 440–450 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hu, T., Blanchini, F.: Non-conservative matrix inequality conditions for stability/stabilizability of linear differential inclusions. Automatica 46(1), 190–196 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tanaka, K., Yoshida, H., Ohtake, H., Wang, H.: A sum of squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems. IEEE Transactions on Fuzzy Systems 17(4), 911–922 (2009)

    Article  Google Scholar 

  38. Taniguchi, T., Tanaka, K., Wang, H.O.: Fuzzy descriptor systems and nonlinear model following control. IEEE Transactions on Fuzzy Systems 8(4), 442–452 (2000)

    Article  Google Scholar 

  39. de Oliveira, M., Skelton, R.: Stability test of constrained linear systems. In: Perspective in Robust Control, pp. 241–257. Springer, Berlin (2001)

    Chapter  Google Scholar 

  40. Taniguchi, T., Tanaka, K., Yamafuji, K., Wang, H.O.: Fuzzy descriptor systems: stability analysis and design via LMIs. In: Proceedings of the American Control Conference, pp. 1827–1831 (1999)

    Google Scholar 

  41. Guerra, T.M., Bernal, M., Kruszewski, A., Afroun, M.: A way to improve results for the stabilization of continuous-time fuzzy descriptor models. In: 46th IEEE Conference on Decision and Control, pp. 5960–5964. IEEE, New York (2007)

    Google Scholar 

  42. Bouarar, T., Guelton, K., Manamanni, N.: Robust fuzzy Lyapunov stabilization for uncertain and disturbed Takagi–Sugeno descriptors. ISA Transactions 49(4), 447–461 (2010)

    Article  MATH  Google Scholar 

  43. Estrada-Manzo, V., Guerra, T.M., Lendek, Z., Pudlo, P.: Discrete-time Takagi–Sugeno descriptor mdoels: controller design. In: Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 1–5. IEEE, New York (2014b)

    Google Scholar 

  44. Estrada-Manzo, V., Lendek, Z., Guerra, T.M., Pudlo, P.: Controller design for discrete-time descriptor models: a systematic LMI approach. IEEE Transactions on Fuzzy Systems 23(5), 1608–1621 (2015)

    Article  Google Scholar 

  45. Xu, S., Song, B., Lu, J., Lam, J.: Robust stability of uncertain discrete-time singular fuzzy systems. Fuzzy Sets and Systems 158(20), 2306–2316 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  46. Liu, X., Zhang, Q.: New approaches to \(H_{\infty }\) controller designs based on fuzzy observers for T–S fuzzy systems via LMI. Automatica 39(9), 1571–1582 (2003)

    MathSciNet  MATH  Google Scholar 

  47. Delmotte, F., Guerra, T.M., Ksontini, M.: Continuous Takagi–Sugeno’s models: Reduction of the number of LMI conditions in various fuzzy control design technics. IEEE Transactions on Fuzzy Systems 15(3), 426–438 (2007)

    Article  Google Scholar 

  48. Wu, H.-N.: Robust \(H_2\) fuzzy output feedback control for discrete-time nonlinear systems with parametric uncertainties. International Journal of Approximate Reasoning 46(1), 151–165 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  49. Yoneyama, J.: Robust stability and stabilization for uncertain Takagi–Sugeno fuzzy time-delay systems. Fuzzy Sets and Systems 158(2), 115–134 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  50. Liu, F., Wu, M., He, Y., Yokoyama, R.: New delay-dependent stability criteria for T–S fuzzy systems with time-varying delay. Fuzzy Sets and Systems 161(15), 2033–2042 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhou, S., Feng, G.: Generalised \(H_2\) controller synthesis for uncertain discrete-time fuzzy systems via basis-dependent Lyapunov function. IEE Control Theory and Applications 153(1), 74–80 (2006)

    Article  Google Scholar 

  52. Kruszewski, A., Guerra, T.M.: Stabilization of a class of nonlinear model with periodic parameters in the Takagi–Sugeno form. In: Proceedings of the IFAC Workshop Periodic Control Systems, pp. 1–6 (2007)

    Google Scholar 

  53. Dong, J., Yang, G.: Dynamic output feedback \(H_{\infty }\) control synthesis for discrete-time T–S fuzzy systems via switching fuzzy controllers. Fuzzy Sets and Systems 160(19), 482–499 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  54. Wang, T., Qu, L.-J.: Robust decentralized control for T–S uncertain fuzzy interconnected systems with time-delay. In: Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, pp. 631–636 (2007)

    Google Scholar 

  55. Choi, D., Park, P.: Guaranteed cost controller design for discrete-time switching fuzzy systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 34(1), 110–119 (2004)

    Article  Google Scholar 

  56. Sala, A., Guerra, T.M., Babuška, R.: Perspectives of fuzzy systems and control. Fuzzy Sets and Systems 156(3), 432–444 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  57. Boyd, S., El Ghaoui, L., Féron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. Studies in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, PA (1994)

    Book  MATH  Google Scholar 

  58. Van Der Schaft, A.J.: L2-gain analysis of nonlinear systems and nonlinear state feedback \(h_\infty \) control. IEEE Transactions on Automatic Control 37(6), 770–784 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  59. Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis, analysis Wiley, New York (2001)

    Book  Google Scholar 

  60. Gray, M., Guerra, T., Delprat, S., Mohammed, S.: Control of an automated wheelchair. In: 21st IFAC World Congress (2020)

    Google Scholar 

  61. Ohtake, H., Tanaka, K., Wang, H.: Fuzzy modeling via sector nonlinearity concept. In: Proceedings of the Joint 9th IFSA World Congress and 20th NAFIPS International Conference, vol. 1, pp. 127–132 (2001)

    Google Scholar 

  62. Guerra, T., Bernal, M., Blandeau, M.: Reducing the number of vertices in some Takagi–Sugeno models: example in the mechanical field. IFAC-PapersOnLine 51(10), 133–138 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Bernal .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bernal, M., Sala, A., Lendek, Z., Guerra, T.M. (2022). State Feedback, Performance, and Robustness. In: Analysis and Synthesis of Nonlinear Control Systems. Studies in Systems, Decision and Control, vol 408. Springer, Cham. https://doi.org/10.1007/978-3-030-90773-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90773-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90772-3

  • Online ISBN: 978-3-030-90773-0

  • eBook Packages: Intelligent Technologies and Robotics

Publish with us

Policies and ethics