Skip to main content

Bio-fertilizers a Future Prospect Towards Sustainable Agricultural Development

  • Chapter
  • First Online:
Innovative Approaches for Sustainable Development

Abstract

A tremendous increase in the human population year after year has raised a threat to fresh fruits, vegetables, food grains and nutritional security all over the world. As the agricultural land is limited and is even reducing drastically due to the expansion of industrialization and urbanization over the time. Therefore, it is need of the time that agricultural production and quality should be improved considerably in the next few years to meet the ever-increasing demand leading to nutritional food security. Dependency on chemicals like pesticides, weedicides and chemical fertilizers in past years, for more crop production have certainly damaged both human health and the ecosystem to great severity. Nature has its plan for sustainable growth and development and so are the biofertilizers, which are ultimate gift of nature to our agriculture as a replacement for pesticides, weedicides, and synthetic fertilizers. Biofertilizers contain microbes in a living form which encourages the sufficient supply of nutrients and growth promoters to the plants and ensures their good growth, development, and regulation of physiological activities. Living microbes used for the preparation of bio-fertilizers have specific function; they augment plant growth, development, and reproduction. In the above view, bio-fertilizers being important constituents of sustainable agricultural development can play a vital role in conserving long-term soil fertility, soil health, and sustainability in crop production in India as well as internationally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adesemoye, A. O., & Kloepper, J. W. (2009). Plant-microbes interactions in enhanced fertilizer use efficiency. Applied Microbiology Biotechnology, 1, 1–12.

    Article  CAS  Google Scholar 

  • Amalraj, E. D. L., Maiyappan, S., & John, P. A. (2012). In vivo and in vitro studies of Bacillus megaterium var. phosphaticum on nutrient mobilization, antagonism and plant growth promoting traits. Journal of Eco Biotechnology, 1, 35–42.

    Google Scholar 

  • Archana, D., Nandish, M., Savalagi, V., & Alagawadi, A. (2013). Characterization of potassium solubilizing bacteria (KSB) from rhizosphere soil. Bioinfolet- A Quarterly Journal of Life Science, 10, 248–257.

    Google Scholar 

  • Barman, M., Paul, S., Choudhury, A. G., Roy, P., & Sen, J. (2017). Biofertilizer as prospective input for sustainable agriculture in India. International Journal of Current Microbiology and Applied Sciences, 11, 1177–1186.

    Article  Google Scholar 

  • Bashan, Y., & De-bashan, L. (2010). How the plant growth-promoting bacterium Azospirillum promotes plant growth. A critical assessment. Advances in Agronomy, 108, 77–136.

    Article  CAS  Google Scholar 

  • Bolan, N. S. (1991). A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant and Soil, 134, 189–207.

    Article  CAS  Google Scholar 

  • Bouizgarne, B., Oufdou, K., & Ouhdouch, Y. (2015). Actinorhizal and rhizobial-legume symbioses for alleviation of abiotic stresses. In N. K. Arora (Ed.), Plant microbes symbiosis: Applied facets (pp. 273–295). Springer.

    Google Scholar 

  • Chang, C. H., & Yang, S. S. (2009). Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation. Bioresource Technology, 100, 1648–1658.

    Article  CAS  Google Scholar 

  • Chen, Y. P., Rekha, P. D., Arunshen, A. B., Lai, W. A., & Young, C. C. (2006). Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology, 34, 33–41.

    Article  Google Scholar 

  • Chun-li, W., Shiuan-yuh, C., & Chiu-chung, Y. (2014). Present situation and future perspective of bio-fertilizer for environmentally friendly agriculture. Annual Reports, 1–5.

    Google Scholar 

  • Creus, C., Sueldo, R., & Barassi, C. (1997). Shoot growth and water status in Azospirillum inoculated wheat seedlings grown under osmotic and salt stresses. Plant Physiology and Biochemistry, 35, 939–944.

    CAS  Google Scholar 

  • Diriba, M., Fassil, A., Elisabet, B., & Granhall, U. F. (2013). Phosphate solubilising rhizobacteria associated with Coffea arabica L. in natural coffee forests of southwestern Ethiopia. Journal of the Saudi Society of Agricultural Sciences, 12, 73–84.

    Article  Google Scholar 

  • Dudeja, S. S., Khurana, A. L., & Kundu, B. S. (1981). Effect of rhizobium and phosphorus- micro-organisms on yield and nutrient uptake in chickpea. Current Science, 50, 503–505.

    CAS  Google Scholar 

  • Ewak, E. O., Piotr, S., Anna, S., & Jolanta, J. S. (2013). Effect of Pseudomonas luteola on mobilization of phosphorus and growth of young apple trees (Ligol)—Pot experiment. Scientia Horticulturae, 164, 270–276.

    Article  CAS  Google Scholar 

  • Ghorbanian, D., Harutyunyan, S., Mazaheri, D., Rasoli, V., & MohebI, A. (2012). Influence of arbuscular mycorrhizal fungi and different levels of phosphorus on the growth of corn in water stress conditions. African Journal of Agricultural Reseearch, 2575–2580.

    Google Scholar 

  • Gothandapani, S., Soundarapandian, S., & Jasdeep, C. P. (2017). Azotobacter chroococcum: Utilization and potential use for agricultural crop production: An overview. International Journal of Advanced Research in Biological Sciences (IJARBS), 4, 35–42.

    Article  CAS  Google Scholar 

  • Gothwal, R. K., Nigam, V. K., Mohan, M. K., Sasmal, D., & Ghosh, P. (2007). Screening of nitrogen fixers from rhizospheric bacterial isolates associated with important desert plants. Applied Ecology and Environmental Research, 6, 101–109.

    Article  Google Scholar 

  • Gunes, A., Ataoglu, N., Turan, M., Esitken, A., & Ketterings, Q. M. (2009). Effects of phosphate-solubilizing microorganisms on strawberry yield and nutrient concentrations. Journal of Plant Nutrition and Soil Science, 172, 385–392.

    Article  CAS  Google Scholar 

  • Gupta, A. K. (2004). The complete technology book on biofertilizers and organic farming. National Institute of Industrial Research.

    Google Scholar 

  • Hamdali, H., Bouizgarne, B., HafidI, M., LebrihI, A., Virolle, M. J., & Ouhdouch, Y. (2008). Screening for rock phosphate solubilizing Actinomycetes from Moroccan phosphate mines. Applied Soil Ecology, 38, 12–19.

    Article  Google Scholar 

  • Jakobsen, I., Abbott, L. K., & Robson, A. D. (1992). External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterrraneum L. I. Spread of hyphae and phosphorus inflow into roots. The New Phytologist, 120, 371–380.

    Article  CAS  Google Scholar 

  • Jehangir, I. A., Mir, M. A., Bhat, M. A., & Ahangar, M. A. (2017). Biofertilizers an approach to sustainability in agriculture: A review. International Journal of Pure & Applied Bioscience, 5, 327–334.

    Article  Google Scholar 

  • Jeyabal, A., & Kupuswamy, G. (2001). Recycling of organic wastes for the production of vermicompost and its response in rice legume cropping system and soil fertility. European Journal of Agronomy, 15, 153–170.

    Article  CAS  Google Scholar 

  • Jimenez, D. J., Jose, S. M., & Maria, M. M. (2011). Characterization of free nitrogen fixing bacteria of the genus Azotobacter in organic vegetable-grown colombian soils. Brazilian Journal of Microbiology, 42, 846–858.

    Article  CAS  Google Scholar 

  • Kapri, A., & Tewari, L. (2010). Phosphate solubilization potential and phosphatase activity of rhizospheric Trichoderma spp. Brazilian Journal of Microbiology, 41, 787–795.

    Article  CAS  Google Scholar 

  • Karandashov, V., Nagy, R., Wegmulle, S., Amrhein, N., & Bucher, M. (2004). Evolutionary conservation of a phosphate transporter in the arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 101, 6285–6290.

    Article  CAS  Google Scholar 

  • Knobeloch, L., Salna, B., Hogan, A., Postle, J., & Anderson, H. (2000). Blue babies and nitrate- contaminated well water. Environmental Health Perspectives, 108, 675–678.

    Article  CAS  Google Scholar 

  • Kucey, R. M. N., & Paul, F. A. (1982). Carbon flux, photosynthesis and nitrogen fixation in mycorrhizal and nodulated faba beans (Vicia faba L.). Soil Biology and Biochemistry, 14, 407–412.

    Article  Google Scholar 

  • Lach, D., Sharma, V. K., & Vary, P. S. (1990). Isolation and characterization of a unique division mutant of Bacillus megaterium. Journal of General Microbiology, 3, 545–553.

    Article  Google Scholar 

  • Latt, Z. K., Yu, S. S., Kyaw, E. P., Lynn, T. M., & New, M. T. (2018). Isolation, evaluation and characterization of free-living nitrogen fixing bacteria from agricultural soils in Myanmar for biofertilizer formulation. International Journal of Plant Biology & Research, 6, 1092.

    Google Scholar 

  • Mahdi, S. S., Hassan, G. I., Samoon, S. A., Rather, H. A., Dar, S. A., & Zehra, B. (2010). Bio-fertilizers in organic agriculture. Journal of Phytology, 2(10), 42–54.

    Google Scholar 

  • Martyniuk, S., & Martyniuk, M. (2003). Occurrence of Azotobacter Spp. in some polish soils. The Journal of Environmental Studies, 12, 371–374.

    CAS  Google Scholar 

  • Mazid, M., Khan, T. A., & Mohammad, F. (2011). Potential of NO and H2O2 as signaling molecules in tolerance to abiotic stress in plants. Journal of Industrial Research & Technology, 1, 56–68.

    Google Scholar 

  • Meena, V. S., Maurya, B. R., Verma, J. P., Aeron, A., Kumar, A., Kim, K., & Ajpai, V. K. (2015). Potassium solubilizing rhizobacteria (KSR): Isolation, identification, and K-release dynamics from waste mica. Ecological Engineering, 81, 340–347.

    Article  Google Scholar 

  • Mishra, D. J., Rajvir, S., Mishra, U. K., & Kumar, S. S. (2013). Role of biofertilizers in organic agriculture: A review. Research Journal of Recent Sciences, 2, 39–41.

    CAS  Google Scholar 

  • Mishra, P., & Dash, D. (2014). Rejuvenation of biofertilizer for sustainable agriculture and economic development. Consilience: The Journal of Sustainable Development, 11, 41–61.

    Google Scholar 

  • Oliveira, C. A., Alvesb, V. M. C., Marreib, I. E., Gomesb, E. A., Scottia, M. R., & Carneiro, N. P. (2009). Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil Biology and Biochemistry, 41, 1782–1787.

    Article  CAS  Google Scholar 

  • Pandey, A., & Kumar, S. J. (1989). Soil beneficial bacterial and their role in plant growth promotion. Science Indian Research, 48, 134–144.

    Google Scholar 

  • Peoples, M. B., & Craswell, E. T. (1992). Biological nitrogen fixation: Investments, expectations and actual contributions to agriculture. Plant and Soil, 141, 13–39.

    Article  CAS  Google Scholar 

  • Ponmurugan, P., & Gopi, C. (2006). Distribution pattern and screening of phosphate solubilizing bacteria isolated from different food and forage crops. Journal of Agronomy, 5, 600–604.

    Article  Google Scholar 

  • Prajapati, K., & Modi, H. (2016). Growth promoting effect of potassium solubilizing Enterobacter hormaechei (KSB-8) on cucumber (Cucumis sativus) under hydroponic conditions. International Journal of Advanced Research in Biological Sciences, 3, 168–173.

    CAS  Google Scholar 

  • Puente, M., Li, C., & Bashan, Y. (2004). Microbial populations and activities in the rhizoplane of rock-weathering desert plants. II. Growth promotion of cactus seedlings. Plant Biology, 6, 643–650.

    Article  CAS  Google Scholar 

  • Raja, N. (2013). Biopesticides and biofertilizers: Ecofriendly sources for sustainable agriculture. Journal of Fertilizers & Pesticides, 4, 112.

    Article  Google Scholar 

  • Ram, H., Mali, S. S., Dhaliwal, S. S., Kumar, B., & Singh, Y. (2015). Growth and productivity of wheat affected by phosphorus-solubilizing fungi and phosphorus levels. Plant, Soil and Environment, 61, 122–126.

    Article  CAS  Google Scholar 

  • Rawi, E. A., Nemat, M. A., & Hamouda, H. A. (2009). Evaluate effectiveness of bio and mineral fertilization on the growth parameters and marketable cut flowers of Matthiola incana L. American-Eurasian Journal of Agricultural and Environmental Sciences, 5, 509–518.

    Google Scholar 

  • Saha, M., Maurya, B. R., Meena, V. S., Bahadur, I., & Kumar, A. (2016). Identification and characterization of potassium solubilizing bacteria (KSB) from Indo-Gangetic Plains of India. Biocatalysis and Agricultural Biotechnology, 7, 202–209.

    Article  Google Scholar 

  • Santos, V. B., Araujo, S. F., & Leite, L. F. (2012). Soil microbial biomass and organic matter fractions during transition from conventional to organic farming systems. Geodderma, 170, 227–231.

    Article  CAS  Google Scholar 

  • Sharma, S. B., Sayyed, R. Z., & Trivedi, M. H. (2013). Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus, 2, 587.

    Article  CAS  Google Scholar 

  • Sparks, D. L., & Huang, P. M. (1985). Physical chemistry of soil potassium. Potassium in Agriculture, 201–276.

    Google Scholar 

  • Steenhoudt, O., & Vanderleyden, J. (2000). Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: Genetic, biochemical and ecological aspects. FEMS Microbiology Reviews, 24, 487–506.

    Article  CAS  Google Scholar 

  • Stevenson, F. J. (1986). Cycles of soil (carbon, nitrogen, phosphorus, sulfur, micronutrients) (pp. 231–284). Wiley.

    Google Scholar 

  • Subhashini, D. V. (2015). Growth promotion and increased potassium uptake of tobacco by potassium-mobilizing bacterium Frateuria aurantia grown at different potassium levels in vertisol. Communications in Soil Science and Plant Analysis, 46(2), 210–220.

    Article  CAS  Google Scholar 

  • Sudhir, U., Meshram, A., & Jager, G. (1983). Antagonism of Azotobacter chroococcum isolates to Rhizoctonia solani. European Journal of Plant Pathology, 89, 91–197.

    Google Scholar 

  • Sundaravarathan, S., & Kannaiyan, S. (2002). Influence of Azolla and Sesbania rostrata application on changes in microbial population and enzymes in rice soils. In S. Kannaiyan (Eds.), Biotechnology of biofertilizers, pp. 251–225.

    Google Scholar 

  • Thajuddin, N., & Subramanian, G. (2005). Cyanobacterial biodiversity and potential applications in biotechnology. Current Science, 89, 47–57.

    CAS  Google Scholar 

  • Trabelsi, D., & Mhamdi, R. (2013). Microbial inoculants and their impact in microbial soil microbial communities: A review. BioMed Research International, 11.

    Google Scholar 

  • Vassilev, N., Vassileva, M., Bravo, V., Fernandez, M., & Nikolaev, I. (2007). Simultaneous phytase production and rock phosphate solubilization by Aspergillus Niger grown on dry olive wastes. Industrial Crops and Products, 332–336.

    Google Scholar 

  • Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255, 571–586.

    Article  CAS  Google Scholar 

  • Yao, Q., Xiaolin, L., Gu, F., & Peter, C. (2001). Mobilization of sparingly soluble inorganic phosphates by the external mycelium of an abuscular mycorrhizal fungus. Plant and Soil, 230, 279–285.

    Article  CAS  Google Scholar 

  • Yao, Y. B., Zhanga, B., Yuhua, T., Miao, Z., Ke, Z. B., Bowen, Z., Meng, Z. B., & Bin, Y. (2018). Azolla biofertilizer for improving low nitrogen use efficiency in an intensive rice cropping system. Field Crops Research, 216, 158–164.

    Article  Google Scholar 

  • Youssef, M. M. A., & Eissa, M. F. M. (2014). Biofertilizers and their role in management of plant parasitic nematodes: A review. Biotechnology Pharmaceutical Resources, 5, 1–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, D., Dalal, R.P.S., Arora, I. (2022). Bio-fertilizers a Future Prospect Towards Sustainable Agricultural Development. In: Mahdi, S.S., Singh, R. (eds) Innovative Approaches for Sustainable Development. Springer, Cham. https://doi.org/10.1007/978-3-030-90549-1_5

Download citation

Publish with us

Policies and ethics