Skip to main content

Fabrication and Applications of Antibacterial Surfaces and Nano Biosensing Platforms

  • Conference paper
  • First Online:
Advances in Manufacturing Processes, Intelligent Methods and Systems in Production Engineering (GCMM 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 335))

Included in the following conference series:

  • 898 Accesses

Abstract

The development of antibiotic resistant superbugs poses significant threat to global healthcare. With the overuse of antibiotic medication over time, these superbugs have evolved to fight the effects of pharmacological therapies causing death to patients with easily treatable infections. For this reason, research has shifted towards investigating ways in which infection can be cured without antibiotic medication. Research has found that some nanostructured materials have been found to exhibit antibacterial behaviours either through antibiofouling or bactericidal (killing) mechanisms. These nanostructures have an inherent property which repels or kills bacteria upon physical contact, without the need for chemical therapy. This review gives a perspective on the current state of research which uses nanotechnology to fabricate antibacterial surfaces. In addition, this review presents various biosensing techniques for human biosensing and bacteria sensing, particularly for food and water borne pathogens. This review also discusses future directions for ways in which these two research areas can be combined to develop a nanosensing platform which detects bacteria in hospital environments, helping to reduce waiting times between sampling and detection, length of patient hospital stays, patient discomfort and burdens to the healthcare system, as well as control and contain the spread of infection in hospital environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shahali, H., et al.: Multi-biofunctional properties of three species of cicada wings and biomimetic fabrication of nanopatterned titanium pillars. J. Mater. Chem. B 7(8), 1300–1310 (2019)

    Article  Google Scholar 

  2. Jaggessar, A., Yarlagadda, P., Qiu, T., Li, T., Tesfamichael, T.: Fabrication of nano pyramid texture on Ti-6Al-4V using nanosphere lithography. Mater. Today Proc. 5(5, Part 2), 11593–11600 (2018)

    Article  Google Scholar 

  3. Jaggessar, A., Mathew, A., Tesfamichael, T., Wang, H., Yan, C., Yarlagadda, P.K.: Bacteria death and osteoblast metabolic activity correlated to hydrothermally synthesised TiO2 surface properties. Molecules 24(7), 1201 (2019)

    Article  Google Scholar 

  4. Hasan, J., Chatterjee, K.: Recent advances in engineering topography mediated antibacterial surfaces. Nanoscale 7(38), 15568–15575 (2015)

    Article  Google Scholar 

  5. Hasan, J., Crawford, R.J., Ivanova, E.P.: Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnol. 31(5), 295–304 (2013)

    Article  Google Scholar 

  6. Hasan, J., Jain, S., Chatterjee, K.: Nanoscale topography on black titanium imparts multi-biofunctional properties for orthopedic applications. Sci. Rep. 7, 41118 (2017)

    Article  Google Scholar 

  7. Hasan, J., et al.: Selective bactericidal activity of nanopatterned superhydrophobic cicada Psaltoda claripennis wing surfaces. Appl. Microbiol. Biotechnol. 97(20), 9257–9262 (2013). https://doi.org/10.1007/s00253-012-4628-5

    Article  Google Scholar 

  8. Hazell, G., Fisher, L.E., Murray, W.A., Nobbs, A.H., Su, B.: Bioinspired bactericidal surfaces with polymer nanocone arrays. J. Colloid Interface Sci. 528, 389–399 (2018)

    Article  Google Scholar 

  9. Huang, J., Wang, X., Wang, Z.L.: Controlled replication of butterfly wings for achieving tunable photonic properties. Nano Lett. 6(10), 2325–2331 (2006)

    Article  Google Scholar 

  10. Ivanova, E.P., et al.: Natural bactericidal surfaces: mechanical rupture of pseudomonas aeruginosa cells by cicada wings. Small 8(16), 2489–2494 (2012)

    Article  Google Scholar 

  11. Holzinger, M., Le Goff, A., Cosnier, S.: Nanomaterials for biosensing applications: a review. Front. Chem. 2, 63 (2014)

    Article  Google Scholar 

  12. Jaggessar, A., Shahali, H., Mathew, A., Yarlagadda, P.K.D.V.: Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants. J. Nanobiotechnol. 15(1), 64 (2017). https://doi.org/10.1186/s12951-017-0306-1

    Article  Google Scholar 

  13. Francolini, I., Vuotto, C., Piozzi, A., Donelli, G.: Antifouling and antimicrobial biomaterials: an overview. APMIS 125(4), 392–417 (2017)

    Article  Google Scholar 

  14. Balčytis, A., Seniutinas, G., Lapierre, F., Juodkazis, S.: Artificial antibacterial surfaces that are simple to fabricate. In: Ivanova, E.P., Crawford, R.J. (eds.) antibacterial surfaces, pp. 27–40. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18594-1_3

    Chapter  Google Scholar 

  15. Ensikat, H.J., Ditsche-Kuru, P., Neinhuis, C., Barthlott, W.: Superhydrophobicity in perfection: the outstanding properties of the lotus leaf. Beilstein J. Nanotechnol. 2(1), 152–161 (2011)

    Article  Google Scholar 

  16. Yan, Y.Y., Gao, N., Barthlott, W.: Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces. Adv. Colloid Interface Sci. 169(2), 80–105 (2011)

    Article  Google Scholar 

  17. Zhang, C., McAdams, D.A., Grunlan, J.C.: Nano/micro-manufacturing of bioinspired materials: a review of methods to mimic natural structures. Adv. Mater. 28(30), 6292–6321 (2016)

    Article  Google Scholar 

  18. Bandara, C.D., et al.: Bactericidal effects of natural nanotopography of dragonfly wing on Escherichia coli. ACS Appl. Mater. Interfaces 9(8), 6746–6760 (2017)

    Article  Google Scholar 

  19. Bhadra, C.M., et al.: Antibacterial titanium nano-patterned arrays inspired by dragonfly wings. Sci. Rep. 5, 16817 (2015)

    Google Scholar 

  20. Diu, T., et al.: Cicada-inspired cell-instructive nanopatterned arrays. Sci. Rep. 4, 7122 (2014)

    Article  Google Scholar 

  21. Linklater, D.P., Nguyen, H.K.D., Bhadra, C.M., Juodkazis, S., Ivanova, E.P.: Influence of nanoscale topology on bactericidal efficiency of black silicon surfaces. Nanotechnology 28(24), 9 (2017)

    Article  Google Scholar 

  22. Pogodin, S., et al.: Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces. Biophys. J. 104(4), 835–840 (2013)

    Google Scholar 

  23. Choi, M., et al.: Superhydrophilic coatings with intricate nanostructure based on biotic materials for antifogging and antibiofouling applications. Chem. Eng. J. 309, 463–470 (2017)

    Article  Google Scholar 

  24. Fang, Y., Sun, G.: Complex wettability and self-cleaning performance of butterfly wing surface. Appl. Mech. Mater. 723, 943 (2015)

    Article  Google Scholar 

  25. Cheng, Y.T., Rodak, D.E., Wong, C.A., Hayden, C.A.: Effects of micro- and nano-structures on the self-cleaning behaviour of lotus leaves. Nanotechnology 17(5), 1359–1362 (2006)

    Article  Google Scholar 

  26. Fadeeva, E., et al.: Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation. Langmuir 27(6), 3012–3019 (2011)

    Article  Google Scholar 

  27. Tang, P., et al.: Effect of superhydrophobic surface of titanium on staphylococcus aureus adhesion. J. Nanomater. 2011, 1–8 (2011)

    Article  Google Scholar 

  28. Privett, B.J., et al.: Antibacterial fluorinated silica colloid superhydrophobic surfaces. Langmuir 27(15), 9597–9601 (2011)

    Article  Google Scholar 

  29. Crick, C.R., Ismail, S., Pratten, J., Parkin, I.P.: An investigation into bacterial attachment to an elastomeric superhydrophobic surface prepared via aerosol assisted deposition. Thin Solid Films 519(11), 3722–3727 (2011)

    Article  Google Scholar 

  30. Yang, H., Deng, Y.: Preparation and physical properties of superhydrophobic papers. J. Colloid Interface Sci. 325(2), 588–593 (2008)

    Article  Google Scholar 

  31. Okada, A., et al.: Inhibition of biofilm formation using newly developed coating materials with self-cleaning properties. Dent. Mater. J. 27(4), 565–572 (2008)

    Article  Google Scholar 

  32. Kesel, A., Liedert, R.: Learning from nature: non-toxic biofouling control by shark skin effect. Comput. Biochem. Physiol. A Mol. Integr. Physiol. 146(4), S130 (2007)

    Article  Google Scholar 

  33. Bixler, G.D., Bhushan, B.: Rice-and butterfly-wing effect inspired self-cleaning and low drag micro/nanopatterned surfaces in water, oil, and air flow. Nanoscale 6(1), 76–96 (2013)

    Article  Google Scholar 

  34. Damodaran, V.B., Murthy, N.S.: Bio-inspired strategies for designing antifouling biomaterials. Biomat. Res. 20(1), 18 (2016). https://doi.org/10.1186/s40824-016-0064-4

    Article  Google Scholar 

  35. Harding, J.L., Reynolds, M.M.: Combating medical device fouling. Trends Biotechnol. 32(3), 140–146 (2014)

    Article  Google Scholar 

  36. Prasad, K., et al.: Effect of precursor on antifouling efficacy of vertically-oriented graphene nanosheets. Nanomaterials 7(7), 170 (2017)

    Article  Google Scholar 

  37. Kim, T.W.: Assessment of hydro/oleophobicity for shark skin replica with riblets. J. Nanosci. Nanotechnol. 14(10), 7562–7568 (2014)

    Article  Google Scholar 

  38. Li, X., et al.: The nanotipped hairs of gecko skin and biotemplated replicas impair and/or kill pathogenic bacteria with high efficiency. Nanoscale 8(45), 18860–18869 (2016)

    Article  Google Scholar 

  39. Zhao, D.-Y., Huang, Z.-P., Wang, M.-J., Wang, T., Jin, Y.: Vacuum casting replication of micro-riblets on shark skin for drag-reducing applications. J. Mater. Process. Technol. 212(1), 198–202 (2012)

    Article  Google Scholar 

  40. Fisher, L.E., Yang, Y., Yuen, M.-F., Zhang, W., Nobbs, A.H., Su, B.: Bactericidal activity of biomimetic diamond nanocone surfaces. Biointerphases 11(1), 011014 (2016)

    Article  Google Scholar 

  41. Chou, S.Y.: Nanoimprint lithography. In: Cabrini, S., Kawata, S. (eds.) Nanofabrication Handbook, pp. 187–206. CRC Press, Boca Raton (2012)

    Google Scholar 

  42. Dickson, M.N., Liang, E.I., Rodriguez, L.A., Vollereaux, N., Yee, A.F.: Nanopatterned polymer surfaces with bactericidal properties. Biointerphases 10(2), 021010 (2015)

    Article  Google Scholar 

  43. Liu, W., et al.: Bioinspired polyethylene terephthalate nanocone arrays with underwater superoleophobicity and anti-bioadhesion properties. Nanoscale 6(22), 13845–13853 (2014)

    Article  Google Scholar 

  44. Zhang, G., Zhang, J., Xie, G., Liu, Z., Shao, H.: Cicada wings: a stamp from nature for nanoimprint lithography. Small 2(12), 1440–1443 (2006)

    Article  Google Scholar 

  45. Cho, J.-Y., Kim, G., Kim, S., Lee, H.: Replication of surface nano-structure of the wing of dragonfly (Pantala Flavescens) using nano-molding and UV nanoimprint lithography. Electron. Mater. Lett. 9(4), 523–526 (2013). https://doi.org/10.1007/s13391-013-0042-0

    Article  Google Scholar 

  46. Jaggessar, A., Yarlagadda, P.K.D.V.: Modelling the growth of hydrothermally synthesised bactericidal nanostructures, as a function of processing conditions. Mater. Sci. Eng. C 108, 110434 (2020)

    Article  Google Scholar 

  47. Jaggessar, A., Yarlagadda, P.K.D.V.: Modelling the height of hydrothermally synthesized titanium dioxide nanostructures. Adv. Mater. Lett. 11(6), 1–6 (2020)

    Article  Google Scholar 

  48. Hasan, J., Raj, S., Yadav, L., Chatterjee, K.: Engineering a nanostructured “super surface” with superhydrophobic and superkilling properties. RSC Adv. 5(56), 44953–44959 (2015)

    Article  Google Scholar 

  49. Hasan, J., Jain, S., Padmarajan, R., Purighalla, S., Sambandamurthy, V.K., Chatterjee, K.: Multi-scale surface topography to minimize adherence and viability of nosocomial drug-resistant bacteria. Mater. Des. 140, 332–344 (2018)

    Article  Google Scholar 

  50. Velic, A., Mathew, A., Hines, P., Yarlagadda, P.K.D.V.: Control of bacterial attachment by fracture topography. J. Mech. Behav. Biomed. Mater. 91, 416 (2019)

    Article  Google Scholar 

  51. Jaggessar, A., Mathew, A., Wang, H., Tesfamichael, T., Yan, C., Yarlagadda, P.K.D.V.: Mechanical, bactericidal and osteogenic behaviours of hydrothermally synthesised TiO2 nanowire arrays. J. Mech. Behav. Biomed. Mater. 80, 311–319 (2018)

    Article  Google Scholar 

  52. Jaggessar, A., Tesfamicheal, T., Wang, H., Yan, C., Yarlagadda, P.K.D.V.: Investigation of mechanical properties and morphology of hydrothermally manufactured titanium dioxide nanostructured surfaces. Procedia Manuf. 30, 373–379 (2019)

    Article  Google Scholar 

  53. Shahali, H., Hasan, J., Wang, H., Tesfamichael, T., Yan, C., Yarlagadda, P.K.D.V.: Evaluation of particle beam lithography for fabrication of metallic nano-structures. Procedia Manuf. 30, 261–267 (2019)

    Article  Google Scholar 

  54. Hasan, J., Xu, Y., Yarlagadda, T., Schuetz, M., Spann, K., Yarlagadda, P.K.D.V.: Antiviral and antibacterial nanostructured surfaces with excellent mechanical properties for hospital applications. ACS Biomater. Sci. Eng. 6(6), 3608–3618 (2020)

    Article  Google Scholar 

  55. Prasad, K., et al.: Synergic bactericidal effects of reduced graphene oxide and silver nanoparticles against Gram-positive and Gram-negative bacteria. Sci. Rep. 7(1), 1591 (2017)

    Article  Google Scholar 

  56. Hameed, S., Xie, L., Ying, Y.: Conventional and emerging detection techniques for pathogenic bacteria in food science: a review. Trends Food Sci. Technol. 81, 61–73 (2018)

    Article  Google Scholar 

  57. Kim, J., Campbell, A.S., de Ávila, B.E.-F., Wang, J.: Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37(4), 389–406 (2019)

    Article  Google Scholar 

  58. Shafiee, A., Ghadiri, E., Kassis, J., Zarandi, N.P., Atala, A.: Biosensing technologies for medical applications, manufacturing, and regenerative medicine. Curr. Stem Cell Rep. 4(2), 105–115 (2018). https://doi.org/10.1007/s40778-018-0123-y

    Article  Google Scholar 

  59. El-Said, W.A., Abdelshakour, M., Choi, J.H., Choi, J.W.: Application of conducting polymer nanostructures to electrochemical biosensors. Molecules 25(2), 307 (2020)

    Article  Google Scholar 

  60. Ferreira, P.C., et al.: Wearable electrochemical sensors for forensic and clinical applications. TrAC Trends Anal. Chem. 119, 115622 (2019)

    Google Scholar 

  61. Windmiller, J.R., Wang, J.: Wearable electrochemical sensors and biosensors: a review. Electroanalysis 25(1), 29–46 (2013)

    Article  Google Scholar 

  62. Sonner, Z., et al.: The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications. Biomicrofluidics 9(3), 031301 (2015)

    Article  Google Scholar 

  63. Seshadri, D.R., et al.: Wearable sensors for monitoring the physiological and biochemical profile of the athlete. NPJ Digit. Med. 2(1), 72 (2019)

    Google Scholar 

  64. Farandos, N.M., Yetisen, A.K., Monteiro, M.J., Lowe, C.R., Yun, S.H.: Contact lens sensors in ocular diagnostics. Adv. Healthc. Mater. 4(6), 792–810 (2015)

    Article  Google Scholar 

  65. Mitsubayashi, K., Arakawa, T.: Cavitas Sensors: Contact Lens Type Sensors & Mouthguard Sensors, pp. 1170–1187. Wiley-VCH Verlag, Weinheim (2016)

    Google Scholar 

  66. Pankratov, D., González-Arribas, E., Blum, Z., Shleev, S.: Tear Based Bioelectronics, pp. 1250–1266. Wiley-VCH Verlag, Weinheim (2016)

    Google Scholar 

  67. Mannoor, M.S., et al.: Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 3(1), 763 (2012)

    Article  Google Scholar 

  68. Carpini, G., Lucarelli, F., Marrazza, G., Mascini, M.: Oligonucleotide-modified screen-printed gold electrodes for enzyme-amplified sensing of nucleic acids. Biosens. Bioelectron. 20(2), 167–175 (2004)

    Article  Google Scholar 

  69. Bariya, M., et al.: Roll-to-roll gravure printed electrochemical sensors for wearable and medical devices. ACS Nano 12(7), 6978–6987 (2018)

    Article  Google Scholar 

  70. Windmiller, J.R., Bandodkar, A.J., Parkhomovsky, S., Wang, J.: Stamp transfer electrodes for electrochemical sensing on non-planar and oversized surfaces. Analyst 137(7), 1570–1575 (2012)

    Article  Google Scholar 

  71. Nesaei, S., et al.: Micro additive manufacturing of glucose biosensors: a feasibility study. Anal. Chim. Acta 1043, 142–149 (2018)

    Article  Google Scholar 

  72. Lee, K.S., et al.: Development of zinc oxide-based sub-micro pillar arrays for on-site capture and DNA detection of foodborne pathogen. J. Colloid Interface Sci 563, 54–61 (2020)

    Article  Google Scholar 

  73. Gracias, K.S., McKillip, J.L.: A review of conventional detection and enumeration methods for pathogenic bacteria in food. Can. J. Microbiol. 50(11), 883–890 (2004)

    Article  Google Scholar 

  74. Swaminathan, B., Feng, P.: Rapid detection of food-borne pathogenic bacteria. Ann. Rev. Microbiol. 48(1), 401–426 (1994)

    Article  Google Scholar 

  75. Lazcka, O., Campo, F.J.D., Muñoz, F.X.: Pathogen detection: a perspective of traditional methods and biosensors. Biosensors. Bioelectron. 22(7), 1205–1217 (2007)

    Article  Google Scholar 

  76. Park, Y., et al.: Flexible nanopillar-based electrochemical sensors for genetic detection of foodborne pathogens. Nano Converg. 5(1), 1–8 (2018). https://doi.org/10.1186/s40580-018-0147-0

    Article  Google Scholar 

  77. Hernández, R., Vallés, C., Benito, A.M., Maser, W.K., Rius, F.X., Riu, J.: Graphene-based potentiometric biosensor for the immediate detection of living bacteria. Biosensors. Bioelectron. 54, 553–557 (2014)

    Article  Google Scholar 

  78. Kanayeva, D.A., et al.: Efficient separation and sensitive detection of Listeria monocytogenes using an impedance immunosensor based on magnetic nanoparticles, a microfluidic chip, and an interdigitated microelectrode. J. Food Prot. 75(11), 1951–1959 (2012)

    Article  Google Scholar 

  79. Verdoodt, N., Basso, C.R., Rossi, B.F., Pedrosa, V.A.: Development of a rapid and sensitive immunosensor for the detection of bacteria. Food Chem. 221, 1792–1796 (2017)

    Article  Google Scholar 

  80. Wang, Y., Ye, Z., Si, C., Ying, Y.: Monitoring of Escherichia coli O157: H7 in food samples using lectin based surface plasmon resonance biosensor. Food Chem. 136(3–4), 1303–1308 (2013)

    Article  Google Scholar 

  81. Chen, J., et al.: Electrochemical nanoparticleenzyme sensors for screening bacterial contamination in drinking water. Analyst 140(15), 4991–4996 (2015)

    Article  Google Scholar 

  82. Zhao, X., Dong, T., Yang, Z., Pires, N., Høivik, N.: Compatible immuno-NASBA LOC device for quantitative detection of waterborne pathogens: design and validation. Lab Chip 12(3), 602–612 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Central Analytical Research Facility at Queensland University of Technology. This work is funded by the Australian Research Council Discovery Grant (DP180101098).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alka Jaggessar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jaggessar, A., Hasan, J., Yarlagadda, P.K.D.V. (2022). Fabrication and Applications of Antibacterial Surfaces and Nano Biosensing Platforms. In: Batako, A., Burduk, A., Karyono, K., Chen, X., Wyczółkowski, R. (eds) Advances in Manufacturing Processes, Intelligent Methods and Systems in Production Engineering. GCMM 2021. Lecture Notes in Networks and Systems, vol 335. Springer, Cham. https://doi.org/10.1007/978-3-030-90532-3_58

Download citation

Publish with us

Policies and ethics