Skip to main content

Isthmus r0

  • Chapter
  • First Online:
The Human Brainstem

Abstract

In this neuromere, the second trigeminal nucleus following the spinal one (see Chap. 3) develops, i.e., the principal sensory trigeminal nucleus. By contrast to the protopathic properties of the spinal nucleus of the trigeminal nerve this nucleus is the epicritic component of the trigeminal system providing sensibility to the skin of the face, the cranial mucosa of mouth, nasal cavities, teeth, and sinuses. This distribution pattern—alongside that of the spinal trigeminal nucleus—indicates the clinical disciplines that potentially deal with the epicritic properties of the trigeminal nerve like neurology, neurosurgery, ENT, neuroradiology but also dentistry. The principal sensory trigeminal nucleus gets input from three major branches, the ophthalmic, the maxillar and the mandibular nerves. In addition to the sensory function, branches of the trigeminal nucleus subserve the guidance of parasympathetic and sympathetic fibers to their target organs, for example, to the lacrimal gland and the minor salivary glands. The trigeminal nerve plays an important role in neurological examination and for neurological disorders as, for example, trigeminal neuralgia and trigeminal herpes zoster.

The interpeduncular nuclei are the target structure of the habenulo-interpeduncular tract (formerly Fasciculus retroflexus) from the epithalamic habenular nuclei, one of the largest cholinergic tracts of the brain. Data from animal studies point to a role in the regulation of several behavioral patterns.

Barrington’s nucleus—a derivative of rhombomere 2—is an important integration center for the regulation of the urinary bladder function.

The interpeduncular fossa, exit site of the oculomotor nerve, is an important anatomical and neuroradiological landmark. The close anatomical relationship between the oculomotor nerve and the vessels of the circle of Willis (see Chaps. 1 and 15) in the region of the interpeduncular fossa is the basis of aneurysm-related disturbances of the oculomotor nerve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abkur TM (2017) Trochlear nerve palsy. Pract Neurol 17:474–475

    Article  PubMed  Google Scholar 

  • Bajo VM, Merchán MA et al (1999) Topographic organization of the dorsal nucleus of the lateral lemniscus in the cat. J Comp Neurol 407:349–366

    Article  CAS  PubMed  Google Scholar 

  • Berlit P (2014) Erkrankungen der Hirnnerven. In: Basiswissen Neurologie. Springer-Lehrbuch. Springer, Berlin, Heidelberg

    Google Scholar 

  • Halliday GM, Törk I (1986) Comparative anatomy of the ventromedial mesencephalic tegmentum in the Rat, Cat, Monkey and Human. J Comp Neurol 252:423–445

    Article  CAS  PubMed  Google Scholar 

  • Halliday GM, Gal WP et al (1990) Substance P-containing neurons in the pontomesencephalic tegmentum of the human brain. Neuroscience 39:81–96

    Article  CAS  PubMed  Google Scholar 

  • Hong Q, Ke B et al (2014) Cuneiform nucleus stimulation as adjunct treatment for intractable epilepsy: a virally mediated transsynaptic tracing study in spinally transected transgenic mice. Epilepsy Behav 33:135–137

    Article  PubMed  Google Scholar 

  • Huggenberger S, Moser N et al (2019) Neuroanatomie des Menschen. Springer

    Book  Google Scholar 

  • Eggenberger ER, Pula JH (2014) Neuro-ophthalmology in medicine. In: Aminoff’s neurology and general medicine (fifth edition)

    Google Scholar 

  • Iwahori N (1986) A Golgi study on the dorsal nucleus of the lateral lemniscus in the mouse. Neurosci Res 3:196–212

    Article  CAS  PubMed  Google Scholar 

  • Kweldam CF, Gwynn H et al (2014) Undecussated superior cerebellar peduncles and absence of the dorsal transverse pontine fibers: a new axonal guidance disorder? Cerebellum 13:536–540

    Article  PubMed  Google Scholar 

  • Law N, Greenberg M et al (2012) Clinical and neuroanatomical predictors of cerebellar mutism syndrome. Neuro-Oncology 14:1294–1303

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma R, Cui H et al (2013) Predictive encoding of moving target trajectory by neurons in the parabigeminal nucleus. J Neurophysiol 108:2029–2043

    Article  Google Scholar 

  • Mai JK, Paxinos G (eds) (2012) The human nervous system, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  • MacKinnon CD (2018) Balance, gait, and falls. Handbook of clinical neurology. Elsevier

    Google Scholar 

  • Mesulam M-M, Geula C et al (1989) Human reticular formation: cholinergic neurons of the pedunculopontine and laterodorsal tegmental nuclei and some cytochemical comparisons to forebrain cholinergic neurons. J Comp Neurol 281:611–633

    Article  Google Scholar 

  • Morillon P, Bremner F (2017) Trochlear nerve palsy. Br J Hosp Med (Lond) 78:C38–C40

    Article  PubMed  Google Scholar 

  • Nieuwenhuys R, Voogd J, van Huijzen C (2008) The human central nervous system, 4th edn. Springer

    Book  Google Scholar 

  • Olszewski J, Baxter D (1982) Cytoarchitecture of the human brain stem, 2nd edn. Karger, Basel

    Google Scholar 

  • Paxinos G, Watson C (2014) Paxinos and Watson’s the rat brain in stereotaxic coordinates, 7th edn. Elsevier Academic Press, San Diego, CA

    Google Scholar 

  • Remington LA (2012) Clinical anatomy and physiology of the visual system, 3rd edn. Elsevier

    Google Scholar 

  • Saleeba C, Dempsey B et al (2019) A student’s guide to neural circuit tracing. Front Neurosci 13:897

    Article  PubMed  PubMed Central  Google Scholar 

  • Saleeba C, Dempsey B et al (2020) Corrigendum: a student’s guide to neural circuit tracing. Front Neurosci 14:177. Erratum for: Front Neurosci. 2019 Aug 27;13:897

    Article  PubMed  PubMed Central  Google Scholar 

  • Scully C (2014) Scully’s medical problems in dentistry (seventh edition)

    Google Scholar 

  • Singh K, García-Gomar MG et al (2021) Probabilistic atlas of the mesencephalic reticular formation, isthmic reticular formation, microcellular tegmental nucleus, ventral tegmental area nucleus complex and caudal-rostral linear raphe nuclei complex in living humans from 7 Tesla MRI. Brain Connect. Epub ahead of print

    Google Scholar 

  • Sprenger C, Eichler IC et al (2018) Altered signaling in the descending pain modulatory system after short-term infusion of the μ-opioid agonist remifentanil. J Neurosci 38:2454–2470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ten Donkelaar HJ (2011) Clinical neuroanatomy: brain circuitry and its disorders. Springer

    Book  Google Scholar 

  • Tlamsa AP, Brumberg JC (2010) Organization and morphology of thalamocortical neurons of mouse ventral lateral thalamus. Somatosens Mot Res 27:34–43

    Article  PubMed  PubMed Central  Google Scholar 

  • Voogd J, Rugirok TJH (2012) Cerebellum and precerebellar nuclei. In: The human nervous system. (Third Edition) Elsevier

    Google Scholar 

  • Watson C (2012) Hindbrain: cholinergic nuclei. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Academic Press

    Google Scholar 

  • Watson C, Shimogori T et al (2017) Mouse Fgf8-Cre-LacZ lineage analysis defines the territory of the postnatal mammalian isthmus. J Comp Neurol 525:2782–2799

    Article  CAS  PubMed  Google Scholar 

  • Watson C, Bartholomaeus C et al (2019) Time for radical changes in brain stem nomenclature: applying the lessons from developmental gene patterns. Front Neuroanat 13:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson JR, Hendrickson AE et al (1995) Sources of subcortical afferents to the macaque’s dorsal lateral geniculate nucleus. Anat Rec 242:566–574

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Wang HL et al (2011) Mesocorticolimbic glutamatergic pathway. J Neurosci 31:8476–8490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Web Links

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schröder, H. et al. (2023). Isthmus r0. In: The Human Brainstem. Springer, Cham. https://doi.org/10.1007/978-3-030-89980-6_14

Download citation

Publish with us

Policies and ethics