Skip to main content

Electrostatic Levitation on the ISS

  • Chapter
  • First Online:
Metallurgy in Space

Abstract

The electrostatic levitation method utilizes Coulomb force between a charged sample and surrounding electrodes to control the sample position. The need for a high-speed feedback control system explains why electrostatic levitators were latecomers compared to aerodynamic, acoustic, and electromagnetic levitators on the materials processing arena. Several innovations brought along the years on high-vacuum and pressurized electrostatic levitators enabled stable positioning and melting of several refractory metals and ceramics. Since then, this method has been successfully used to measure thermophysical properties of molten materials at elevated temperatures not only on the ground but also in microgravity. This chapter briefly reviews the principle of the electrostatic levitation method, relates both the history of microgravity experiments and the development of the electrostatic levitation furnace in the International Space Station by the Japan Aerospace Exploration Agency (JAXA), and discusses its current status.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.G. Wang, A.V. Anilkumar, C.P. Lee, K.C. Lin, Bifurcation of rotating liquid drops: Results from USML-1 experiments in Space. J. Fluid Mech. 276, 389–403 (1994). https://doi.org/10.1017/S0022112094002612

    Article  Google Scholar 

  2. T.G. Wang, A.V. Anilkumar, C.P. Lee, Oscillations of liquid drops: Results from USML-1 experiments in space. J. Fluid Mech. 308, 1–14 (1996). https://doi.org/10.1017/S002211209600136X

    Article  CAS  Google Scholar 

  3. I. Egry, Thermophysical property measurements in microgravity. High Temp.-High Press. 32, 127–134 (2000)

    Article  CAS  Google Scholar 

  4. G. Lohöfer, S. Schneider, I. Egry, Thermophysical properties of undercooled liquid Co80Pd20. Int. J. Thermophys. 22, 593–604 (2001). https://doi.org/10.1023/A:1010701821392

    Article  Google Scholar 

  5. Y. Luo, B. Damaschke, G. Lohöfer, K. Samwer, Thermophysical properties of a Si50Ge50 melt measured on board the International Space Station. Npj Microgravity 6, 10 (2020). https://doi.org/10.1038/s41526-020-0100-5

    Article  CAS  Google Scholar 

  6. M. Mohr, R. Wunderlich, Y. Dong, D. Furrer, H.-J. Fecht, Thermophysical properties of advanced Ni-based superalloys in the liquid state measured on board the International Space Station. Adv. Eng. Mater. 2019, 1901228 (2019). https://doi.org/10.1002/adem.201901228

    Article  CAS  Google Scholar 

  7. P.-F. Paradis, T. Ishikawa, G.-W. Lee, D. Holland-Moritz, J. Brillo, W.-K. Rhim, J.T. Okada, Materials properties measurements and particle beam interactions studies using electrostatic levitation. Mater. Sci. Eng. R 76, 1–53 (2014). https://doi.org/10.1016/j.mser.2013.12.001

    Article  Google Scholar 

  8. P.F. Clancy, E.G. Lierke, R. Grossbach, W.M. Heide, Electrostatic and acoustic instrumentation for material science processing in space. Acta Astronaut. 7, 877–891 (1980). https://doi.org/10.1016/0094-5765(80)90077-6

    Article  CAS  Google Scholar 

  9. E.G. Lierke, R. Grossbach, G.H. Frischat, K. Fecker, Electrostatic positioning for the containerless processing of a Li-silicate glass, in Summary Review of Sounding Rocket Experiments in Fluid Science and Materials Sciences, esa SP-1132, (1991), pp. 370–371

    Google Scholar 

  10. W.-K. Rhim, S.-K. Chung, M.T. Hyson, E.H. Trinh, D.D. Elleman, Large charged drop levitation against gravity. IEEE Trans. Ind. Appl. IA-23, 975–979 (1987). https://doi.org/10.1109/TIA.1987.4505016

    Article  Google Scholar 

  11. W.K. Rhim, M. Collender, M.T. Hyson, W.T. Simms, D.D. Elleman, Development of an electrostatic positioner for space material processing. Rev. Sci. Instrum. 56, 307 (1985). https://doi.org/10.1063/1.1138349

    Article  Google Scholar 

  12. W.-K. Rhim, S.K. Chung, Isolation of crystallizing droplets by electrostatic levitation. Meth. Companion Meth. Enzymol. 1, 118–127 (1990)

    Article  Google Scholar 

  13. W.-K. Rhim, S.K. Chung, D. Barber, K.F. Man, G. Gutt, A. Rulison, R.E. Spjut, An electrostatic levitator for high-temperature containerless materials processing in 1-g. Rev. Sci. Instrum. 64, 2961 (1993). https://doi.org/10.1063/1.1144475

    Article  CAS  Google Scholar 

  14. S.K. Chung, D.B. Thiessen, W.-K. Rhim, A noncontact measurement technique for the density and thermal expansion coefficient of solid and liquid materials. Rev. Sci. Instrum. 67, 3175 (1996). https://doi.org/10.1063/1.1147584

    Article  CAS  Google Scholar 

  15. A.J. Rulison, W.-K. Rhim, A noncontact measurement technique for the specific heat and total hemispherical emissivity of undercooled refractory materials. Rev. Sci. Instrum. 65, 695 (1994). https://doi.org/10.1063/1.1145087

    Article  CAS  Google Scholar 

  16. W.-K. Rhim, K. Ohsaka, P.-F. Paradis, R.E. Spjut, Noncontact technique for measuring surface tension and viscosity of molten materials using high temperature electrostatic levitation. Rev. Sci. Instrum. 70, 2796 (1999). https://doi.org/10.1063/1.1149797

    Article  CAS  Google Scholar 

  17. W.-K. Rhim, T. Ishikawa, Noncontact electrical resistivity measurement technique for molten metals. Rev. Sci. Instrum. 69, 3628 (1998). https://doi.org/10.1063/1.1149150

    Article  CAS  Google Scholar 

  18. R.W. Hyers, J.R. Roger, A review of electrostatic levitation for materials research. High Temp.-High Press. 27, 461–474 (2008). https://doi.org/10.1515/HTMP.2008.27.6.461

    Article  CAS  Google Scholar 

  19. G.E. Rustan, N.S. Spyrison, A. Kreyssig, R. Prozorov, A.I. Goldman, Noncontact technique for measuring the electrical resistivity and magnetic susceptibility of electrostatically levitated materials. Rev. Sci. Instrum. 83, 103907 (2012). https://doi.org/10.1063/1.4759021

    Article  CAS  Google Scholar 

  20. N.A. Mauro, A.J. Vogt, K.S. Derendorf, M.L. Johnson, G.E. Rustan, D.G. Quirinale, A. Kreyssig, K.A. Lokshin, J.C. Neuefeind, K. An, X.-L. Wang, A.I. Goldman, T. Egami, K.F. Kelton, Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source. Rev. Sci. Instrum. 87, 013904 (2016). https://doi.org/10.1063/1.4939194

    Article  CAS  Google Scholar 

  21. T. Meister, H. Werner, G. Lohöfer, D.M. Herlach, H. Unbehauen, Gain-scheduled control of an electrostatic levitator. Control. Eng. Pract. 11, 117–128 (2003). https://doi.org/10.1016/S0967-0661(02)00102-8

    Article  Google Scholar 

  22. T. Kordel, D. Holland-Moritz, F. Yang, J. Peters, T. Unruh, T. Hansen, A. Meyer, Neutron scattering experiments on liquid droplets using electrostatic levitation. Phys. Rev. B 83, 104205 (2011). https://doi.org/10.1103/physrevB.83.104205

    Article  Google Scholar 

  23. P.-F. Paradis, T. Ishikawa, S. Yoda, Electrostatic levitation research and development at JAXA: Past and present activities in thermophysics. Int. J. Thermophys. 26, 1031–1049 (2005). https://doi.org/10.1007/s10765-005-6683-y

    Article  CAS  Google Scholar 

  24. H. Yoo, C. Park, S. Jeon, S. Lee, G.W. Lee, Uncertainty evaluation for density measurements of molten Ni, Zr, Nb and Hf by using a containerless method. Metrologia 52, 677–684 (2015). https://doi.org/10.1088/0026-1394/52/5/677

    Article  CAS  Google Scholar 

  25. L. Hu, H. Wang, W. Xie, B. Wei, Electrostatic levitation under the single-axis feedback control condition. Sci. China Phys. Mech. Astron. 53, 1438–1444 (2010). https://doi.org/10.1007/s11433-010-4068-0

    Article  Google Scholar 

  26. Q. Zhong, L. Yang, H. Li, Y. Tao, W. Wang, Z. Xu, C. Luo, A new 3D reconstruction method for the density measurement of ellipsoid levitated droplets with containerless technique. J. Mol. Liq. 316, 113345 (2020). https://doi.org/10.1016/j.molliq.2020.113345

    Article  CAS  Google Scholar 

  27. Y. Tsuchiya, K. Murakami, M. Yuzawa, Y. Awa, Y. Gotoh, S. Shimada, K. Yoshizawa, C. Tsukishima, H. Shimoji, Y. Tamagawa, Electrostatic levitator furnace for Japanese experiment module. J. Jpn. Soc. Microgravity Appl. 13, 16 (1996). https://doi.org/10.15011/jasma.13.1.16

    Article  Google Scholar 

  28. S. Yoda, N. Koshikawa, T. Nakamura, J. Yu, T. Nakamura, Y. Nakamura, S. Yoshitomi, H. Karasawa, T. Ikeda, Y. Arai, M. Kobayashi, Y. Awa, H. Shimoji, T. Morita, S. Shimada, Evaluation of the positioning control function of an electrostatic levitation furnace for the Space Station. J. Jpn. Soc. Microgravity Appl. 17, 76 (2000). https://doi.org/10.15011/jasma.17.2.76

    Article  Google Scholar 

  29. J. Yu, N. Koshikawa, Y. Arai, S. Yoda, H. Saitou, Containerless solidification of oxide material using an electrostatic levitation furnace in microgravity. J. Cryst. Growth 231, 568–576 (2001). https://doi.org/10.1016/S0022-0248(01)01431-2

    Article  CAS  Google Scholar 

  30. T. Ishikawa, J.T. Okada, P.-F. Paradis, Parabolic flight experiments on the development of an electrostatic levitation furnace for the International Space Station (ISS). Int. J. Microgravity Sci. 31, 72 (2014). https://doi.org/10.15011/jasma.31.2.72

    Article  Google Scholar 

  31. T. Ishikawa, J.T. Okada, P.-F. Paradis, Y. Watanabe, Thermophysical property measurements of high temperature melts using an electrostatic levitation method. Jpn. J. Appl. Phys. 50, 11RD03 (2011). https://doi.org/10.1143/JJAP.50.11RD03

    Article  CAS  Google Scholar 

  32. T. Masaki, T. Ishikawa, P.-F. Paradis, S. Yoda, J.T. Okada, Y. Watanabe, S. Nanao, A. Ishikura, K. Higuchi, A. Mizuno, M. Watanabe, S. Kohara, Compact electrostatic levitator for diffraction measurements with a two axis diffractometer and a laboratory x-ray source. Rev. Sci. Instrum. 78, 026102 (2007). https://doi.org/10.1063/1.2435590

    Article  CAS  Google Scholar 

  33. T. Ishikawa, J.T. Okada, P.-F. Paradis, M.V. Kumar, Towards microgravity experiments using the Electrostatic Levitation Furnace (ELF) in the International Space Station (ISS). Trans. JSASS Aerospace Technol. Jpn. 12 ists29, Th-15-18 (2014). https://doi.org/10.2322/tastj.12.Th15

    Article  Google Scholar 

  34. H. Tamaru, C. Koyama, H. Saruwatari, Y. Nakamura, T. Ishikawa, T. Takada, Status of the Electrostatic Levitation Furnace (ELF) in the ISS-KIBO. Microgravity Sci. Technol. 30, 643–651 (2018). https://doi.org/10.1007/s12217-018-9631-8

    Article  CAS  Google Scholar 

  35. L. Rayleigh, Proc. R. Soc. Lond. 29, 71 (1879)

    Article  Google Scholar 

  36. H. Lamb, Hydrodynamics, 6th edn. (Cambridge University Press, Cambridge, 1932), pp. 473–639

    Google Scholar 

  37. D. Langstaff, M. Gunn, G.N. Greaves, A. Marsing, F. Kargl, Aerodynamic levitator furnace for measuring thermophysical properties of refractory liquids. Rev. Sci. Instrum. 84, 124901 (2013). https://doi.org/10.1063/1.4832115

    Article  CAS  Google Scholar 

  38. P.-F. Paradis, T. Ishikawa, Y. Saita, S. Yoda, Non-contact thermophysical property measurements of liquid and undercooled alumina. Jpn. J. Appl. Phys. 43, 1496–1500 (2004). https://doi.org/10.1143/JJAP.43.1496

    Article  CAS  Google Scholar 

  39. B. Glorieux, F. Millot, J.-C. Rifflet, J.-P. Coutures, Density of superheated and undercooled liquid alumina by a contactless method. Int. J. Thermophys. 20, 1085–1094 (1999). https://doi.org/10.1023/A:1022650703233

    Article  CAS  Google Scholar 

  40. J.-P. Coutures, J.-C. Rifflet, P. Florian, D. Massiot, Rev. Int. Hautes Temp. Refract. 29, 123 (1994)

    CAS  Google Scholar 

  41. B. Granier, S. Heurtault, Rev. Int. Hautes Temp. Refract. 20, 31 (1983)

    Google Scholar 

  42. Y.V. Zubarev, V.I. Kostikov, B.S. Mitin, Y.A. Nagibin, V.V. Nishcheta, Izv. Akad. Nauk. SSSR Neorg. Mater. 5, 1563 (1969)

    CAS  Google Scholar 

  43. H.V. Wartenberg, G. Wehner, E. Saren, Nach. Akad. Wiss. Goettingen 2, 65 (1936)

    Google Scholar 

  44. N. Ikemiya, J. Umemoto, S. Hara, K. Ogino, Surface tension and densities of molten Al2O3, Ti2O3, V2O5 and Nb2O5. ISIJ Int. 33, 156–165 (1993). https://doi.org/10.2355/isijinternational.33.156

    Article  CAS  Google Scholar 

  45. E.E. Shpil’rain, K.A. Yakinovich, F. Tsitsarkin, Experimental study of the density of liquid alumina up to 2750 C. High Temp.-High Press. 2, 191–198 (1973)

    Google Scholar 

  46. V.P. Elyutin, B.S. Mitin, I.S. Anisimov, Izv. Akad. Nauk. SSSR Neorg. Mater. 9, 1585 (1973)

    CAS  Google Scholar 

  47. J.J. Rasmussen, Surface tension, density, and volume change on melting of Al2O3 systems, Cr2O3, and Sm2O3. J. Am. Ceram. Soc. 55, 326 (1972). https://doi.org/10.1111/j.1151-2916.1972.tb11298.x

    Article  CAS  Google Scholar 

  48. B.S. Mitin, Y.A. Nagabin, Zhur. Fiz. Khim. 44, 1325 (1970)

    CAS  Google Scholar 

  49. A.D. Kirshenbaum, J.A. Cahill, J. Inorg. Nucl. Chem. 14, 283 (1960). https://doi.org/10.1016/0022-1902(60)80272-2

    Article  Google Scholar 

  50. P. Kozakevitch, Rev. Metal. 57, 149 (1960)

    Article  CAS  Google Scholar 

  51. W.D. Kingery, Surface tension of some liquid oxides and their temperature coefficients. J. Am. Ceram. Soc. 42, 6–10 (1959). https://doi.org/10.1111/j.1151-2916.1959.tb09134.x

    Article  CAS  Google Scholar 

  52. T. Ishikawa, C. Koyama, H. Saruwatari, H. Tamaru, H. Oda, M. Ohshio, Y. Nakamura, Y. Watanaebe, Y. Nakata, Density of molten gadolinium oxide measured with the electrostatic levitation furnace in the International Space Station. High Temp.-High Press. 49(1–2), 5–15 (2020). https://doi.org/10.32908/hthp.v49.835

    Article  Google Scholar 

  53. C. Koyama, S. Tahara, S. Kohara, Y. Onodera, D.R. Småbråten, S.M. Selbach, J. Akola, T. Ishikawa, A. Masuno, A. Mizuno, J.T. Okada, Y. Watanabe, Y. Nakata, K. Ohara, H. Tamaru, H. Oda, I. Obayashi, Y. Hiraoka, O. Sakata, Very sharp diffraction peak in nonglass-forming liquid with the formation of distorted tetraclusters. NPG Asia Mater. 12, 43 (2020). https://doi.org/10.1038/s41427-020-0220-0

    Article  CAS  Google Scholar 

  54. C. Koyama, T. Ishikawa, H. Oda, H. Saruwatari, S. Ueno, M. Oshio, Y.I. Watanabe, Y. Nakata, Densities of liquid lanthanoid sesquioxides measured with the electrostatic levitation furnace in the ISS. J. Am. Ceram. Soc. 104, 2913–2918 (2021). https://doi.org/10.1111/jace.17674

    Article  CAS  Google Scholar 

  55. B. Granier, S. Heurtault, Density of liquid rare-earth sesquioxides. J. Am. Ceram. Soc. 71, C466 (1988). https://doi.org/10.1111/j.1151-2916.1988.tb07551.x

    Article  CAS  Google Scholar 

  56. T. Ishikawa, P.-F. Paradis, S. Yoda, New sample levitation initiation and imaging techniques for the processing of refractory metals with an electrostatic levitator furnace. Rev. Sci. Instrum. 72, 2490–2495 (2001). https://doi.org/10.1063/1.1368861

    Article  CAS  Google Scholar 

  57. H. Oda, C. Koyama, M. Oshio, H. Saruwatari, T. Ishikawa, Density of molten zirconium -oxygen system measured with an electrostatic levitation furnace in the International Space Station. Int. J. Microgravity Sci. Appl. 37, 370302 (2020). https://doi.org/10.15011/ijmsa.37.3.370302

    Article  Google Scholar 

  58. Y. Ohishi, T. Kondo, T. Ishikawa, J.T. Okada, Y. Watanabe, H. Muta, K. Kurosaki, S. Yamanaka, Thermophysical properties of Zr-O liquid alloys measured by electrostatic levitation. Int. J. Microgravity Sci. Appl. 35, 350105 (2018). https://doi.org/10.15011/jasma.35.1.350105

    Article  Google Scholar 

  59. T. Kondo, H. Muta, K. Kurosaki, F. Kargl, A. Yamaji, M. Furuya, Y. Ohishi, Density and viscosity of liquid ZrO2 measured by aerodynamic levitation technique. Heliyon 5, e02049 (2019). https://doi.org/10.1016/j.heliyon.2019.e02049

    Article  Google Scholar 

  60. S. Kohara, J. Akola, L. Patrikeev, M. Ropo, K. Ohara, M. Itou, A. Fujiwara, J. Yahiro, J.T. Okada, T. Ishikawa, A. Mizuno, A. Masuno, Y. Watanabe, T. Usuki, Atomic and electronic structures of an extremely fragile liquid. Nat. Commun. 5, 5892 (2014). https://doi.org/10.1038/ncomms6892

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. W.K. Rhim for his extensive assistance through the development of the ISS-ELF. The authors also want to express their gratitude to the ISS crew members and ground operation staff for their support during the on-board assembly, checkout and experiments. It is also acknowledged that the ISS-ELF was designed and fabricated by the IHI Aerospace company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takehiko Ishikawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Minerals, Metals & Materials Society

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ishikawa, T., Paradis, PF. (2022). Electrostatic Levitation on the ISS. In: Fecht, HJ., Mohr, M. (eds) Metallurgy in Space . The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-89784-0_5

Download citation

Publish with us

Policies and ethics