Skip to main content

The First Directly Diode-Pumped Few-Cycle Cr-Doped II-VI Laser

  • Chapter
  • First Online:
A New Generation of Ultrafast Oscillators for Mid-Infrared Applications

Part of the book series: Springer Theses ((Springer Theses))

  • 437 Accesses

Abstract

In recent years, applications of mid-infrared radiation have proliferated tremendously, resulting in an ever-growing search for suitable laser sources that can directly provide the few-cycle pulses needed for efficient downstream MIR generation. To achieve the high sensitivity and specificity required for the spectroscopic investigation of (bio-)molecular samples in the MIR fingerprint region, sophisticated detection schemes such as electro-optic sampling (EOS) have to be combined with ultrafast laser technology to detect subtle changes encoded in the mid-infrared electro-magnetic waveform. However, the probe pulse duration in EOS-based measurements is a critical parameter since it limits the temporal resolution and thus the spectral bandwidth that can be measured at high frequencies. Therefore, ultrashort probe pulses are highly sought after to increase the detection bandwidth. Moreover, if few-cycle laser pulses can be directly generated in the short-wave mid-infrared region at around 2–3 µm, the conversion efficiency for frequency downconversion into the long-wavelength MIR beyond 3 µm is significantly improved, while a broader selection of suitable nonlinear crystals is available also.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The first ruby laser, for example, belongs to the class of three-level lasers and the lasing transition happens between two specific electronic states. These sharp electronic transitions result in a very narrow-linewidth laser emission.

  2. 2.

    The output of this laser cannot be considered as truly continuous-wave, given that the laser diode array was operated in a pulsed mode (\(\sim \)50 µs pulse width).

  3. 3.

    This condition does not hold for most gas lasers, so that spiking and relaxation oscillations are in general not observed.

  4. 4.

    Note that the condition \(\tau _2\gg \tau _c\) is met in all considered cases.

  5. 5.

    For the third laser system, a workaround could be found based on a novel pump focusing scheme (see Sect. 5.2.1).

  6. 6.

    This assumes that the waist is directly positioned at the center of the crystal.

  7. 7.

    It demands that half of the measured data points must be located at a distance greater than two Rayleigh lengths away from the beam focus, whereas the other half of the points is measured around the focused beam waist.

  8. 8.

    Note that the pronounced jump in the tangential beam size—as it is depicted in Fig. 3.10b—is not an exact representation of the real beam distortions at the crystal’s surfaces.

  9. 9.

    This is a commonly used technique to introduce an intensity spike and initiate mode-locked operation (see simulated spiking behaviour in Fig. 2.2).

  10. 10.

    The optical resolution of the fiber-coupled spectrometer was rather limited and specified as 2–10 nm. Hence, the measured FWHM spectra were only used for a qualitative comparison.

  11. 11.

    The maximum CW output power corresponds to laser operation at the center of stability zone I, whereas mode-locking was only obtained when moving towards the stability zone edge at decreased CW power levels of \(\sim \)450 mW.

  12. 12.

    Conversion formula: \(\text {RIN} \text { [dB]}=10\cdot \text {log}_{10}(\text {RIN})\).

  13. 13.

    When the photodetector signal was monitored with a DC-coupled oscilloscope (Teledyne LeCroy, HDO4034), a saturation of the detector manifested itself in a deformation of the resolved pulse train shape.

  14. 14.

    This is also true for the other two laser systems that will be presented in this thesis.

  15. 15.

    Note that the position of the cylindrical pump lenses was optimized to reach the highest CW output power in single-mode laser operation, and was also found to be ideal for mode-locked operation.

References

  1. Haight R, Carr AV (2018) Industrial applications of ultrafast lasers, vol 11. Materials and energy. WSPC

    Google Scholar 

  2. Page RH et al (1997) Cr\(^{2+}\)-doped zinc chalcogenides as efficient widely tunable mid-infrared lasers. IEEE J Quantum Electron 33(4):609–619

    Google Scholar 

  3. DeLoach LD, Page RH, Wilke D, Payne SA, Krupke WF (1996) Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media. IEEE J Quantum Electron 32(6):885–895

    Article  ADS  Google Scholar 

  4. Payne SA, Krupke WF (1996) A glimpse into the laser-crystal ball. Opt Photonics News 7(8):31–35

    Article  ADS  Google Scholar 

  5. Kärtner FX (ed) (2004) Few-cycle laser pulse generation and its applications, vol 95. Springer

    Google Scholar 

  6. Peppers J, Konak T, Martyshkin DV, Fedorov V, Mirov SB (2014) Spectroscopy and mid-IR lasing of Cr\(^{2+}\) ions in ZnSe/ZnS crystals under visible excitation. In: Proceedings of SPIE - the international society for optical engineering, 8959

    Google Scholar 

  7. Schwendimann P, Sigmund E, Zeile K (1988) Model for laser action in vibronic systems. Phys Rev A 37(8):3018–3027

    Article  ADS  Google Scholar 

  8. Kück S (2001) Laser-related spectroscopy of ion-doped crystals for tunable solidstate lasers. Appl Phys B 72:515–562

    Article  ADS  Google Scholar 

  9. Sorokina IT, Vodopyanov KL (2003) Solid-state mid-infrared laser sources, vol 89. Topics in applied physics. Springer

    Google Scholar 

  10. Sorokina IT (2004) Cr\(^{2+}\)-doped II-VI materials for lasers and nonlinear optics. Opt Mater 26(4):395–412

    Google Scholar 

  11. Sorokina IT et al (2002) Continuous-wave tunable Cr\(^{2+}\):ZnS laser. Appl Phys B: Lasers Opt 74(6):607–611

    Google Scholar 

  12. Landolt-Börnstein (1999) Numerical data and functional relationships in science and technology - new series, vol 41. Semiconductors, subvolume B. Springer

    Google Scholar 

  13. Moulton PF (1986) Spectroscopic and laser characteristics of Ti:Al\(_{2}\)O\(_{3}\). J Opt Soc Am B 3(1):125–133

    Google Scholar 

  14. Kusuma HH, Ibrahim Z, Saidin MK (2011) Optical energy gap of Ti:Al\(_{2}\)O\(_{3}\) single crystals. J Appl Sci 11(5):888–891

    Google Scholar 

  15. Sorokina IT, Sorokin E (2015) Femtosecond Cr\(^{2+}\)-based lasers. IEEE J Sel Top Quantum Electron 21(1):1601519

    Google Scholar 

  16. Mirov S et al (2018) Frontiers of mid-IR lasers based on transition metal doped chalcogenides. IEEE J Sel Top Quantum Electron 24(5):1–29

    Article  Google Scholar 

  17. Mirov SB, Fedorov VV, Martyshkin DV, Moskalev LS, Mirov MS, Gapontsev VP (2011) Progress in mid-IR Cr\(^{2+}\) and Fe\(^{2+}\) doped II-VI materials and lasers [Invited]. Opt Mater Express 1(5)

    Google Scholar 

  18. Baudrier-Raybaut M, Haïdar R, Kupecek P, Lemasson P, Rosencher E (2004) Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials. Nature 432:374–376

    Article  ADS  Google Scholar 

  19. Vasilyev S, Mirov M, Gapontsev V (2014) High power Kerr-Lens mode- locked femtosecond mid-IR laser with efficient second harmonic generation in polycrystalline Cr\(^{2+}\):ZnS and Cr\(^{2+}\):ZnSe. In: Advanced solid state lasers (ASSL) AM3A.3

    Google Scholar 

  20. Vasilyev S, Moskalev I, Mirov M, Smolski V, Mirov S, Gapontsev V (2016) Mid-IR Kerr-lens mode-locked polycrystalline Cr:ZnS and Cr:ZnSe lasers with intracavity frequency conversion via random quasi-phase-matching. In: Proceedings of the SPIE 9731, 97310B

    Google Scholar 

  21. Cizmeciyan MN, Cankaya H, Kurt A, Sennaroglu A (2009) Kerr-lens mode-locked femtosecond Cr\(^{2+}\):ZnSe laser at 2420 nm. Opt Lett 34(20):3056–3058

    Google Scholar 

  22. Sorokin E, Sorokina IT (2009) Ultrashort-pulsed Kerr-lens modelocked Cr:ZnSe laser. In: CLEO Europe - EQEC CF1.3

    Google Scholar 

  23. Nagl N, Mak K, Wang Q, Pervak V, Krausz F, Pronin O (2019) Efficient femtosecond mid-infrared generation based on a Cr:ZnS oscillator and step-index fluoride fibers. Opt Lett 44(10):2390–2393

    Google Scholar 

  24. Wang Q et al (2019) Broadband mid-infrared coverage (2-17 \(\upmu \)m) with few-cycle pulses via cascaded parametric processes. Opt Lett 44(10):2566–2569

    Article  ADS  Google Scholar 

  25. Vasilyev S et al (2019) Super-octave longwave mid-infrared coherent transients produced by optical rectification of few-cycle 2.5-\(\upmu \)m pulses. Optica 6(1):111–114

    Article  ADS  Google Scholar 

  26. Smolski VO, Vasilyev S, Schunemann PG, Mirov SB, Vodopyanov KL (2015) Cr:ZnS laser-pumped subharmonic GaAs optical parameteric oscillator with the spectrum spanning 3.6-5.6 \(\upmu \)m. Opt Lett 40(12):2906–2908

    Google Scholar 

  27. Mirov SB, Fedorov VV, Graham K, Moskalev IS, Badikov VV, Panyutin V (2002) Erbium fiber laser-pumped continuous-wave microchip Cr\(^{2+}\):ZnS and Cr\(^{2+}\):ZnSe lasers. Opt Lett 27(11):909–911

    Google Scholar 

  28. Wagner GJ et al (1999) Continuous-wave broadly tunable Cr\(^{2+}\):ZnSe laser. Opt Lett 24(1):19–21

    Google Scholar 

  29. Podlipensky AV et al (2001) Efficient laser operation and continuous-wave diode pumping of Cr\(^{2+}\):ZnSe single crystals. Appl Phys B 72(2):253–255

    Google Scholar 

  30. Moskalev I, Fedorov V, Mirov S, Berry PA, Schepler K (2009) 12-Watt CW polycrystalline Cr\(^{2+}\):ZnSe laser pumped by Tm-fiber laser. In: Advanced solid-state photonics. OSA

    Google Scholar 

  31. Wu Y, Zhou F, Larsen EW, Zhuang F, Yin Y, Chang Z (2020) Generation of few-cycle multi-millijoule 2.5 \(\upmu \)m pulses from a single-stage Cr\(^{2+}\):ZnSe amplifier. Sci Rep 10(7775)

    Google Scholar 

  32. Podlipensky AV et al (1999) Pulsed laser operation of diffusion-doped Cr\(^{2+}\):ZnSe. Opt Commun 167(1–6):129–132

    Google Scholar 

  33. Graham K et al (2004) Pulsed mid-IR Cr\(^{2+}\):ZnS and Cr\(^{2+}\):ZnSe lasers pumped by Raman-shifted Q-switched neodymium lasers. Quantum Electron 34(1):8–14

    Google Scholar 

  34. Sennaroglu A, Konca AO, Pollock CR (2000) Continuous-wave power performance of a 2.47-\(\upmu \)m Cr\(^{2+}\):ZnSe laser: experiment and modeling. IEEE J Quantum Electron 36(10):1199–1205

    Google Scholar 

  35. Champert PA, Popov SV, Taylor JR (2002) Efficient lasing of Cr\(^{2+}\):ZnSe at 2.2 \(\upmu \)m pumped by all-fibre-format seeded Raman source. Electron Lett 38(10):448–449

    Google Scholar 

  36. Mirov SB, Fedorov VV, Martyshkin D, Moskalev IS, Mirov M, Vasilyev S (2015) Progress in mid-IR lasers based on Cr and Fe-doped II-VI chalcogenides. IEEE J Sel Top Quantum Electron 21(1):292–310

    Article  ADS  Google Scholar 

  37. Ebrahim-Zadeh M, Sorokina IT (eds) (2008) Mid-infrared coherent sources and applications. Springer

    Google Scholar 

  38. Page RH, Skidmore JA, Schaffers KI, Beach RJ, Payne SA, Krupke WF (1997) Demonstrations of diode-pumped and grating-tuned ZnSe : Cr\(^{2+}\) lasers. OSA Trends Opt Photonics Ser Adv Solid State Lasers 10:208–210

    Google Scholar 

  39. Moskalev IS, Fedorov VV, Mirov SB (2010) InP diode-pumped Cr:ZnS and Cr:ZnSe highly-efficient, widely-tunable, mid-IR lasers. In: Proceedings of SPIE 7578

    Google Scholar 

  40. Wagner GJ, Schober AM, Bennett GT, Bruns DL, Marquardt JH, Carrig TJ (2012) Multi-watt broadly-tunable diode-pumped Cr:ZnSe laser. In: Conference on lasers and electro-optics 2012. CTu2D.2. Optical society of America. OSA technical digest

    Google Scholar 

  41. Slobodtchikov E, Moulton PF (2012) Progress in ultrafast Cr:ZnSe lasers. In: Lasers, sources, and related photonic devices. AW5A.4. Optical society of America. OSA technical digest

    Google Scholar 

  42. Sorokin E, Tolstik N, Schaffers KI, Sorokina IT (2012) Femtosecond SESAM-modelocked Cr:ZnS laser. Opt Express 20(27), 28947–28952

    Google Scholar 

  43. Zhang J et al (2015) 49-fs Yb:YAG thin-disk oscillator with distributed Kerr-lens mode-locking. In: 2015 European conference on lasers and electro-optics - European quantum electronics conference (CLEO/Europe-EQEC) PD.A.1

    Google Scholar 

  44. Tokurakawa M et al (2008) Diode-pumped 65 fs Kerr-lens mode-locked Yb\(^{3+}\):Lu\(_{2}\)O\(_{3}\) and nondoped Y\(_{2}\)O\(_{3}\) combined ceramic laser. Opt Lett 33(12):1380–1382

    Google Scholar 

  45. Phelan R et al Optical fiber applications. In: Huerta-Cuellar G, Imani R (eds) Mid-infrared InP-based discrete mode laser diodes. IntechOpen

    Google Scholar 

  46. Svelto O (2009) Principles of lasers, 5th edn. Springer, Berlin

    Google Scholar 

  47. Diehl R (ed) (2000) High-power diode lasers - fundamentals, technology, applications, vol 78. Springer, Berlin

    Google Scholar 

  48. Sun H (2015) A practical guide to handling laser diode beams, 2nd edn. Springer briefs in physics. Springer, Berlin

    Book  Google Scholar 

  49. Kot M, Žd’ánský K (1992) Measurement of radiative and nonradiative recombination rate in InGaAsP-InP LED’s. IEEE J Quantum Electron 28(8):1746–1750

    Article  ADS  Google Scholar 

  50. Piprek J, White JK, SpringThorpe AJ (2002) What limits the maximum output power of long-wavelength AlGaInAs/InP laser diodes. IEEE J Quantum Electron 38(9):1253–1259

    Article  ADS  Google Scholar 

  51. Qing K et al (2015) Fabrication and optimization of 1.55-\(\upmu \)m InGaAsP/InP high-power semiconductor diode laser. J Semicond 36(9)

    Google Scholar 

  52. Anthony E (1986) Siegman. University Science Books, Lasers

    Google Scholar 

  53. Harb CC, Ralph TC, Huntington EH, McClelland DE, Bachor H-A, Freitag I (1997) Intensity-noise dependence of Nd:YAG lasers on their diodelaser pump source. J Opt Soc Am B 14(11):2936–2945

    Article  ADS  Google Scholar 

  54. Wang Y, Fernandez TT, Coluccelli N, Gambetta A, Laporta P, Galzerano G (2017) 47-fs Kerr-lens mode-locked Cr:ZnSe laser with high spectral purity. Opt Express 25(21):25193–25200

    Article  ADS  Google Scholar 

  55. Yang S, Ponomarev EA, Bao X (2005) Experimental study on relaxation oscillation in a detuned FM harmonic mode-locked Er-doped fiber laser. Opt Commun 245(1–6):371–376

    Google Scholar 

  56. Cheng Y, Kringlebotn JT, Loh WH, Laming RI, Payne DN (1995) Stable single-frequency traveling-wave fiber loop laser with integral saturable-absorber-based tracking narrow-band filter. Opt Lett 20(8):875–877

    Google Scholar 

  57. Zhang W-N et al (2012) A compact low noise single frequency linearly polarized dbr fiber laser at 1550 nm. Chin Phys Lett 29(8):084205

    Article  ADS  Google Scholar 

  58. Zhu G, Wang Q, Dong H, Dutta NK (2004) Fiber laser relaxation oscillation noise suppression through the use of self-biased intracavity loss modulator. J Appl Phys 96(4):1790–1793

    Article  ADS  Google Scholar 

  59. Wang L, Xu XG (2015) Scattering-type scanning near-field optical microscopy with reconstruction of vertical interaction. Nat Commun 6:8973

    Article  ADS  Google Scholar 

  60. Wang H, Wang L, Jakob DS, Xu XG (2018) Tomographic and multimodal scattering-type scanning near-field optical microscopy with peak force tapping mode. Nat Commun 9(2005)

    Google Scholar 

  61. Hall DG (1981) Optimum mode size criterion for low-gain lasers. Appl Opt 20(9):1579–1583

    Article  ADS  Google Scholar 

  62. Kopf D, Aus der Au J, Keller U, Bona GL, Roentgen P (1995) 400-mW continuous-wave diode-pumped Cr:LiSAF laser based on a power-scalable concept. Opt Lett 20(17):1782–1784

    Article  ADS  Google Scholar 

  63. Kopf D et al (1997) High-average-power diode-pumped femtosecond Cr:LiSAF lasers. Appl Phys B 65:235–243

    Article  ADS  Google Scholar 

  64. Krausz F, Zehetner J, Brabec T, Wintner E (1991) Elliptic-mode cavity for diode-pumped lasers. Opt Lett 16(19):1496–1498

    Article  ADS  Google Scholar 

  65. Laporta P, Brussard M (1991) Design criteria for mode size optimization in diode-pumped solid-state lasers. IEEE J Quantum Electron 27(10):2319–2326

    Article  ADS  Google Scholar 

  66. Salin F, Squier J (1991) Geometrical optimization of longitudinally pumped solid-state lasers. Opt Commun 86:397–400

    Article  ADS  Google Scholar 

  67. Sanchez F, Brunel M, Aït-Ameur K (1998) Pump-saturation effects in end-pumped solid-state lasers. J Opt Soc Am B 15(9):2390–2394

    Google Scholar 

  68. Boyd R (2008) Nonlinear optics, 3rd edn. Academic Press

    Google Scholar 

  69. Backus S, Kirchner M, Durfee C, Murnane M, Kapteyn H (2017) Direct diode-pumped Kerr Lens 13 fs Ti:sapphire ultrafast oscillator using a single blue laser diode. Opt Express 25(11):12469–12477

    Article  ADS  Google Scholar 

  70. Durfee CG et al (2012) Direct diode-pumped Kerr-lens mode-locked Ti:sapphire laser. Opt Express 20(13):13677–13683

    Article  ADS  Google Scholar 

  71. Gürel K et al (2015) Green diode-pumped femtosecond Ti:sapphire laser with up to 450 mW average power. Opt Express 20(23):30043–30048

    Article  Google Scholar 

  72. Nagl N, Gröbmeyer S, Pervak V, Krausz F, Pronin O, Mak K (2019) Directly diode-pumped, Kerr-lens mode-locked, few-cycle Cr:ZnSe oscillator. Opt Express 27(17):24445–24454

    Article  ADS  Google Scholar 

  73. Lasers and laser-related equipment - Test methods for laser beam widths, divergence angles and beam propagation ratios. ISO Standard 11146 (2005)

    Google Scholar 

  74. Siegman AE (1993) Defining, measuring, and optimizing laser beam quality. In: Proceedings of SPIE 1868

    Google Scholar 

  75. Wang X, Hu G, Li Y, Yao J (1994) Numerical analysis of beam parameters and stability regions in a folded or ring cavity. J Opt Soc Am A 11(8):2265–2270

    Article  ADS  Google Scholar 

  76. Tushar SNB, Nath SD, Akhtar J, Reja MI (2018) Modeling and analysis of Z folded solid state laser cavity with two curved mirrors. Int J Microw Opt Technol 13(3):244–253

    Google Scholar 

  77. Mirov SB et al (2003) Diode and fibre pumped Cr\(^{2+}\):ZnS mid-infrared external cavity and microchip lasers. IEE Proc Optoelectron 150(4):340–345

    Google Scholar 

  78. Brabec T, Curley F, Spielmann C, Wintner E, Schmidt JA (1993) Hard-aperture Kerr-lens mode locking. J Opt Soc Am B 10(6):1029–1034

    Google Scholar 

  79. Tolstik N, Sorokoin E, Sorokina IT (2013) Kerr-lens mode-locked Cr:ZnS laser. Opt Lett 38(3):299–301

    Article  ADS  Google Scholar 

  80. Haus HA, Fujimoto JG, Ippen EP (1992) Analytic theory of additive pulse and Kerr Lens mode locking. IEEE J Quantum Electron 28(10):2086–2096

    Article  ADS  Google Scholar 

  81. Szipöcs R, Ferencz K, Spielmann C, Krausz F (1994) Chirped multilayer coatings for broadband dispersion control in femtosecond lasers. Opt Lett 19(3):201–203

    Google Scholar 

  82. Ell R et al (2001) Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser. Opt Lett 26(6):373–375

    Article  ADS  Google Scholar 

  83. Morgner U et al (2000) Ultrabroadband double-chirped mirror pairs covering one octave of bandwidth. In: Conference on lasers and electro-optics, CThE5

    Google Scholar 

  84. Kärtner FX et al (1997) Design and fabrication of double-chirped mirrors. Opt Lett 22(11):831–833

    Article  ADS  Google Scholar 

  85. Szipöcs R et al (2000) Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers. Appl Phys B 70:S51–S57

    Article  Google Scholar 

  86. Golubovic B et al (2000) Double Gires-Tournois interferometer negative-dispersion mirrors for use in tunable mode-locked lasers. Opt Lett 25(4):275–277

    Article  ADS  Google Scholar 

  87. Pervak V, Amotchkina T, Wang Q, Pronin O, Mak K, Trubetskov M (2019) 2/3 octave Si/SiO\(_{2}\) infrared dispersive mirrors open new horizons in ultrafast multilayer optics. Opt Express 27(1):55–62

    Google Scholar 

  88. Herrmann J (1994) Theory of Kerr-lens mode locking: role of self-focusing and radially varying gain. J Opt Soc Am B 11(3):498–512

    Article  ADS  Google Scholar 

  89. Brabec T, Spielmann Ch, Curley PF, Krausz F (1992) Kerr lens mode locking. Opt Lett 17(18):1292–1294

    Article  ADS  Google Scholar 

  90. Kogelnik H, Li T (1966) Laser beams and resonators. Appl Opt 5(10):1550–1567

    Article  ADS  Google Scholar 

  91. Agrawal GP (2009) Nonlinear fiber optics, 4th edn. Elsevier (Singapore) Pte Ltd

    Google Scholar 

  92. Spielmann C, Curley PF, Brabec T, Krausz F (1994) Ultrabroadband femtosecond lasers. IEEE J Quantum Electron 30(4):1100–1114

    Article  ADS  Google Scholar 

  93. Cundiff ST, Soto-Crespo JM, Akhmediev N (2002) Experimental evidence for soliton explosions. Phys Rev Lett 88(7):073903

    Article  ADS  Google Scholar 

  94. Müller A et al (2011) Frequency-doubled DBR-tapered diode laser for direct pumping of Ti:sapphire lasers generating sub-20 fs pulses. Opt Express 19(13):12156–12163

    Article  ADS  Google Scholar 

  95. Dennis ML, Duling IN III (1994) Experimental study of sideband generation in femtosecond fiber lasers. IEEE J Quantum Electron 30(6):1469–1477

    Article  ADS  Google Scholar 

  96. Koechner W (2006) Solid-state laser engineering. Springer

    Google Scholar 

  97. Agrawal GP, Dutta NK (1993) Semiconductor lasers. In: Springer US. Chapter Noise characteristics, pp. 261–269

    Google Scholar 

  98. Henry CH, Kazarinov RF (1996) Quantum noise in photonics. Rev Mod Phys 68(3):801–853

    Article  ADS  Google Scholar 

  99. Optics and photonics - Lasers and laser-related equipment - Test methods for laser beam power, energy and temporal characteristics. ISO Standard 11554 (2017)

    Google Scholar 

  100. Paschotta R et al (2005) Relative timing jitter measurements with an indirect phase comparison method. Appl Phys B 80:185–192

    Article  ADS  Google Scholar 

  101. Obarski GE, Splett JD (2001) Transfer standard for the spectral density of relative intensity noise of optical fiber sources near 1550 nm. J Opt Soc Am B 18(6):750–761

    Article  ADS  Google Scholar 

  102. Tawfieq M, Kragh Hansen A, Bjarlin Jensen O, Marti D, Sumpf B, Andersen PE (2018) Intensity noise transfer through a diode-pumped titanium sapphire laser system. IEEE J Quantum Electron 54(1):1700209

    Article  Google Scholar 

  103. Scott RP, Langrock C, Kolner BH (2001) High-dynamic-range laser amplitude and phase noise measurement techniques. IEEE J Sel Top Quantum Electron 7(4):641–655

    Article  ADS  Google Scholar 

  104. Seifert F, Kwee P, Heurs M, Willke B, Danzmann K (2006) Laser power stabilization for second-generation gravitational wave detectors. Opt Lett 31(13):2000–2002

    Article  ADS  Google Scholar 

  105. Wang Y, Fonseca-Campos J, Liang W-G, Xu C-Q, Vargas-Baca I (2008) Noise analysis of second-harmonic generation in undoped and MgO-Doped periodically poled lithium niobate. Adv OptoElectron 2008(428971)

    Google Scholar 

  106. Hooge FN, Kleinpenning TGM, Vandamme LKJ (1981) Experimental studies on 1/f noise. Rep Prog Phys 44:479–531

    Article  ADS  Google Scholar 

  107. Dutta P, Horn PM (1981) Low-frequency fluctuations in solids: 1/f noise. Rev Mod Phys 53(3):497–516

    Article  ADS  Google Scholar 

  108. Keshner MS (1982) 1/f noise. Proc IEEE 70(3):212–218

    Article  ADS  Google Scholar 

  109. Llopis O, Azaizia S, Saleh K, Slimane AA, Fernandez A (2013) Photodiode 1/f noise and other types of less known baseband noises in optical telecommunications devices. In: 22nd international conference on noise and fluctuations (ICNF) 13710909

    Google Scholar 

  110. Piché M, Salin F (1993) Self-mode locking of solid-state lasers without apertures. Opt Lett 18(13):1041–1043

    Article  ADS  Google Scholar 

  111. Mollenauer LF, Stolen RH (1984) The soliton laser. Opt Lett 9(1):13–15

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Nagl .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagl, N. (2021). The First Directly Diode-Pumped Few-Cycle Cr-Doped II-VI Laser. In: A New Generation of Ultrafast Oscillators for Mid-Infrared Applications. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-89754-3_3

Download citation

Publish with us

Policies and ethics