Skip to main content

Dynamics of Hyperbranched Polymers Under Severe Confinement in Intercalated Nanocomposites

  • Chapter
  • First Online:
Dynamics of Composite Materials

Part of the book series: Advances in Dielectrics ((ADVDIELECT))

  • 631 Accesses

Abstract

The dynamic response of different hyperbranched polymers in the bulk and under severe confinement within the ~1 nm spacing of the inorganic galleries in intercalated nanocomposites is discussed. Three generations of a polyester polyol hyperbranched polymer of the Boltorn family as well as the poly(ester amide) Hybrane are mixed with sodium montmorillonite, Na+-MMT and graphite oxide, GO, in compositions for which all polymers are intercalated and there are no free chains outside the completely filled galleries. Thus, we aim at investigating the effect of the severe confinement and of the different polymer/surface interactions on the hyperbranched polymer dynamics. In both cases, the relaxation processes identified for the neat polymers are found in the nanohybrids, however, with different temperature dependences. Moreover, the different polymer/surface interactions result in a different manifestation of the relaxation processes in the different confining environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DSC:

Differential scanning calorimetry

GO:

Graphite oxide

HBPs:

Hyperbranched polymers

HN:

Havriliak-Negami

MWS:

Maxwell–Wagner-Sillars

Na+-MMT:

Sodium montmorillonite

QENS:

Quasi-elastic neutron scattering

Tg:

Glass transition temperature

VFT:

Vogel-Fulcher-Tammann

XRD:

X-ray diffraction

References

  1. Sakai VG, Arbe A (2009) Quasielastic neutron scattering in soft matter. Curr Opin Colloid Interface Sci 14:381–390. https://doi.org/10.1016/j.cocis.2009.04.002

    Article  CAS  Google Scholar 

  2. Paul W, Smith GD (2004) Structure and dynamics of amorphous polymers: computer simulations compared to experiment and theory. Rep Prog Phys 67:1117–1185. https://doi.org/10.1088/0034-4885/67/7/R03

    Article  CAS  Google Scholar 

  3. Baschnagel J, Varnik F (2005) Computer simulations of supercooled polymer melts in the bulk and in confined geometry. J Phys Condens Matter 17:R851–R953. https://doi.org/10.1088/0953-8984/17/32/R02

    Article  CAS  Google Scholar 

  4. Lee HN, Paeng K, Swallen SF, Ediger MD (2009) Direct measurement of molecular mobility in actively deformed polymer glasses. Science 323:231–234. https://doi.org/10.1126/science.1165995

    Article  CAS  Google Scholar 

  5. Chen K, Saltzman EJ, Schweizer KS (2009) Segmental dynamics in polymers: from cold melts to ageing and stressed glasses. J Phys Cond Matt 21:503101. https://doi.org/10.1088/0953-8984/21/50/503101

    Article  CAS  Google Scholar 

  6. Roland CM (2010) Relaxation phenomena in vitrifying polymers and molecular liquids. Macromolecules 43:7875–7890. https://doi.org/10.1021/ma101649u

    Article  CAS  Google Scholar 

  7. Freed KF (2011) The descent into glass formation in polymer fluids. Acc Chem Res 44:194–203. https://doi.org/10.1021/ar100122w

    Article  CAS  Google Scholar 

  8. Colmenero J, Arbe A (2013) Recent progress on polymer dynamics by neutron scattering: from simple polymers to complex materials. J Polym Sci Part B Polym Phys 51:87–113. https://doi.org/10.1002/polb.23178

    Article  CAS  Google Scholar 

  9. Alegria A, Colmenero J (2016) Dielectric relaxation of polymers: segmental dynamics under structural constraints. Soft Matter 12:7709–7725. https://doi.org/10.1039/c6sm01298a

    Article  CAS  Google Scholar 

  10. Frick B, Richter D (1995) The microscopic basis of the glass-transition in polymers from neutron-scattering studies. Science 267:1939–1945. https://doi.org/10.1126/science.267.5206.1939

    Article  CAS  Google Scholar 

  11. Peter C, Kremer K (2009) Multiscale simulation of soft matter systems—from the atomistic to the coarse-grained level and back. Soft Matter 5:4357–4366. https://doi.org/10.1039/b912027k

    Article  CAS  Google Scholar 

  12. Runt JP, Fitzgerald JJ (1997) Dielectric spectroscopy of polymeric materials: fundamentals and applications. American Chemical Society, Washington, DC

    Google Scholar 

  13. Kremer F, Schönhals A (eds) (2003) Broadband dielectric spectroscopy. Springer-Verlag, Berlin

    Google Scholar 

  14. Arbe A, Alvarez F, Colmenero J (2020) Insight into the structure and dynamics of polymers by neutron scattering combined with atomistic molecular dynamics simulations. Polymers 12:3067. https://doi.org/10.3390/polym12123067

    Article  CAS  Google Scholar 

  15. Vogel H (1921) The temperature-dependent viscosity law for liquids. 22:645

    Google Scholar 

  16. Fulcher GS (1925) Analysis of recent measurements of the viscosity of glasses. J Am Cerm Soc 8:339–355. https://doi.org/10.1111/j.1151-2916.tb16731.x

    Article  CAS  Google Scholar 

  17. Tammann G, Hesse W (1926) The dependence of viscosity on temperature in supercooled liquids. Z Anorg All Chem 156:245–257. https://doi.org/10.1002/zaac.19261560121

    Article  CAS  Google Scholar 

  18. O’Connel PA, McKenna GB (2005) Rheological measurements of the thermoviscoelastic response of ultrathin polymer films. Science 307:1760–1763. https://doi.org/10.1126/science.1105658

    Article  CAS  Google Scholar 

  19. Napolitano S, Wübbenhorst M (2011) The lifetime of the deviations from bulk behaviour in polymers confined at the nanoscale. Nature Comm 2:260. https://doi.org/10.1038/ncomms1259

    Article  CAS  Google Scholar 

  20. Zhang W, Douglas JF, Starr FW (2018) Why we need to look beyond the glass transition temperature to characterize the dynamics of thin supported polymer films. PNAS 115:5641–5646. https://doi.org/10.1073/pnas.1722024115

    Article  CAS  Google Scholar 

  21. Panagopoulou A, Rodríguez-Tinoco C, White RP, Lipson JEG, Napolitano S (2020) Substrate roughness speeds up segmental dynamics of thin polymer films. Phys Rev Lett 124:027802. https://doi.org/10.1103/PhysRevLett.124.027802

    Article  CAS  Google Scholar 

  22. Anastasiadis SH, Karatasos K, Vlachos G, Manias E, Giannelis EP (2000) Nanoscopic-confinement effects on local dynamics. Phys Rev Lett 84:915–918. https://doi.org/10.1103/PhysRevLett.84.915

    Article  CAS  Google Scholar 

  23. Ash BJ, Siegel RW, Schadler LS (2004) Glass-transition Temperature Behavior of Alumina/PMMA Nanocomposites. J Polym Sci Part B: Polym Phys 42:4371–4383. https://doi.org/10.1002/polb.20297

    Article  CAS  Google Scholar 

  24. Frick B, Alba-Simionesco C, Dosseh G, Le Quellec C, Moreno AJ, Colmenero J, Schönhals A, Zorn R, Chrissopoulou K, Anastasiadis SH, Dalnoki-Veress K (2005) Inelastic neutron scattering for investigating the dynamics of confined glass-forming liquids. J Non-Cryst Sol 351:2657–2667. https://doi.org/10.1016/j.jnoncrysol.2005.03.061

    Article  CAS  Google Scholar 

  25. Elmahdy MM, Chrissopoulou K, Afratis A, Floudas G, Anastasiadis SH (2006) Effect of confinement on polymer segmental motion and ion mobility in PEO/layered silicate nanocomposites. Macromolecules 39:5170–5173. https://doi.org/10.1021/ma0608368

    Article  CAS  Google Scholar 

  26. Chrissopoulou K, Afratis A, Anastasiadis SH, Elmahdy MM, Floudas G (2007) Structure and dynamics in PEO nanocomposites. Europ Phys J Sp Top 141:267–271. https://doi.org/10.1140/epjst/e2007-00051-9

    Article  Google Scholar 

  27. Rittigstein P, Priestley RD, Broadbelt LJ, Torkelson JM (2007) Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. Nat Mater 6:278–282. https://doi.org/10.1038/nmat1870

    Article  CAS  Google Scholar 

  28. Chrissopoulou K, Anastasiadis SH, Giannelis EP, Frick B (2007) Quasielastic neutron scattering of poly(methyl phenyl siloxane) in bulk and under severe confinement. J Chem Phys 127:144910. https://doi.org/10.1063/1.2775449

    Article  CAS  Google Scholar 

  29. Anastasiadis SH, Chrissopoulou K, Frick B (2008) Structure and dynamics in polymer/layered silicate nanocomposites. Mater Sci Eng B 152:33–39. https://doi.org/10.1016/j.mseb.2008.06.008

    Article  CAS  Google Scholar 

  30. Vo LT, Anastasiadis SH, Giannelis EP (2011) Dielectric study of poly(styrene-co-butadiene) composites with carbon black, silica and nanoclay. Macromolecules 46:6162–6171. https://doi.org/10.1021/ma200044c

    Article  CAS  Google Scholar 

  31. Barroso-Bujans F, Fernandez-Alfonso F, Cerveny S, Parker SF, Alegria A, Colmenero J (2011) Polymers under extreme two-dimensional confinement: poly(ethylene oxide) in graphite oxide. Soft Matter 16:7173–7176. https://doi.org/10.1039/c1sm05661a

    Article  CAS  Google Scholar 

  32. Barroso-Bujans F, Cerveny S, Alegria A, Colmenero J (2013) Chain length effects on the dynamics of poly(ethylene oxide) confined in graphite oxide: a broadband dielectric spectroscopy study. Macromolecules 46:7932–7939. https://doi.org/10.1021/ma401373p

    Article  CAS  Google Scholar 

  33. Fotiadou S, Karageorgaki C, Chrissopoulou K, Karatasos K, Tanis I, Tragoudaras D, Frick B, Anastasiadis SH (2013) Structure and dynamics of hyperbranched polymer/layered silicate nanocomposites. Macromolecules 46:2842–2855. https://doi.org/10.1021/ma302405q

    Article  CAS  Google Scholar 

  34. Alexandris S, Sakellariou G, Steinhart M, Floudas G (2014) Dynamics of unentangled cis-1,4-polyisoprene confined to nanoporous alumina. Macromolecules 47:3895–3900. https://doi.org/10.1021/ma5006638

    Article  CAS  Google Scholar 

  35. Androulaki K, Chrissopoulou K, Prevosto D, Labardi M, Anastasiadis SH (2015) Dynamics of hyperbranched polymer under confinement: a dielectric relaxation study. ACS Appl Mater Interf 7:12387–12398. https://doi.org/10.1021/am507571y

    Article  CAS  Google Scholar 

  36. Chrissopoulou K, Anastasiadis SH (2015) Effects of nanoscopic-confinement on polymer dynamics. Soft Matter 11:3746–3766. https://doi.org/10.1039/c5sm00554j

    Article  CAS  Google Scholar 

  37. Androulaki K, Chrissopoulou K, Prevosto D, Labardi M, Anastasiadis SH (2019) Structure and dynamics of biobased polyester nanocomposites. Biomacrocules 20:164–176. https://doi.org/10.1021/acs.biomac.8b01231

    Article  CAS  Google Scholar 

  38. Elmahdy MM, Gournis D, Ladavos A, Spanos C, Floudas G (2020) H-shaped copolymer of polyethylene and poly(ethylene oxide) under severe confinement: phase state and dynamics. Langmuir 36:4261–4671. https://doi.org/10.1021/acs.langmuir.0c00127

    Article  CAS  Google Scholar 

  39. Androulaki K, Chrissopoulou K, Labardi M, Anastasiadis SH (2021) Effect of interfacial interactions on static and dynamic behavior of hyperbranced polymers: comparison between different layered nanoadditives. Polymer 222:123646. https://doi.org/10.1016/j.polymer.2021.123646

    Article  CAS  Google Scholar 

  40. Chrissopoulou K, Androulaki K, Labardi M, Anastasiadis SH (2021) Static and dynamic behavior of polymer/graphite oxide nanocomposites before and after thermal reduction. Polymers 13:2008. https://doi.org/10.3390/polym13071008

    Article  CAS  Google Scholar 

  41. Karatasos K (2014) Graphene/hyperbranched polymer nanocomposites: insight from molecular dynamics simulations. Macromolecules 47:8833–8845. https://doi.org/10.1021/ma502123a

    Article  CAS  Google Scholar 

  42. Sun XX, Huang CJ, Wang LD, Liang L, Cheng YJ, Fei WD, Li YB (2020) Recent progress in graphene / polymer nanocomposites. Adv Mater 33:2001105. https://doi.org/10.1002/adma.202001105

    Article  CAS  Google Scholar 

  43. Papageorgiou DG, Li ZL, Liu MF, Kinloch IA, Young RJ (2020) Mechanisms of mechanical reinforcement by graphene and carbon nanotubes in polymer nanocomposites. Nanoscale 12:2228–2267. https://doi.org/10.1039/c9nr06952f

    Article  CAS  Google Scholar 

  44. Chen JJ, Liu BF, Gao XH, Xu DG (2018) A review of the interfacial characteristics of polymer nanocomposites containing carbon nanotubes. RSC Adv 8:28048–28085. https://doi.org/10.1039/c8ra04205e

    Article  CAS  Google Scholar 

  45. Rissanou AN, Papananou H, Petrakis VS, Doxastakis M, Andrikopoulos KS, Voyiatzis GA, Chrissopoulou K, Harmandaris V, Anastasiadis SH (2017) Structural and conformational properties of poly(ethylene oxide) / silica nanocomposites: effect of confinement. Macromolecules 50:6273–6284. https://doi.org/10.1021/acs.macromol.7b00811

    Article  CAS  Google Scholar 

  46. Papananou H, Perivolari E, Chrissopoulou K, Anastasiadis SH (2018) Tuning polymer crystallinity via the appropriate selection of inorganic nanoadditives. Polymer 157:111–121. https://doi.org/10.1016/j.polymer.2018.10.018

    Article  CAS  Google Scholar 

  47. Kunzo P, Lobotka P, Kovacova E, Chrissopoulou K, Papoutsakis L, Anastasiadis SH, Krizanova Z, Vavra I (2013) Nanocomposites of polyaniline and titania nanoparticles for gas sensors. Phys Status Solidi Α 210:2341–2347. https://doi.org/10.1002/pssa.201329289

    Article  CAS  Google Scholar 

  48. Alkhodairi H, Russell ST, Pribyl J, Benicewicz BC, Kumar SK (2020) Compatibilizing immiscible polymer blends with sparsely grafted nanoparticles. Macromolecules 53:10330–10338. https://doi.org/10.1021/acs.macromol.0c02108

    Article  CAS  Google Scholar 

  49. Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science 314:1107–1110. https://doi.org/10.1126/science.1130557

    Article  CAS  Google Scholar 

  50. Winey KI, Vaia RA (2007) Polymer nanocomposites. MRS Bull 32:314–358. https://doi.org/10.1557/mrs2007.229

    Article  CAS  Google Scholar 

  51. Pourrahimi AM, Hoang TA, Liu DM, Pallon LKH, Gubanski S, Olsson RT, Gedde UW, Hedenqvist MS (2016) Highly efficient interfaces in nanocomposites based on polyethylene and ZnO nano/hierarchical particles: a novel approach toward ultralow electrical conductivity insulations. Adv Mater 28:8651–8657. https://doi.org/10.1002/adma.201603291

    Article  CAS  Google Scholar 

  52. Giannelis EP (1996) Polymer layered silicate nanocomposites. Adv Mater 8:29–35

    Article  CAS  Google Scholar 

  53. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641. https://doi.org/10.1016/j.progpolymsci.2003.08.002

    Article  CAS  Google Scholar 

  54. Chrissopoulou K, Andrikopoulos KS, Fotiadou S, Bollas S, Karageorgaki C, Christofilos D, Voyiatzis GA, Anastasiadis SH (2011) Crystallinity and chain conformation in PEO/layered silicate nanocomposites. Macromolecules 44:9710–9722. https://doi.org/10.1021/ma201711r

    Article  CAS  Google Scholar 

  55. Wang J, Hu KH, Xu YF, Hu XG (2008) Structural, thermal and tribological properties of intercalated polyoxymethylene / molybdenum disulfide nanocomposites. J Appl Polym Sci 110:91–96. https://doi.org/10.1002/app.28519

    Article  CAS  Google Scholar 

  56. La Mantia FP, Scaffaro R, Ceraulo M, Mistretta MC, Dintcheva NT, Bota L (2016) A simple method to interpret the rheological behaviour of intercalated polymer nanocomposites. Comp Part B-Eng 98:382–388. https://doi.org/10.1016/j.compositesb.2016.05.045

    Article  CAS  Google Scholar 

  57. Habel C, Maiz J, Olmedo-Martínez JL, López JV, Breu J, Müller AJ (2020) Competition between nucleation and confinement in the crystallization of poly(ethylene glycol)/large aspect ratio hectorite nanocomposites. Polymer 202:122734. https://doi.org/10.1016/j.polymer.2020.122734

    Article  CAS  Google Scholar 

  58. Kawasumi M, Hasegawa N, Kato M, Usuki A, Okada A (1997) Preparation and mechanical properties of polypropylene-clay hybrids. Macromolecules 30:6333–6338. https://doi.org/10.1021/ma961786h

    Article  CAS  Google Scholar 

  59. Chrissopoulou K, Altintzi I, Anastasiadis SH, Giannelis EP, Pitsikalis M, Hadjichristidis N, Theophilou N (2005) Controlling the miscibility of polyethylene/layered silicate nanocomposites by altering the polymer/surface interactions. Polymer 46:12440–12451. https://doi.org/10.1016/j.polymer.2005.10.106

    Article  CAS  Google Scholar 

  60. Kim DH, Fasulo PD, Rodgers WR, Paul DR (2007) Structure and properties of polypropylene-based nanocomposites: effect of PP-g-MA to organoclay ratio. Polymer 48:5308–5323. https://doi.org/10.1016/j.polymer.2007.07.011

    Article  CAS  Google Scholar 

  61. Chrissopoulou K, Altintzi I, Andrianaki I, Shemesh R, Retsos H, Giannelis EP, Anastasiadis SH (2008) Understanding and controlling the structure of polypropylene/layered silicate nanocomposites. J Polym Sci Part B Polym Phys 46:2683–2695. https://doi.org/10.1002/polb.21594

    Article  CAS  Google Scholar 

  62. Chrissopoulou K, Anastasiadis SH (2011) Polyolefin/layered silicate nanocomposites with functional compatibilizers. Eur Polym J 47:600–613. https://doi.org/10.1016/j.eurpolymj.2010.09.028

    Article  CAS  Google Scholar 

  63. Biswas S, Fukushima H, Drzal LT (2011) Mechanical and electrical property enhancement in exfoliated graphene nanoplatelet /liquid crystalline polymer nanocomposites. Compos Part A-Appl Sci Manufact 42:371–375. https://doi.org/10.1016/j.compositesa.2010.12.006

    Article  CAS  Google Scholar 

  64. Karevan M, Kalaitzidou K (2013) Understanding the property enhancement mechanism in exfoliated graphite nanoplatelets reinforced polymer nanocomposites. Compos Int 20:255–268. https://doi.org/10.1080/15685543.2013.795752

    Article  CAS  Google Scholar 

  65. Farahanchi A, Malloy RA, Sobkowicz MJ (2018) Extreme shear processing for exfoliating organoclay in nanocomposites with incompatible polymers. Polymer 145:117–126. https://doi.org/10.1016/j.polymer.2018.04.056

    Article  CAS  Google Scholar 

  66. Tomalia DA (2005) The dendritic state. Mater Today 8:34–46. https://doi.org/10.1016/S1369-7021(05)00746-7

    Article  CAS  Google Scholar 

  67. Yan D, Gao C, Frey H (2011) Hyperbranched polymers: synthesis, properties and applications. Wiley Series on Polymer Engineering and Technology, Wiley, New York

    Book  Google Scholar 

  68. Hult A, Johansson M, Malmstrom E (1999) Hyperbranched Polymers in Adv. Polym. Sci. 143:1–34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49780-3_1

  69. Lebib A, Chen Y, Cambril E, Youinou P, Studer V, Natali M, Pepin A, Janssen HM, Sijbesma RP (2002) Room-temperature and low-pressure nanoimprint lithography. Microelectron Eng 61–62:371–377. https://doi.org/10.1016/S0167-9317(02)00485-9

    Article  Google Scholar 

  70. Ondaral S, Wågbergb L, Enarsson L-E (2006) The adsorption of hyperbranched polymers on silicon oxide surfaces. J Colloid Interface Sci 301:32–39. https://doi.org/10.1016/j.jcis.2006.04.052

    Article  CAS  Google Scholar 

  71. Wågberg L, Ondaral S, Enarsson L-E (2007) Hyperbranched polymers as a fixing agent for dissolved and colloidal substances on fiber and SiO2 surfaces. Ind Eng Chem Res 46:2212–2219. https://doi.org/10.1021/ie061108b

    Article  CAS  Google Scholar 

  72. Wang JL, Kontopoulou M, Ye ZB, Subramanian R, Zhu SP (2008) Chain-topology-controlled hyperbranched polyethylene as effectove polymer processing ais (PPA) for extrusion of a metallocene linear-low-density polyethylene (mLLDPE). J Rheol 52:243. https://doi.org/10.1122/1.2807445

    Article  CAS  Google Scholar 

  73. Anastasiadis SH, Hatzikiriakos SG (1998) The work of adhesion of polymer/wall interfaces and its association with the onset of wall slip. J Rheol 42:795–812. https://doi.org/10.1122/1.550909

    Article  CAS  Google Scholar 

  74. Suttiruengwong S, Rolker J, Smirnova I, Arlt W, Seiler M, Luederitz L, de Diego YP, Jansens PJ (2006) Hyperbranched polymers as drug carriers: microencapsulation and release kinetics. Pharm Dev Technol 11:55–70. https://doi.org/10.1080/10837450500463919

    Article  CAS  Google Scholar 

  75. Tanis I, Karatasos K, Assimopoulou AN, Papageorgiou VP (2011) Modeling of hyperbranched polyesters as hosts for the multifunctional bioactive agent shikonin. Phys Chem Chem Phys 13:10808–10817. https://doi.org/10.1039/c1cp20271e

    Article  CAS  Google Scholar 

  76. Arsinidis P, Karatasos K (2019) Computational study of the interaction of a PEGylated hyperbranched polymer/doxorubicin complex with a bilipid membrane. Fluids 4:17. https://doi.org/10.3390/fluids4010017

    Article  CAS  Google Scholar 

  77. Gelade ETF, Goderis B, de Koster CG, Meijerink N, van Benthem R, Fokkens R, Nibbering NMM, Mortensen K (2001) Molecular structure characterization of hyperbranched polyesteramides. Macromolecules 34:3552–3558. https://doi.org/10.1021/ma001266t

    Article  CAS  Google Scholar 

  78. Zagar E, Zigon M, Podzimek S (2006) Characterization of commercial hyperbranched aliphatic polyesters. Polymer 47:166–175. https://doi.org/10.1016/j.polymer.2005.10.142

    Article  CAS  Google Scholar 

  79. Dritsas GS, Karatasos K, Panayiotou C (2009) Investigation of thermodynamic properties of hyperbranched aliphatic polyesters by inverse gas chromatography. J Chromatogr A 1216:8979–8985. https://doi.org/10.1016/j.chroma.2009.10.050

    Article  CAS  Google Scholar 

  80. Tanis I, Karatasos K (2009) Local dynamics and hydrogen bonding in hyperbranched aliphatic polyesters. Macromolecules 42:9581–9591. https://doi.org/10.1021/ma901890f

    Article  CAS  Google Scholar 

  81. Zagar E, Huskic M, Zigon M (2007) Structure-to-properties relation of aliphatic hyperbranched polyesters. Macrom Chem Phys 208:1379–1387. https://doi.org/10.1002/macp.200600672

    Article  CAS  Google Scholar 

  82. Malmstrom E, Hult A, Gedde UW, Liu F, Boyd RH (1997) Relaxation processes in hyperbranched polyesters: effect of terminal groups. Polymer 38:4873–4879. https://doi.org/10.1016/S0032-3861(97)00019-0

    Article  CAS  Google Scholar 

  83. Zhu PW, Zheng S, Simon G (2001) Dielectric relaxation in a hyperbranched polyester with terminal hydroxyl groups: effects of generation number. Macromol Chem Phys 202:3008–3017. https://doi.org/10.1002/1521-3935(20011001)202:15%3c3008::AID-MACP3008%3e3.0.CO;2-9

    Article  CAS  Google Scholar 

  84. Turky G, Shaaban SS, Schönhals A (2009) Broadband dielectric spectroscopy on the molecular dynamics in different generations of hyperbranched polyester. J Appl Polym Sci 113:2477–2484. https://doi.org/10.1002/app.30046

    Article  CAS  Google Scholar 

  85. Tanis I, Tragoudaras D, Karatasos K, Anastasiadis SH (2009) Molecular dynamics simulations of a hyperbranched poly(ester amide): statics, dynamics and hydrogen bonding. J Phys Chem B 113:5356–5368. https://doi.org/10.1021/jp8097999

    Article  CAS  Google Scholar 

  86. Omara SS, Abdel Rehim MH, Ghoneim A, Madkour S, Thünemann AF, Turky G, Schönhals A (2015) Structure-property relationships of hyperbranched polymer/kaolinite nanocomposites. Macromolecules 48:6562–6573. https://doi.org/10.1021/acs.macromol.5b01693

  87. Omara SS, Turky G, Ghoneim A, Thünemann AF, Abdel Rehim MH, Schönhals A (2017) Hyperbranched poly(amidoamine)/kaolinite nanocomposites: Structure and charge carrier dynamics. Polymer 121:64–74. https://doi.org/10.1016/j.polymer.2017.06.017

    Article  CAS  Google Scholar 

  88. Fernández-Francos X, Rybak A, Sekula R, Ramis X, Ferrando F, Okrasa L, Serra A (2013) Modification of epoxy-anhydride thermosets with a hyperbranched poly(ester amide). II. Thermal, dynamic mechanical, and dielectric properties and thermal reworkability. J Appl Polym Sci 128:4001–4013. https://doi.org/10.1002/app.38453

    Article  CAS  Google Scholar 

  89. Tjong SC (2006) Structural and mechanical properties of polymer nanocomposites. Mat Sci Eng R 53:73–197. https://doi.org/10.1016/j.mser.2006.06.001

    Article  CAS  Google Scholar 

  90. Fotiadou S, Chrissopoulou K, Frick B, Anastasiadis SH (2010) Structure and dynamics of polymer chains in hydrophilic nanocomposites. J Polym Sci Part B Polym Phys 48:1658–1667. https://doi.org/10.1002/polb.21974

    Article  CAS  Google Scholar 

  91. Lorthioir C, Laupretre F, Soulestin J, Lefebvre JM (2009) Segmental dynamics of poly(ethylene oxide) chains in a model polymer/clay intercalated phase: solid state NMR investigation. Macromolecules 42:218–230. https://doi.org/10.1021/ma801909s

    Article  CAS  Google Scholar 

  92. Prevosto D, Lucchesi M, Bertoldo M, Passaglia E, Ciardelli F, Rolla P (2010) Interfacial effects on the dynamics of ethylene-propylene copolymer nanocomposite with inorganic clays. J Non-Cryst Sol 356:568–573. https://doi.org/10.1016/j.jnoncrysol.2009.09.035

    Article  CAS  Google Scholar 

  93. Schönhals A, Goering H, Schick C, Frick B, Zorn R (2005) Polymers in nanoconfinement: what can be learned from relaxation and scattering experiments? J Non-Cryst Sol 351:2668–2677. https://doi.org/10.1016/j.jnoncrysol.2005.03.062

    Article  CAS  Google Scholar 

  94. Schönhals A, Goering H, Schick C, Frick B, Mayorova M, Zorn R (2007) Segmental dynamics of poly(methyl phenyl siloxane) confined to nanoporous glasses. Eur Phys J Sp Top 141:255–259. https://doi.org/10.1140/epjst/e2007-00049-3

    Article  Google Scholar 

  95. Bras AR, Fonseca IM, Dionisio M, Schönhals A, Affouard F, Correia NT (2014) Influence of nanoscale confinement on the molecular mobility of ibuprofen. J Phys Chem C 118:13857–13868. https://doi.org/10.1021/jp500630m

    Article  CAS  Google Scholar 

  96. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530. https://doi.org/10.1021/ma100572e

    Article  CAS  Google Scholar 

  97. Hu KS, Kulkarni DD, Choi I, Tsukruk VV (2014) Graphene-polymer nanocomposites for structural and functional applications. Prog Polym Sci 39:1934–1972. https://doi.org/10.1016/j.progpolymsci.2014.03.001

    Article  CAS  Google Scholar 

  98. Georgakilas V, Tiwari JN, Kemp KC, Perman JA, Bourlinos AB, Kim KS, Zboril R (2016) Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev 116:5464–5519. https://doi.org/10.1021/acs.chemrev.5b00620

    Article  CAS  Google Scholar 

  99. Papageorgiou DG, Kinloch IA, Young RJ (2017) Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci 90:75–127. https://doi.org/10.1016/j.pmatsci.2017.07.004

    Article  CAS  Google Scholar 

  100. Kenanakis G, Vasilopoulos KC, Viskadourakis Z, Barkoula NM, Anastasiadis SH, Kafesaki M, Economou EN, Soukoulis CM (2016) Electromagnetic shielding effectiveness and mechanical properties of graphite-based polymeric films. Appl Phys A-Mater Sci Proc 122:802. https://doi.org/10.1007/s00339-016-0338-7

    Article  CAS  Google Scholar 

  101. Li Z, Young RJ, Wang R, Yang F, Hao L, Jiao W, Liu W (2013) The role of functional groups on graphene oxide in epoxy nanocomposites. Polymer 54:5821–5829. https://doi.org/10.1016/j.polymer.2013.08.026

    Article  CAS  Google Scholar 

  102. Chang Y-W, Lee K-S, Lee Y-W, Bang JH (2015) Poly(ethylene oxide)/graphene oxide nanocomposites: structure, properties and shape memory behavior. Polym Bull 72:1937–1948. https://doi.org/10.1007/s00289-015-1381-9

    Article  CAS  Google Scholar 

  103. Larsen RM, Jensen EA (2016) Epoxy–graphite oxide nanocomposites: mechanical properties. J Appl Polym Sci 43591 doi: https://doi.org/10.1002/app.43591

  104. Liu D, Bian Q, Li Y, Wang Y, Xiang A, Tian H (2016) Effect of oxidation degrees of graphene oxide on the structure and properties of poly(vinyl alcohol) composite films. Comp Sci Technol 129:146–152. https://doi.org/10.1016/j.compscitech.2016.04.004

    Article  CAS  Google Scholar 

  105. Botlhoko OJ, Ramontja J, Ray SS (2017) Thermal, mechanical, and rheological properties of graphite and graphene oxide-filled biodegradable polylactide/poly(E-caprolactone) blend composites. J Appl Polym Sci 45373. doi: https://doi.org/10.1002/app.45373

  106. Panova TV, Efimova AA, Efimov AV, Berkovich AK (2019) Physico-mechanical properties of graphene oxide / poly(vinyl alcohol) composites. Coll Polym Sci 297:485–491. https://doi.org/10.1007/s00396-018-04465-3

    Article  CAS  Google Scholar 

  107. Barroso-Bujans F, Fernandez-Alonso F, Pomposo JA, Enciso E, Fierro JLG, Colmenero J (2012) Tunable uptake of poly(ethylene oxide) by graphite-oxide based materials. Carbon 50:5232–5241. https://doi.org/10.1016/j.carbon.2012.07.008

    Article  CAS  Google Scholar 

  108. Barroso-Bujans F, Alegría A, Pomposo JA, Colmenero J (2013) Thermal stability of polymers confined in graphite oxide. Macromolecules 46:1890–1898. https://doi.org/10.1021/ma302407v

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank all the co-workers that contributed in the works reviewed in this chapter: Dr. K. Androulaki, Dr. S. Fotiadou, Ms. C. Karageorgaki, Prof. K. Karatasos, Dr. I. Tanis, Dr. D. Tragoudaras, Prof. M. Labardi, Dr. D. Prevosto and Dr. B. Frick. The support of COST Actions MP0902-COINAPO (STSM-MP0902-14971), MP1202-HINT (STSM-MP1202-020615-059356), and CA15107-MultiComp for Short Time Scientific Missions in the University of Pisa as well as the funding from the AENAO research project, Action KRIPIS, project MIS-5002556, funded by the General Secretariat for Research and Technology, Ministry of Education, Greece and the European Regional Development Fund (Sectoral Operational Programme: Competitiveness and Entrepreneurship, NSRF 2007-2013) are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spiros H. Anastasiadis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chrissopoulou, K., Anastasiadis, S.H. (2022). Dynamics of Hyperbranched Polymers Under Severe Confinement in Intercalated Nanocomposites. In: Schönhals, A., Szymoniak, P. (eds) Dynamics of Composite Materials. Advances in Dielectrics. Springer, Cham. https://doi.org/10.1007/978-3-030-89723-9_7

Download citation

Publish with us

Policies and ethics