Skip to main content

Dynamics of Polymer Bridges in Polymer Nanocomposites Through a Combination of Dielectric Spectroscopy and Rheology

  • Chapter
  • First Online:
Dynamics of Composite Materials

Part of the book series: Advances in Dielectrics ((ADVDIELECT))

  • 696 Accesses

Abstract

An important characteristic of the inclusion of nanoparticles (NPs) into soft polymer matrices, forming polymer nanocomposites (PNCs), is their strong modification to the dynamics of the matrix polymers, including the glassy dynamics and slow dynamics. This chapter focuses on one of the most prominent slow dynamics in PNCs with well-dispersed NPs, i.e. dynamics of polymer bridges, which is the key for thermomechanical properties of PNCs. Current theoretical and experimental understandings of the structure and dynamics of the adsorbed polymers and the polymer bridging network are summarized. The rheological way of quantifying the lifetime of the adsorbed polymers, the conformational rearrangement, and the desorption dynamics, is introduced. A recent proposed theoretical rationale for explaining the various dynamic features of polymer bridging networks is discussed. In addition, outlooks including the existent challenges and future directions on the slow dynamics of polymer nanocomposites are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\( a_T^R \) :

The shift factor from rheological measurements

\( a_T^{R_{p - OS} } \) :

The shift factor from rheological measurements after pre-deformation

\( a_T^B \) :

The shift factor from dielectric measurements

BDS:

Broadband dielectric spectroscopy

\( d_f \) :

The fractal dimension of nanoparticle clusters

\( d_{IPS} \) :

The average interparticle surface-to-surface distance

\( G^{\prime}_{bulk} \) :

The storage modulus of pristine polymer

\( G_{lp} \) :

Elastic modulus of polymer nanocomposites at low-frequency

\( G_p \) :

Plateau modulus of a polymer

\( G^{\prime}_{PN} \) :

Storage modulus of the nanoparticle cluster

\( G^{\prime}_{polymer} \) :

Storage modulus of the polymer matrix in polymer nanocomposites

H-NMR:

Proton nuclear magnetic resonance

\( J\left( t \right) \) :

Creep compliance

\( l_{ad} \) :

Thickness of the adsorbed polymer

\( M_b \) :

Average molecular weight of a polymer bridge

\( M_w \) :

Weight average molecular weight of a polymer

\( N_b \) :

Average number of Kuhn segments in a polymer bridge

\( n_{char} \) :

Average number of nanoparticles in a cluster

NP(s):

Nanoparticle(s)

SAOS:

Small amplitude oscillatory shear

PNC(s):

Polymer nanocomposite(s)

PVAc:

Poly(vinyl acetate)

\( R_g \) :

The radius of gyration of a polymer chain

\( R_{NP} \) :

The radius of a nanoparticle

SAOS:

Small amplitude oscillatory shear

SCFT:

Self-consistent field theory

\( t_a \) :

Annealing time

\( T_g \) :

Glass transition temperature

TTSP:

Time-temperature superposition principle

\( \tau_\alpha \) :

Segmental relaxation time

\( \tau_{char} \) :

Relaxation time of the nanoparticle cluster

\( \tau_d \) :

Terminal relaxation time of polymers

\( \tau_{int} \) :

Segmental relaxation time of the interfacial polymer

\( \omega_{char} \) :

Angular frequency of the longest relaxation time of a nanoparticle cluster

\( \omega_d \) :

Angular frequency of the terminal relaxation of a polymer chain

\( \varphi_c \) :

Critical volume fraction of nanoparticles at the gel point

\( \Delta E_a \) :

Activation energy for polymer detachment

References

  1. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641. https://doi.org/10.1016/j.progpolymsci.2003.08.002

    Article  CAS  Google Scholar 

  2. Jancar J, Douglas JF, Starr FW, Kumar SK, Cassagnau P, Lesser AJ, Sternstein SS, Buehler MJ (2010) Current issues in research on structure-property relationships in polymer nanocomposites. Polymer 51:3321–3343. https://doi.org/10.1016/j.polymer.2010.04.074

    Article  CAS  Google Scholar 

  3. Kumar SK, Benicewicz BC, Vaia RA, Winey KI (2017) 50th Anniversary perspective: are polymer nanocomposites practical for applications? Macromolecules 50:714–731. https://doi.org/10.1021/acs.macromol.6b02330

    Article  CAS  Google Scholar 

  4. Cheng S, Carroll B, Bocharova V, Carrillo J-M, Sumpter BG, Sokolov AP (2017) Focus: Structure and dynamics of the interfacial layer in polymer nanocomposites with attractive interactions. J Chem Phys 146:203201. https://doi.org/10.1063/1.4978504

  5. Yang J, Yang W, Chen W, Tao X (2020) An elegant coupling: freeze-casting and versatile polymer composites. Prog Polym Sci 109:101289. https://doi.org/10.1016/j.progpolymsci.2020.101289

  6. Njuguna J, Pielichowski K, Desai S (2008) Nanofiller-reinforced polymer nanocomposites. Polym Adv Technol 19:947–959. https://doi.org/10.1002/pat.1074

    Article  CAS  Google Scholar 

  7. Patil A, Patel A, Purohit R (2017) An overview of polymeric materials for automotive applications. materials today: proceedings 4 (2, Part A):3807–3815. http://www.sciencedirect.com/science/article/pii/S2214785317304881

  8. Njuguna J, Pielichowski K, Fan J (2012) 15—Polymer nanocomposites for aerospace applications. In: Gao F (ed) Advances in Polymer Nanocomposites. Woodhead Publishing, pp 472–539. https://doi.org/10.1533/9780857096241.3.472

  9. Balasooriya W, Clute C, Schrittesser B, Pinter G (2021) A review on applicability, limitations, and improvements of polymeric materials in high-pressure hydrogen gas atmospheres. Polym Rev 62:175-209. https://doi.org/10.1080/15583724.2021.1897997

  10. Lagadec MF, Zahn R, Wood V (2019) Characterization and performance evaluation of lithium-ion battery separators. Nat Energy 4:16–25. https://doi.org/10.1038/s41560-018-0295-9

    Article  CAS  Google Scholar 

  11. Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X (2014) A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ Sci 7:3857–3886. https://doi.org/10.1039/C4EE01432D

    Article  CAS  Google Scholar 

  12. Peng H, Sun X, Weng W, Fang X (2017) Polymer materials for energy and electronic applications. Elsevier Inc

    Google Scholar 

  13. Khan F, Tanaka M, Ahmad SR (2015) Fabrication of polymeric biomaterials: a strategy for tissue engineering and medical devices. J Mater Chem B 3:8224–8249. https://doi.org/10.1039/C5TB01370D

    Article  CAS  Google Scholar 

  14. Liu Y, Pharr M, Salvatore GA (2017) Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 11(10):9614–9635. https://doi.org/10.1021/acsnano.7b04898

    Article  CAS  Google Scholar 

  15. Song Y, Zheng Q (2016) A guide for hydrodynamic reinforcement effect in nanoparticle-filled polymers. Crit Rev Solid State Mater Sci 41:318–346. https://doi.org/10.1080/10408436.2015.1135415

    Article  CAS  Google Scholar 

  16. Song Y, Zheng Q (2016) Concepts and conflicts in nanoparticles reinforcement to polymers beyond hydrodynamics. Prog Mater Sci 84:1–58. http://www.sciencedirect.com/science/article/pii/S0079642516300597

  17. Rueda MM, Auscher M-C, Fulchiron R, Périé T, Martin G, Sonntag P, Cassagnau P (2017) Rheology and applications of highly filled polymers: a review of current understanding. Prog Polym Sci 66:22–53. http://www.sciencedirect.com/science/article/pii/S0079670016301174

  18. Kumar SK, Ganesan V, Riggleman RA (2017) Perspective: outstanding theoretical questions in polymer-nanoparticle hybrids. J Chem Phys 147:020901. https://doi.org/10.1063/1.4990501

  19. Vogiatzis GG, Theodorou DN (2018) Multiscale molecular simulations of polymer-matrix nanocomposites. Arch Comput Meth Eng 25:591–645. https://doi.org/10.1007/s11831-016-9207-y

    Article  Google Scholar 

  20. Bailey EJ, Winey KI (2020) Dynamics of polymer segments, polymer chains, and nanoparticles in polymer nanocomposite melts: a review. Prog Polym Sci 105:101242. http://www.sciencedirect.com/science/article/pii/S0079670020300356

  21. Allegra G, Raos G, Vacatello M (2008) Theories and simulations of polymer-based nanocomposites: from chain statistics to reinforcement. Prog Polym Sci 33:683–731. https://doi.org/10.1016/j.progpolymsci.2008.02.003

    Article  CAS  Google Scholar 

  22. Zeng QH, Yu AB, Lu GQ (2008) Multiscale modeling and simulation of polymer nanocomposites. Prog Polym Sci 33:191–269. http://www.sciencedirect.com/science/article/pii/S0079670007001049

  23. Lyulin SV, Larin SV, Nazarychev VM, Fal’kovich SG, Kenny JM, (2016) Multiscale computer simulation of polymer nanocomposites based on thermoplastics. Polym Sci Ser C 58:2–15. https://doi.org/10.1134/S1811238216010082

    Article  CAS  Google Scholar 

  24. Hall LM, Jayaraman A, Schweizer KS (2010) Molecular theories of polymer nanocomposites. Curr Opin Solid State Mater Sci 14:38–48. https://doi.org/10.1016/j.cossms.2009.08.004

    Article  CAS  Google Scholar 

  25. Cheng S, Sokolov AP (2020) Correlation between the temperature evolution of the interfacial region and the growing dynamic cooperativity length scale. J Chem Phys 152:094904. https://doi.org/10.1063/1.5143360

  26. Holt AP, Bocharova V, Cheng S, Kisliuk AM, Ehlers G, Mamontov E, Novikov VN, Sokolov AP (2017) Interplay between local dynamics and mechanical reinforcement in glassy polymer nanocomposites. Phys Rev Mater 1:062601. https://doi.org/10.1103/PhysRevMaterials.1.062601

  27. Cheng S, Carroll B, Lu W, Fan F, Carrillo J-MY, Martin H, Holt AP, Kang N-G, Bocharova V, Mays JW, Sumpter BG, Dadmun M, Sokolov AP (2017) Interfacial properties of polymer nanocomposites: role of chain rigidity and dynamic heterogeneity length scale. Macromolecules 50:2397–2406. https://doi.org/10.1021/acs.macromol.6b02816

  28. Carroll B, Cheng S, Sokolov AP (2017) Analyzing the interfacial layer properties in polymer nanocomposites by broadband dielectric spectroscopy. Macromolecules 50:6149–6163. https://doi.org/10.1021/acs.macromol.7b00825

    Article  CAS  Google Scholar 

  29. Holt AP, Bocharova V, Cheng S, Kisliuk AM, White BT, Saito T, Uhrig D, Mahalik JP, Kumar R, Imel AE, Etampawala T, Martin H, Sikes N, Sumpter BG, Dadmun MD, Sokolov AP (2016) Controlling interfacial dynamics: covalent bonding versus physical adsorption in polymer nanocomposites. ACS Nano 10:6843–6852. https://doi.org/10.1021/acsnano.6b02501

    Article  CAS  Google Scholar 

  30. Cheng S, Holt AP, Wang H, Fan F, Bocharova V, Martin H, Etampawala T, White BT, Saito T, Kang N-G, Dadmun MD, Mays JW, Sokolov AP (2016) Unexpected molecular weight effect in polymer nanocomposites. Phys Rev Lett 116:038302. https://doi.org/10.1103/PhysRevLett.116.038302

  31. Cheng S, Mirigian S, Carrillo J-MY, Bocharova V, Sumpter BG, Schweizer KS, Sokolov AP (2015) Revealing spatially heterogeneous relaxation in a model nanocomposite. J Chem Phys 143:194704. http://scitation.aip.org/content/aip/journal/jcp/143/19/10.1063/1.4935595

  32. Cheng S (2021) Broadband dielectric spectroscopy of polymer nanocomposites. In: Broadband dielectric spectroscopy: a modern analytical technique, vol 1375. ACS Symposium Series, vol 1375. American Chemical Society, pp 157–183. https://doi.org/10.1021/bk-2021-1375.ch007

  33. Klonos P, Kyritsis A, Pissis P (2016) Interfacial and confined dynamics of PDMS adsorbed at the interfaces and in the pores of silica–gel: Effects of surface modification and thermal annealing. Polymer 84:38–51. http://www.sciencedirect.com/science/article/pii/S0032386115304584

  34. Fragiadakis D, Pissis P, Bokobza L (2006) Modified chain dynamics in poly(dimethylsiloxane)/silica nanocomposites. J Non-Cryst Solids 352:4969–4972. http://www.sciencedirect.com/science/article/pii/S0022309306009197

  35. Füllbrandt M, Purohit PJ, Schönhals A (2013) Combined FTIR and dielectric investigation of Poly(vinyl acetate) adsorbed on silica particles. Macromolecules 46:4626–4632. https://doi.org/10.1021/ma400461p

    Article  CAS  Google Scholar 

  36. Gong S, Chen Q, Moll JF, Kumar SK, Colby RH (2014) Segmental dynamics of polymer melts with spherical nanoparticles. ACS Macro Lett 3:773–777. https://doi.org/10.1021/mz500252f

    Article  CAS  Google Scholar 

  37. Holt AP, Sangoro JR, Wang Y, Agapov AL, Sokolov AP (2013) Chain and segmental dynamics of Poly(2-vinylpyridine) nanocomposites. Macromolecules 46:4168–4173. https://doi.org/10.1021/ma400418b

    Article  CAS  Google Scholar 

  38. Papon A, Montes H, Hanafi M, Lequeux F, Guy L, Saalwächter K (2012) Glass-transition temperature gradient in nanocomposites: evidence from nuclear magnetic resonance and differential scanning calorimetry. Phys Rev Lett 108:065702. https://doi.org/10.1103/PhysRevLett.108.065702

  39. Papon A, Montes H, Lequeux F, Oberdisse J, Saalwächter K, Guy L (2012) Solid particles in an elastomer matrix: impact of colloid dispersion and polymer mobility modification on the mechanical properties. Soft Matter 8:4090–4096. https://doi.org/10.1039/C2SM06885K

    Article  CAS  Google Scholar 

  40. Berriot J, Montes H, Lequeux F, Long D, Sotta P (2002) Evidence for the shift of the glass transition near the particles in silica-filled elastomers. Macromolecules 35:9756–9762. https://doi.org/10.1021/ma0212700

    Article  CAS  Google Scholar 

  41. Berriot J, Montes H, Lequeux F, Long D, Sotta P (2003) Gradient of glass transition temperature in filled elastomers. EPL (Europhysics Letters) 64:50. http://stacks.iop.org/0295-5075/64/i=1/a=050

  42. Martín J, Krutyeva M, Monkenbusch M, Arbe A, Allgaier J, Radulescu A, Falus P, Maiz J, Mijangos C, Colmenero J, Richter D (2010) Direct observation of confined single chain dynamics by neutron scattering. Phys Rev Lett 104:197801. https://doi.org/10.1103/PhysRevLett.104.197801

  43. Mackay ME, Dao TT, Tuteja A, Ho DL, Van Horn B, Kim HC, Hawker CJ (2003) Nanoscale effects leading to non-Einstein-like decrease in viscosity. Nat Mater 2:762–766. https://doi.org/10.1038/nmat999

    Article  CAS  Google Scholar 

  44. Cheng S, Xie S-J, Carrillo J-MY, Carroll B, Martin H, Cao P-F, Dadmun MD, Sumpter BG, Novikov VN, Schweizer KS, Sokolov AP (2017) Big effect of small nanoparticles: a shift in paradigm for polymer nanocomposites. ACS Nano 11:752–759. https://doi.org/10.1021/acsnano.6b07172

    Article  CAS  Google Scholar 

  45. Yang J, Melton M, Sun R, Yang W, Cheng S (2020) Decoupling the polymer dynamics and the nanoparticle network dynamics of polymer nanocomposites through dielectric spectroscopy and rheology. Macromolecules 53:302–311. https://doi.org/10.1021/acs.macromol.9b01584

    Article  CAS  Google Scholar 

  46. Sun R, Melton M, Zuo X, Cheng S (2020) Nonmonotonic strain rate dependence on the strain hardening of polymer nanocomposites. ACS Macro Lett 9:1224–1229. https://doi.org/10.1021/acsmacrolett.0c00525

    Article  CAS  Google Scholar 

  47. Vilgis TA, Heinrich G, Klüppel M (2009) Reinforcement of polymer nano-composites: theory, experiments and applications. Cambridge University Press, Cambridge. https://www.cambridge.org/core/books/reinforcement-of-polymer-nanocomposites/370003E0509451FF20CF7A4078CDD7F1

  48. Scheutjens JMHM, Fleer GJ (1979) Statistical theory of the adsorption of interacting chain molecules. 1. Partition function, segment density distribution, and adsorption isotherms. J Phys Chem 83:1619–1635. https://doi.org/10.1021/j100475a012

  49. Scheutjens JMHM, Fleer GJ (1980) Statistical theory of the adsorption of interacting chain molecules. 2. Train, loop, and tail size distribution. J Phys Chem 84:178–190. https://doi.org/10.1021/j100439a011

  50. De Gennes PG (1987) Polymers at an interface; a simplified view. Adv Colloid Interface Sci 27(3–4):189–209. https://doi.org/10.1016/0001-8686(87)85003-0

    Article  Google Scholar 

  51. Semenov AN, Joanny JF (1995) Structure of adsorbed polymer layers: loops and tails. EPL (Europhysics Letters) 29:279. http://stacks.iop.org/0295-5075/29/i=4/a=002

  52. Milner ST (1990) Strong-stretching and Scheutjens-Fleer descriptions of grafted polymer brushes. J Chem Soc Faraday Trans 86:1349–1353. https://doi.org/10.1039/FT9908601349

    Article  CAS  Google Scholar 

  53. Guiselin O (1992) Irreversible adsorption of a concentrated polymer solution. EPL (Europhysics Letters) 17:225. http://stacks.iop.org/0295-5075/17/i=3/a=007

  54. Scheutjens JMHM, Fleer GJ (1982) Effect of polymer adsorption and depletion on the interaction between two parallel surfaces. Adv Colloid Interface Sci 16:361–380. https://doi.org/10.1016/0001-8686(82)85025-2

    Article  CAS  Google Scholar 

  55. Stuart MAC, Fleer GJ (1996) Adsorbed polymer layers in nonequilibrium situations. Annu Rev Mater Sci 26:463–500. https://doi.org/10.1146/annurev.ms.26.080196.002335

  56. Fleer GJ, Stuart MAC, Scheutjens JMHM, Cosgrove T, Vincent B (1998) Interactions in the presence of polymers. In: Polymers at interfaces. Springer Netherlands, Dordrecht, pp 431–457. https://doi.org/10.1007/978-94-011-2130-9_11

  57. Fleer GJ (2010) Polymers at interfaces and in colloidal dispersions. Adv Colloid Interface Sci 159:99–116. http://www.sciencedirect.com/science/article/pii/S0001868610000795

  58. K Binder, A Milchev a, Baschnagel J (1996) Simulation studies on the dynamics of polymers at interfaces. Annu Rev Mater Sci 26:107–134. https://doi.org/10.1146/annurev.ms.26.080196.000543

  59. Pazmino Betancourt BA, Douglas JF, Starr FW (2013) Fragility and cooperative motion in a glass-forming polymer-nanoparticle composite. Soft Matter 9:241–254. https://doi.org/10.1039/C2SM26800K

    Article  CAS  Google Scholar 

  60. Carrillo J-MY, Cheng S, Kumar R, Goswami M, Sokolov AP, Sumpter BG (2015) Untangling the effects of chain rigidity on the structure and dynamics of strongly adsorbed polymer melts. Macromolecules 48(12):4207–4219. https://doi.org/10.1021/acs.macromol.5b00624

  61. Fleer GJ, Scheutjens JMHM, Stuart MAC (1988) Theoretical progress in polymer adsorption, steric stabilization and flocculation. Colloids Surf 31:1–29. https://doi.org/10.1016/0166-6622(88)80178-1

    Article  CAS  Google Scholar 

  62. Cohen Stuart MA, Cosgrove T, Vincent B (1985) Experimental aspects of polymer adsorption at solid/solution interfaces. Adv Colloid Interface Sci 24:143–239. https://doi.org/10.1016/0001-8686(85)80030-0

    Article  Google Scholar 

  63. Hu H-W, Granick S, Schweizer KS (1994) Static and dynamical structure of confined polymer films. J Non-Cryst Solids 172–174:721–728. https://www.sciencedirect.com/science/article/pii/002230939490569X

  64. Jouault N, Moll JF, Meng D, Windsor K, Ramcharan S, Kearney C, Kumar SK (2013) Bound polymer layer in nanocomposites. ACS Macro Lett 2:371–374. https://doi.org/10.1021/mz300646a

    Article  CAS  Google Scholar 

  65. Gin P, Jiang N, Liang C, Taniguchi T, Akgun B, Satija SK, Endoh MK, Koga T (2012) Revealed architectures of adsorbed polymer chains at solid-polymer melt interfaces. Phys Rev Lett 109:265501. https://doi.org/10.1103/PhysRevLett.109.265501

  66. Jiang N, Endoh MK, Koga T, Masui T, Kishimoto H, Nagao M, Satija SK, Taniguchi T (2015) Nanostructures and dynamics of macromolecules bound to attractive filler surfaces. ACS Macro Lett 4:838–842. https://doi.org/10.1021/acsmacrolett.5b00368

  67. Jouault N, Crawford MK, Chi C, Smalley RJ, Wood B, Jestin J, Melnichenko YB, He L, Guise WE, Kumar SK (2016) Polymer chain behavior in polymer nanocomposites with attractive interactions. ACS Macro Lett 5:523–527. https://doi.org/10.1021/acsmacrolett.6b00164

    Article  CAS  Google Scholar 

  68. Genix A-C, Bocharova V, Carroll B, Lehmann M, Saito T, Krueger S, He L, Dieudonné-George P, Sokolov AP, Oberdisse J (2019) Understanding the static interfacial polymer layer by exploring the dispersion states of nanocomposites. ACS Appl Mater Interfaces 11:17863–17872. https://doi.org/10.1021/acsami.9b04553

    Article  CAS  Google Scholar 

  69. Genix A-C, Bocharova V, Kisliuk A, Carroll B, Zhao S, Oberdisse J, Sokolov AP (2018) Enhancing the mechanical properties of glassy nanocomposites by tuning polymer molecular weight. ACS Appl Mater Interfaces 10:33601–33610. https://doi.org/10.1021/acsami.8b13109

    Article  CAS  Google Scholar 

  70. Voylov DN, Holt AP, Doughty B, Bocharova V, Meyer HM, Cheng S, Martin H, Dadmun M, Kisliuk A, Sokolov AP (2017) Unraveling the molecular weight dependence of interfacial interactions in Poly(2-vinylpyridine)/Silica nanocomposites. ACS Macro Letters 6:68–72. https://doi.org/10.1021/acsmacrolett.6b00915

  71. Napolitano S, Capponi S, Vanroy B (2013) Glassy dynamics of soft matter under 1D confinement: how irreversible adsorption affects molecular packing, mobility gradients and orientational polarization in thin films. Eur Phys J E 36:61. https://doi.org/10.1140/epje/i2013-13061-8

    Article  CAS  Google Scholar 

  72. Napolitano S, Wubbenhorst M (2011) The lifetime of the deviations from bulk behaviour in polymers confined at the nanoscale. Nat Commun 2:260. https://doi.org/10.1038/ncomms1259

    Article  CAS  Google Scholar 

  73. Napolitano S, Cangialosi D (2013) Interfacial free volume and vitrification: reduction in Tg in proximity of an adsorbing interface explained by the free volume holes diffusion model. Macromolecules 46:8051–8053. https://doi.org/10.1021/ma401368p

    Article  CAS  Google Scholar 

  74. Zhu Z, Thompson T, Wang S-Q, von Meerwall ED, Halasa A (2005) Investigating linear and nonlinear viscoelastic behavior using model silica-particle-filled polybutadiene. Macromolecules 38(21):8816–8824. https://doi.org/10.1021/ma050922s

    Article  CAS  Google Scholar 

  75. Sternstein SS, Zhu A-J (2002) Reinforcement mechanism of nanofilled polymer melts as elucidated by nonlinear viscoelastic behavior. Macromolecules 35:7262–7273. https://doi.org/10.1021/ma020482u

    Article  CAS  Google Scholar 

  76. Zhang Q, Archer LA (2002) Poly(ethylene oxide)/Silica Nanocomposites: structure and rheology. Langmuir 18:10435–10442. https://doi.org/10.1021/la026338j

    Article  CAS  Google Scholar 

  77. Chen Q, Gong S, Moll J, Zhao D, Kumar SK, Colby RH (2015) Mechanical reinforcement of polymer nanocomposites from percolation of a nanoparticle network. ACS Macro Lett 4 (4):398–402. https://doi.org/10.1021/acsmacrolett.5b00002

  78. Giovambattista N, Buldyrev SV, Starr FW, Stanley HE (2003) Connection between Adam-gibbs theory and spatially heterogeneous dynamics. Phys Rev Lett 90:085506. https://doi.org/10.1103/PhysRevLett.90.085506

  79. Simmons DS (2016) An emerging unified view of dynamic interphases in polymers. Macromol Chem Phys 217:137–148. https://doi.org/10.1002/macp.201500284

    Article  CAS  Google Scholar 

  80. Lang RJ, Merling WL, Simmons DS (2014) Combined dependence of nanoconfined tg on interfacial energy and softness of confinement. ACS Macro Lett 3:758–762. https://doi.org/10.1021/mz500361v

    Article  CAS  Google Scholar 

  81. Phan AD, Schweizer KS (2020) Theory of spatial gradients of relaxation, vitrification temperature and fragility of glass-forming polymer liquids near solid substrates. ACS Macro Letters 9:448–453. https://doi.org/10.1021/acsmacrolett.0c00006

  82. Schweizer KS, Simmons DS (2019) Progress towards a phenomenological picture and theoretical understanding of glassy dynamics and vitrification near interfaces and under nanoconfinement. J Chem Phys 151:240901. https://doi.org/10.1063/1.5129405

  83. Phan AD, Schweizer KS (2019) Influence of longer range transfer of vapor interface modified caging constraints on the spatially heterogeneous dynamics of glass-forming liquids. Macromolecules 52:5192–5206. https://doi.org/10.1021/acs.macromol.9b00754

    Article  CAS  Google Scholar 

  84. Cheng S, Bocharova V, Belianinov A, Xiong S, Kisliuk A, Somnath S, Holt AP, Ovchinnikova OS, Jesse S, Martin H, Etampawala T, Dadmun M, Sokolov AP (2016) Unraveling the mechanism of nanoscale mechanical reinforcement in glassy polymer nanocomposites. Nano Lett 16:3630–3637. https://doi.org/10.1021/acs.nanolett.6b00766

    Article  CAS  Google Scholar 

  85. Sun R, Melton M, Safaie N, Ferrier RC, Cheng S, Liu Y, Zuo X, Wang Y (2021) Molecular view on mechanical reinforcement in polymer nanocomposites. Phys Rev Lett 126:117801. https://doi.org/10.1103/PhysRevLett.126.117801

  86. Baeza GP, Dessi C, Costanzo S, Zhao D, Gong S, Alegria A, Colby RH, Rubinstein M, Vlassopoulos D, Kumar SK (2016) Network dynamics in nanofilled polymers. Nat Commun 7:11368. https://doi.org/10.1038/ncomms11368

    Article  CAS  Google Scholar 

  87. Ding YF, Sokolov AP (2006) Breakdown of time-temperature superposition principle and universality of chain dynamics in polymers. Macromolecules 39:3322–3326. https://doi.org/10.1021/ma052607b

    Article  CAS  Google Scholar 

  88. Chen Q, Tudryn GJ, Colby RH (2013) Ionomer dynamics and the sticky Rouse model. J Rheol 57:1441–1462. https://doi.org/10.1122/1.4818868

    Article  CAS  Google Scholar 

  89. Yu C, Guan J, Chen K, Bae SC, Granick S (2013) Single-molecule observation of long jumps in polymer adsorption. ACS Nano 7:9735–9742. https://doi.org/10.1021/nn4049039

  90. Douglas JF, Johnson HE, Granick S (1993) A simple kinetic-model of polymer adsorption and desorption. Science 262:2010–2012. http://www.sciencemag.org/content/262/5142/2010

  91. Johnson HE, Douglas JF, Granick S (1993) Topological influences on polymer adsorption and desorption dynamics. Phys Rev Lett 70:3267–3270. https://doi.org/10.1103/PhysRevLett.70.3267

Download references

Acknowledgements

This work was supported by the College of Engineering at Michigan State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiwang Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cheng, S. (2022). Dynamics of Polymer Bridges in Polymer Nanocomposites Through a Combination of Dielectric Spectroscopy and Rheology. In: Schönhals, A., Szymoniak, P. (eds) Dynamics of Composite Materials. Advances in Dielectrics. Springer, Cham. https://doi.org/10.1007/978-3-030-89723-9_3

Download citation

Publish with us

Policies and ethics