Skip to main content

Economic Performance of Precision Agriculture Technologies

Encyclopedia of Smart Agriculture Technologies
  • 49 Accesses

Introduction

In the last decades, research, innovations, and commercial development have taken place within the area of Precision Agriculture (PA). By using Global Navigation Satellite System (GNSS) mounted on tractors and combine harvesters, a given farm vehicle can enable the farmer to perform either precise auto-steering or site-specific treatment of nutrients and pesticides spatially within the field. PA can thereby potentially improve resource use and reduce negative environmental impacts of crop production. In principle, PA management acknowledges that soil, crop, and microclimate conditions as well as previous management decisions vary in space and time. Given this variability, operational decisions should also be specific to place and time instead of field uniform and determined in advance (Pedersen 2003).

To perform PA, a GNSS receiver commonly named global positioning system (GPS) and Geographic Information System (GIS) software is required. Several systems are available on...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Balafoutis AT, Beck B, Fountas S, Tsiropoulos Z, Vangeyte J, van der Wal T, Soto-Embodas I, Gómez-Barbero M, Pedersen SM (2017) Smart farming technologies – description, taxonomy and economic impact. In: Precision agriculture: technology and economic perspectives. Springer, Cham, pp 21–77

    Chapter  Google Scholar 

  • Basso B, Bertocco M, Sartori L, Martin EC (2007) Analyzing the effects of climate variability on spatial patterns of yield in a maize-wheat-soybean rotation. Eur J Agron 26:82–91

    Article  Google Scholar 

  • Basso B, Cammarano D, Troccoli A, Chen D, Ritchie JT (2010) Long-term wheat response to nitrogen in a rainfed Mediterranean environment: field data and simulation analysis. Eur J Agron 33(2010):132–138

    Article  Google Scholar 

  • Basso B, Ritchie JT, Cammarano D, Sartori L (2011) A strategic and tactical management approach to select optimal N fertilizer rates for wheat in a spatially variable field. Eur J Agron 35:215–222

    Article  Google Scholar 

  • Basso B, Sartori L, Cammarano D, Grace PR, Fountas S, Sorensen C (2012) Environmental and economic evaluation of N fertilizer rates in a maize crop in Italy: a spatial and temporal analysis. Biosyst Eng 113:103–111

    Article  Google Scholar 

  • Bongiovanni R, Lowenberg-Deboer J (1998) Economics of variable rate lime in Indiana. In: Robert PC, Rust RH, Larson WE (eds) Precision agriculture, proceedings of the 4th international conference, 19–22 July 1998, St. Paul, pp 1653–1665

    Google Scholar 

  • Bongiovanni R, Lowenberg-DeBoer J (2000) Economics of variable rate lime in Indiana. Precis Agric 2(1):55–70

    Article  Google Scholar 

  • Christensen S (2002) Teknologisk og miljømæssigt potentiale ved præcisionsjordbrug. In: Pedersen SM, Pedersen JL, Gylling M (eds) Perspektiverne for præcisionsjordbrug, Fødevareøkonomisk Institut, Working paper no. 6/2002

    Google Scholar 

  • Daberkow SG (1997) Adoption rates for recommended crop management practices: implications for precision farming. In: Stafford JV (ed) Precision agriculture 1997, proceedings of the 1st European conference. BIOS Scientific Publishers, Warwick, pp 941–948

    Google Scholar 

  • Danmarks Statistik (Danish Statistics) (2021) Fortsat vækst i præcisionslandbrug, nyt fra Danmarks Statistik nr. 348, 28 Sept 2021. www.dst.dk

  • Franco C, Pedersen SM, Papaharalampos H, Ørum JE (2017) The value of precision for image-based decision support in weed management. Precis Agric 18(3):366–382

    Article  Google Scholar 

  • Gerhards R, Sökefeld M (2003) Precision farming in weed control – system components and economic benefits. In: Stafford J, Werner A (eds) Precision agriculture. Wageningen Academic Publishers, Wageningen, pp 229–234

    Google Scholar 

  • Gerhards R, Sökefeld M, Timmermann C, Reichart S, Kübauch W, Williams MM II (1999) Results of a four-year study on site-specific herbicide application. In: Stafford JV (ed) Precision agriculture ’99, proceedings of the 2nd European conference on precision agriculture, Odense, Denmark, 11–15 july 1999. pp 689–697.

    Google Scholar 

  • Griffin TW, Shockley JM, Mark TB (2018) Economics of precision farming. In: Kent Shannon D, Clay DE, Newell R (eds) Precision agriculture basics. American Society of Agronomy, Madison

    Google Scholar 

  • Heeje HJ (2013) Site-specific sowing. In: Heege HJ (ed) Precision in crop farming. Springer, Dordrecht, pp 171–192

    Chapter  Google Scholar 

  • Jones D, Barnes EM (2000) Fuzzy composite programming to combine remote sensing and crop models for decision support in precision crop management. Agric Syst 65:137–158

    Article  Google Scholar 

  • Koch B, Khosla R, Frasier WM, Westfall DG, Inman D (2004) Economic feasibility of variable-rate nitrogen application utilizing site-specific management zones. Agron J 96(6):1572–1580

    Article  Google Scholar 

  • Kuang B, Tekin Y, Waine T, Mouazen AM (2014) Variable rate lime application based on on-line visible and near infrared (vis-NIR) spectroscopy measurement of soil properties in a Danish field. In: Proceedings of the AgEng conference, Zurich, 6–10 July 2014

    Google Scholar 

  • Leiva FR, Morris J, Blackmore BS (1997) Precision farming techniques for sustainable agriculture. In: Stafford JV (ed) Precision agriculture 1997, proceedings of the 1st European conference. BIOS Scientific Publishers, Warwick, pp 957–966

    Google Scholar 

  • Lowenberg-DeBoer J (2018) The economics of precision agriculture. In: Precision agriculture for sustainability, 1st edn. Taylor and Francis, London

    Google Scholar 

  • Lowenberg-DeBoer J, Behrendt K, Ehlers M-H, Dillon C, Gabriel A, Huang IY, Kumwenda I, Mark T, Meyer-Aurich A, Milics G, Olagunju KO, Pedersen SM, Shockley J, Rose D (2021) Lessons to be learned in adoption of autonomous equipment for field crops. Appl Econ Perspect Policy 2021:1–17

    Google Scholar 

  • Munnaf MA, Mouazen AM (2021) Optimising site-specific potato seeding rates for maximum yield and profitability. Biosyst Eng 212:126–140

    Article  CAS  Google Scholar 

  • OECD (2016) Farm management practices to foster green growth. OECD Publishing, Paris

    Book  Google Scholar 

  • Pedersen SM (2003) Precision farming – technology assessment of site-specific input application in cereals. PhD thesis, IPL, Danish Technical University

    Google Scholar 

  • Pedersen SM, Lind KM (2017) Precision agriculture – from mapping to site-specific application. In: Precision agriculture: technology and economic perspectives. Springer, Cham, pp 1–20

    Chapter  Google Scholar 

  • Pedersen MF, Pedersen SM (2018) Erhvervsøkonomiske gevinster ved anvendelse af præcisionslandbrug, 49 s., IFRO Udredning Nr. 2018/02

    Google Scholar 

  • Pedersen SM, Fountas S, Blackmore BS, Gylling M, Pedersen JL (2004) Adoption and perspectives of precision farming in Denmark. Acta Agric Scand B Soil Plant Sci 54(1):2–8

    Google Scholar 

  • Pedersen SM, Pedersen MF, Ørum JE, Fountas S, Balafoutis AT, Evert FKV, Egmond FV, Knierim A, Kernecker M, Mouazen AM (2020) Economic, environmental and social impacts. In: Agricultural internet of things and decision support for precision smart farming. Elsevier, London, pp 279–330

    Chapter  Google Scholar 

  • Pedersen MF, Gyldengren JG, Pedersen SM, Diamantopoulos E, Gislum R, Styczen ME (2021) A simulation of variable rate nitrogen application in winter wheat with soil and sensor information – an economic feasibility study. Agric Syst 192:103147

    Article  Google Scholar 

  • Ritchie JT (1998) Soil water balance and plant water stress. In: Tsuji GY, Hoogenboom G, Thornton PK (eds) Understanding options for agricultural production. Kluwer in Cooperation with ICASA, Dordrecht/Boston/London, pp 41–54

    Chapter  Google Scholar 

  • Scharf P, Shannon DK, Palm HL, Sudduth KA, Drummond ST, Kitchen NR, Mueller LJ, Hubbard VC, Oliveira LF (2011) Sensor-based nitrogen applications out-performed producers-chosen rates for corn in on-farm demonstrations. Agron J 103(6):1683–1691

    Article  Google Scholar 

  • Schmerler J, Jurschik P (1997) Technological and economic results of precision farming from a 7200 hectares farm in East Germany. In: Stafford JV (ed) Precision agriculture 1997, proceedings of the 1st European conference. BIOS Scientific Publishers, Warwick, pp 991–997

    Google Scholar 

  • Schnitkey GD, Hopkins JW, Tweeten LG (1996) An economic evaluation of precision fertilizer applications on corn-soybean fields. In: Robert PC, Rust RH, Larson WE (eds) Precision agriculture, proceedings of the 3rd international conference, June 23–26, 1996, Minneapolis, pp 977–987

    Google Scholar 

  • Stefanini M, Larson J, Boyer C, Cho S-H, Lambert D, Yin X (2015) Profitability of variable rate technology in cotton production. Selected paper. Southern Agricultural Economics Association Annual Meeting, Atlanta. https://ageconsearch.umn.edu/bitstream/196995/2/SAEA_CottonVRT.pdf

  • Swinton SM, Lowenberg-DeBoer J (1998) Evaluating the profitability of site-specific farming. J Prod Agric 11(4):439–446

    Article  Google Scholar 

  • Tamirat TW, Pedersen SM (2019) Precision irrigation and harvest management in orchards: an economic assessment. J Cent Eur Agric 20(3):1009–1022

    Article  Google Scholar 

  • Tamirat TW, Pedersen SM, Lind KM (2018) Farm and operator characteristics affecting adoption of precision agriculture in Denmark and Germany. Acta Agric Scand B Soil Plant Sci 68(4):349–335

    Google Scholar 

  • Tamirat TW, Pedersen SM, Farquharson RJ, de Bruin S, Forristal PD, Sørensen CG, Nuyttens D, Pedersen HH, Thomsen MN (2022) Controlled traffic farming and field traffic management: perceptions of farmers groups from Northern and Western European countries. Soil Tillage Res 217:105288

    Article  Google Scholar 

  • Timmermann C, Gerhards R, Kühbauch W (2003) The economic impact of site-specific weed control. Precis Agric 4(3):249–260

    Article  Google Scholar 

  • Verhagen A, Booltink HWG, Bouma J (1995) Site-specific management: balancing production and environmental requirements at farm level. Agric Syst 49:369–384

    Article  Google Scholar 

  • Wang D, Prato T, Qiu Z et al (2003) Economic and environmental evaluation of variable rate nitrogen and lime application for claypan soil fields. Precis Agric 4:35–52

    Article  Google Scholar 

  • Yost MA, Kitchen NR, Sudduth KA, Massey RE, Sadler EJ, Drummond ST, Volkmann MR (2019) A long-term precision agriculture system sustains grain profitability. Precis Agric 20:1177–1198

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Søren Marcus Pedersen .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pedersen, S.M. (2023). Economic Performance of Precision Agriculture Technologies. In: Zhang, Q. (eds) Encyclopedia of Smart Agriculture Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-89123-7_203-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89123-7_203-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89123-7

  • Online ISBN: 978-3-030-89123-7

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Economic Performance of Precision Agriculture Technologies
    Published:
    27 April 2023

    DOI: https://doi.org/10.1007/978-3-030-89123-7_203-3

  2. Economic Performance of Precision Agriculture Technologies
    Published:
    12 November 2022

    DOI: https://doi.org/10.1007/978-3-030-89123-7_203-2

  3. Original

    Economic Performance of Precision Agriculture Technologies
    Published:
    01 September 2022

    DOI: https://doi.org/10.1007/978-3-030-89123-7_203-1