Skip to main content

Design and Control of a Normal-Stressed Electromagnetic Actuated Nano-positioning Stage

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2021)

Abstract

This paper presents the design and control of a normal-stressed electromagnetic actuated nano-positioning stage. The principle of the stage is discussed in detail. Induction and assembling relationships related to the cube armature are elaborately designed. As a result, through simple mechanism structure and only one actuator, the designed stage can realize linear motion without parasitic motion. To predict the performance of the stage, both the normal-stressed electromagnetic actuator (NSEA) and the mechanical structure are analyzed via finite element method. A prototype with a 12.60 \(\upmu \)m working stroke and a first resonant frequency 4154 Hz is fabricated. To enhance the tracking accuracy, a control scheme with a PI controller and a notch filter is designed, and a −3 dB control bandwidth 2327 Hz is achieved. Triangular wave trajectory tracking tests are carried out. The results show the closed-loop system achieves a rms error of 1.34% when tracking a 10 \(\upmu \)m P-V amplitude, 200 Hz triangular wave, which is much lower than the open-loop error of 5.01%, verifying the effectiveness of the nano-positioning stage and the designed control method.

This work was partially supported by the National Natural Science Foundation of China under Grant No. U2013211 and Grant No. 51975375, the Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems, China under Grant No. GZKF-202003, and the China Postdoctoral Science Foundation (No. 2021M692065).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhu, Z., et al.: Design and control of a piezoelectrically actuated fast tool servo for diamond turning of microstructured surfaces. IEEE Trans. Ind. Electron. 67(8), 6688–6697 (2020)

    Article  Google Scholar 

  2. Li, L., et al.: A smoothed raster scanning trajectory based on acceleration-continuous b-spline transition for high-speed atomic force microscopy. IEEE/ASME Trans. Mech. 26(1), 24–32 (2021)

    Article  Google Scholar 

  3. Su, Q., et al.: A 3-DOF sandwich piezoelectric manipulator with low hysteresis effect: design, modeling and experimental evaluation. Mech. Syst. Sign. Process. 158, 107768 (2021)

    Google Scholar 

  4. Yong, Y.K., et al.: Invited review article: high-speed flexure-guided nanopositioning: mechanical design and control issues. Rev. Sci. Instrum. 83(12), 121101 (2012)

    Google Scholar 

  5. Li, X., et al.: A compact 2-DOF piezo-driven positioning stage designed by using the parasitic motion of flexure hinge mechanism. Smart Mater. Struct. 29(1), 015022 (2020)

    Google Scholar 

  6. Csencsics, E., Schitter, G.: Exploring the pareto fronts of actuation technologies for high performance mechatronic systems. IEEE/ASME Trans. Mechatron. 26(2), 1053–1063 (2020)

    Google Scholar 

  7. Xu, Q.: Design and development of a compact flexure-based XY precision positioning system with centimeter range. IEEE Trans. Ind. Electron. 61(2), 893–903 (2014)

    Article  Google Scholar 

  8. Zhu, Z.H., et al.: Tri-axial fast tool servo using hybrid electromagnetic-piezoelectric actuation for diamond turning. IEEE Transactions on Industrial Electronics (2021)

    Google Scholar 

  9. Li, C.-X., et al.: Design, analysis and testing of a parallel-kinematic high-bandwidth XY nanopositioning stage. Rev. Sci. Instrum. 84(12), 125111 (2013)

    Google Scholar 

  10. Watanabe, S., Ando, T.: High-speed XYZ-nanopositioner for scanning ion conductance microscopy. Appl. Phys. Lett. 111(11), 113106 (2017)

    Google Scholar 

  11. Ling, M., et al.: Kinetostatic and dynamic modeling of flexure-based compliant mechanisms: a survey. Appl. Mech. Rev. 72(3), 030802 (2020)

    Google Scholar 

  12. Li, J., Huang, H., Morita, T.: Stepping piezoelectric actuators with large working stroke for nano-positioning systems: a review. Sens. Act. A: Phys. 292, 39–51 (2019)

    Article  Google Scholar 

  13. Wang, X., Zhu, L.M., Huang, H.: A dynamic model of stick-slip piezoelectric actuators considering the deformation of overall system. IEEE Transactions on Industrial Electronics (2020)

    Google Scholar 

  14. Xu, Q.: New flexure parallel-kinematic micropositioning system with large workspace. IEEE Trans. Robot. 28(2), 478–491 (2012)

    Article  Google Scholar 

  15. Gutierrez, H.M., Ro, P.I.: Magnetic servo levitation by sliding-mode control of nonaffine systems with algebraic input invertibility. IEEE Trans. Ind. Electron. 52(5), 1449–1455 (2005)

    Article  Google Scholar 

  16. Lu, X.D., Trumper, D.L.: Ultrafast tool servos for diamond turning. Cirp Ann.-Manuf. Technol. 54(1), 383–388 (2005)

    Article  Google Scholar 

  17. Csencsics, E., Schlarp, J., Schitter, G.: High-performance hybrid-reluctance-force-based tip/tilt system: design, control, and evaluation. IEEE/ASME Trans. Mechatron. 23(5), 2494–2502 (2018)

    Article  Google Scholar 

  18. Ito, S., et al.: Long-range fast nanopositioner using nonlinearities of hybrid reluctance actuator for energy efficiency. IEEE Trans. Ind. Electron. 66(4), 3051–3059 (2019)

    Article  Google Scholar 

  19. Zhu, Z.Q., et al.: Influence of local magnetic saturation on iron losses in interior permanent magnet machines. In: 2016 XXII International Conference on Electrical Machines, pp. 1822–1827 (2016). https://doi.org/10.1109/ICELMACH.2016.7732771

  20. Gu, G.Y., Zhu, L.M.: Motion control of piezoceramic actuators with creep, hysteresis and vibration compensation. Sens. Act. A: Phys. 197, 76–87 (2013)

    Article  Google Scholar 

  21. Li, C., et al.: Damping control of piezo-actuated nanopositioning stages with recursive delayed position feedback. IEEE/ASME Trans. Mechatrn. 22(2), 855–864 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiMin Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, X., Li, L., Huang, WW., Zhu, L. (2021). Design and Control of a Normal-Stressed Electromagnetic Actuated Nano-positioning Stage. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13014. Springer, Cham. https://doi.org/10.1007/978-3-030-89098-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89098-8_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89097-1

  • Online ISBN: 978-3-030-89098-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics