Skip to main content

Sensitivity Analysis for Stability of Uncertain Delay Differential Equations Using Polynomial Chaos Expansions

  • Chapter
  • First Online:
Accounting for Constraints in Delay Systems

Part of the book series: Advances in Delays and Dynamics ((ADVSDD,volume 12))

Abstract

In applications, the analysis of the effect of uncertain parameters on the stability of linear(ized) delay differential equations is a crucial question. Such uncertainties are often modelled as random quantities in a suitable probabilistic framework and, as a result, the spectral abscissa, which determines the stability of the deterministic delay differential equations and depends on the parameters, is a random variable. Within this context, Polynomial Chaos Expansions reveal to be a powerful tool to represent random quantities and to perform uncertain quantification and sensitivity analysis. Here we present a numerical method, called the Stochastic Infinitesimal Generator approach, to efficiently compute the expansion coefficients of the numerical spectral abscissa, showing its application to variance-based global sensitivity analysis through the computation of the Sobol’ indices. The technique implements the non intrusive spectral projection methods and makes use also of the so-called Padua points to reduce the computation cost. Some numerical examples are given.

The work of R.V. was partially supported by INdAM GNCS 2017 project “Analisi e sviluppo di metodologie numeriche per certi tipi non classici di sistemi dinamici” and is part of the project SiDiA, “Sistemi Dinamici e Applicazioni,” PRID 2017. R.V. is member of the INdAM Research group GNCS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Batkai, S. Piazzera, Semigroup for delay equations. Research Notes in Mathematics vol. 10 (A K Peters, Ltd., 2005)

    Google Scholar 

  2. A. Bellen, M. Zennaro, Numerical Methods for Delay Differential Equations Numerical Mathemathics and Scientifing Computing series. (Oxford University Press, 2003)

    Google Scholar 

  3. E. Beretta, Y. Kuang, Modeling and analysis of a marine bacteriophage infection with latency period. Nonlinear Anal. Real World Appl. 2, 35–74 (2001)

    Article  MathSciNet  Google Scholar 

  4. M. Berveiller, B. Sudret, M. Lemaire, Stochastic finite element: a non-intrusive approach by regression. Rev. Européenne Mécanique Numérique 15(1–3), 81–92 (2006)

    MATH  Google Scholar 

  5. D. Breda, Solution operator approximation for characteristic roots of delay differential equations. Appl. Numer. Math. 56(3–4), 305–317 (2006)

    Article  MathSciNet  Google Scholar 

  6. D. Breda, S. Maset, R. Vermiglio, Pseudospectral differencing methods for characteristic roots of delay differential equations. SIAM J. Sci. Comput. 27, 482–495 (2005)

    Article  MathSciNet  Google Scholar 

  7. D. Breda, S. Maset, R. Vermiglio, Approximation of eigenvalues of evolution operators for linear retarded functional differential equations. SIAM J. Numer. Anal. 50(3), 1456–1483 (2012)

    Article  MathSciNet  Google Scholar 

  8. D. Breda, S. Maset, R. Vermiglio, Stability of Linear Differential Equations-A Numerical Approach with Matlab (Springer Briefs in Electrical and Computer Engineering, 2015)

    Google Scholar 

  9. J.P. Boyd, Chebyshev and Fourier Spectral Methods (Dover Books on Mathematics, 2001)

    Google Scholar 

  10. L. Bos, S. De Marchi, M. Vianello, Y. Xu, Bivariate Lagrange interpolation at the Padua points: the generating curve approach. J. Approx. Theory 143(1), 15–25 (2006)

    Article  MathSciNet  Google Scholar 

  11. L. Bos, S. De Marchi, M. Vianello, Y. Xu, Bivariate Lagrange interpolation at the Padua points: the ideal curve approach. Numer. Math. 108, 43–57 (2007)

    Article  MathSciNet  Google Scholar 

  12. L. Bos, S. De Marchi, M. Vianello, Trivariate polynomial approximation on Lissajous curves. IMA J. Numer. Anal. 37, 519–541 (2017)

    Article  MathSciNet  Google Scholar 

  13. L. Bos, S. De Marchi, M. Vianello, Polynomial approximation on Lissajous curves in the d-cube. Appl. Numer. Math. 116, 47–56 (2017)

    Article  MathSciNet  Google Scholar 

  14. R.H. Cameron, W.T. Martin, The orthogonal development of non-linear functionals in series of fourier-hermite functionals. Ann. Math. Sec. Ser. 48(2), 385–392 (1947)

    Article  MathSciNet  Google Scholar 

  15. M. Caliari, S. De Marchi, M. Vianello, Bivariate polynomial interpolation on the square at new nodal sets. Appl. Math. Comput. 165(20), 261–274 (2005)

    MathSciNet  MATH  Google Scholar 

  16. M. Caliari, S. De Marchi, M. Vianello, Algorithm 886: Padua 2D-Lagrange interpolation at padua points on bivariate domains. ACM Trans. Math. Softw. 35 (2008)

    Google Scholar 

  17. M. Caliari, S. De Marchi, M. Vianello, Padua 2DM: fast interpolation and cubature at the Padua points in Matlab/Octave. Numer. Algorithm. 56, 45–60 (2010)

    Article  Google Scholar 

  18. M. Carletti, Mean-square stability of a stochastic model for bacteriophage infection with time delays. Math. Biosc. 210, 395–414 (2007)

    Article  MathSciNet  Google Scholar 

  19. G. Chastaing, F. Gamboa, C. Prieur, Generalized Hoeffding-Sobol decomposition for dependent variables—application to sensitivity analysis. Electron. J. Stat. 6, 2420–2448 (2012)

    Article  MathSciNet  Google Scholar 

  20. T. Crestaux, O. Le Maître, J. Martinez, Polynomial Chaos expansion for sensitivity analysis. Reliab. Eng. Syst. Saf. 94, 1161–1172 (2009)

    Article  Google Scholar 

  21. M.C. Delfour, State theory of linear hereditary differential systems. J. Math. Anal. Appl. 60, 8–35 (1977)

    Article  MathSciNet  Google Scholar 

  22. S. De Marchi, M. Vianello, Y. Xu, New cubature formulae and hyperinterpolation in three variables. BIT Numer. Math. 49, 55–73 (2009). https://doi.org/10.1007/s10543-009-0210-7

    Article  MathSciNet  MATH  Google Scholar 

  23. O. Diekmann, S.A. van Gils, S.M. Verduyn Lunel, H.O. Walther, Delay equations. Functional, complex and nonlinear analysis. Applied Mathematical Sciences, vol. 110 (Springer, New York, 1995)

    Google Scholar 

  24. O.G. Ernst, A. Muglera, H-J. Starkloff, E. Ullmann, On the convergence of generalized polynomial chaos expansions. ESAIM: Math. Model. Numer. Anal. 460(2), 317–339 (2012)

    Google Scholar 

  25. K. Engelborghs, T. Luzyanina, D. Roose, Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL. ACM T. Math. Softw. 28(1), 1–21 (2002)

    Article  MathSciNet  Google Scholar 

  26. T. Erneux, Surveys and tutorials in the applied mathematical sciences, in Applied Delay Differential Equations. (Springer, New York, 2009)

    MATH  Google Scholar 

  27. L. Fenzi, Polynomial Chaos Theory: application to the stability of Uncertain Delay Differential Equations. Master Thesis in Mathematics, University of Udine (2015)

    Google Scholar 

  28. L. Fenzi, W. Michiels, Robust stability optimization for linear delay systems in a probabilistic framework. Linear Algebr. Appl. 526, 1–26 (2017)

    Article  MathSciNet  Google Scholar 

  29. L. Fenzi, W. Michiels, Polynomial (chaos) approximation of maximum eigenvalue functions. Numerical Algorithms, 82, 1143–1169 (2019).

    Google Scholar 

  30. F. Florian, R. Vermiglio, PC-based sensitivity analysis of the basic reproduction number of population and epidemic models. Current Trends in Dynamical Systems in Biology and Natural Sciences,21, 205–222. (2020)

    Google Scholar 

  31. R. Ghanem, P. D. Spanos: Stochastic Finite Elements: A Spectral Approach. Springer-Verlag (1991) (Revised edn Dover Publications, 2004)

    Google Scholar 

  32. J.K. Hale: Theory of functional differential equations. AMS series 99. Springer Verlag, New York (1977)

    Google Scholar 

  33. T. Insperger, and G. Stépán: Semi-discretization for time-delay systems - Stability and Engineering applications. Applied Mathematical Sciences 178 Springer Verlag, New York (2011)

    Google Scholar 

  34. V.B. Kolmanovskii, and A. Myshkis: Applied theory of functional differential equations. No. 85 in Mathematics and Its Applications (Soviet Series). Kluver Academic Press, The Netherlands (1992)

    Google Scholar 

  35. V.B. Kolmanovskii, and V.R. Nosov: Stability of functional differential equations. No. 180 in Mathematics in Science and Engineering. Academic Press, London (1986)

    Google Scholar 

  36. O. Le Maître, and O. Knio: Spectral Methods for Uncertainty Quantification with Applications to Computational Fluid Dynamics. Springer-Verlag (2010)

    Google Scholar 

  37. S. Marelli and B. Sudret: UQLab user manual-Polynomial Chaos Expansions. Report UQLab-V0.9-104, Chair of Risk, Safety & Uncertainty Quantification, ETH Zurich (2015)

    Google Scholar 

  38. W. Michiels, S.-I. Niculescu: Stability, control and computation for time-delay systems. An eigenvalue based approach. SIAM: Philadelphia, Series : “Advances in design and control”, vol. DC 27, (2014)

    Google Scholar 

  39. M. Navarro Jimenez, O. Le Maître,O. Knio: Nonintrusive Polynomial Chaos Expansions for Sensitivity Analysis in Stochastic Differential Equations. SIAM/ASA J. Uncertainty Quantification. 5, 378–402 (2017)

    Google Scholar 

  40. S.-I. Niculescu: Delay effects on stability. A robust control approach. Springer: Heidelberg, Series: LNCIS 269 (2001)

    Google Scholar 

  41. S. Pelizzari: Controllo di temperatura di una camera a ricircolazione d’aria per misure di viscoelasticità. Master Thesis in Engineering, University of Udine (1995)

    Google Scholar 

  42. J. Shen, T. Tang, Li-Lian Wang, Spectral Methods, Algorithms, Analysis and Applications. Springer Series in Computational Mathematics, vol. 4 (Springer, Berlin, Heidelberg, 2011)

    Google Scholar 

  43. S. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk SSSR 4, 240–243 (1963)

    MATH  Google Scholar 

  44. I.M. Sobol, Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp. 1, 407–414 (1993)

    MathSciNet  MATH  Google Scholar 

  45. I.M. Sobol, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55, 271–280 (2001)

    Article  MathSciNet  Google Scholar 

  46. I.M. Sobol, S.S. Kucherenko, Global sensitivity indices for nonlinear mathematical models. Rev. Wilmott Mag. 1, 56–61 (2005)

    Article  Google Scholar 

  47. A. Sommariva, M. Vianello, R. Zanovello, Non tensorial Clenshaw-Curtis cubature. Numer. Algorithm. 49, 409–427 (2008)

    Article  Google Scholar 

  48. A. Sommariva, M. Vianello, Compression of multivariate discrete measures and applications. Numer. Funct. Anal. Optim. 36, 1198–1223 (2015)

    Article  MathSciNet  Google Scholar 

  49. B. Sudret, Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 93, 964–979 (2008)

    Article  Google Scholar 

  50. G. Stépán, Retarded Dynamical Systems (Longman, Harlow, UK, 1989)

    MATH  Google Scholar 

  51. A.W. Van Der Vaart, Asymptotic Statistics (Cambridge University Press, Cambridge, 1998)

    Book  Google Scholar 

  52. R. Vermiglio, Polynomial Chaos expansions for the stability analysis of uncertain delay differential equations. SIAM/ASA J. Uncertain. Quantif. 5(1), 278–303 (2017)

    Article  MathSciNet  Google Scholar 

  53. S. Xiang, An improved error bound on Gauss quadrature. Appl. Math. Lett. 58, 42–48 (2016)

    Article  MathSciNet  Google Scholar 

  54. S. Xiang, F. Bornemann, On the convergence rates of Gauss and Clenshaw-Curtis quadrature for functions of limited regularity. SIAM J. Numer. Anal. 50(5), 2581–2587 (2012)

    Article  MathSciNet  Google Scholar 

  55. H. Wang, S. Xiang, On the convergence rates of Legendre approximation. Math. Comput. 81(278), 861–877 (2011)

    Article  MathSciNet  Google Scholar 

  56. Z. Wu, W. Michiels, Reliably computing all characteristic roots of delay differential equations in a given right half plane using a spectral method. J. Comput. Appl. Math. 236(9), 2499–2514 (2012)

    Article  MathSciNet  Google Scholar 

  57. N. Wiener, The homogeneous chaos. Am. J. Math. 60, 897–936 (1938)

    Article  MathSciNet  Google Scholar 

  58. D. Xiu, Numerical Methods for Stochastic Computation (Princeton University Press, Princeton, NJ, 2010)

    Book  Google Scholar 

  59. A. Zamolo, Polynomial Chaos expansion and its application to delay differential equations. Master Thesis in Mathematics, University of Udine (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rossana Vermiglio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vermiglio, R., Zamolo, A. (2022). Sensitivity Analysis for Stability of Uncertain Delay Differential Equations Using Polynomial Chaos Expansions. In: Valmorbida, G., Michiels, W., Pepe, P. (eds) Accounting for Constraints in Delay Systems. Advances in Delays and Dynamics, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-030-89014-8_8

Download citation

Publish with us

Policies and ethics