Skip to main content

Physiological Capacity and Constraint Impact Behavioral Phenotype in Phocid Seals

  • Chapter
  • First Online:
Ethology and Behavioral Ecology of Phocids

Abstract

The physiological challenges required for air-breathing phocids to forage and survive in the marine environment and then breed on land or ice have resulted in behavioral phenotypes that are highly constrained by physiological adaptation. Foraging behavior is enabled and constrained by species differences in the ability to withstand pressure, store oxygen, and manage oxygen consumption while swimming. Their reproductive behavior reflects a continuum of income to capital breeding strategies that include some of the highest sustained energy expenditure rates relative to body size found in nature while fasting. Metabolic adaptations for fasting while lactating, locomoting, and developing are critical components of most species’ life-history strategies. Depending on the habitat, thermoregulatory adaptations that facilitate heat retention at depth may impose significant limitations on terrestrial behavior. Studies on metabolic and behavioral endocrinology suggest important activational roles for organizing behavior but are relatively unstudied in most species. For these reasons, phocids are an important taxon for comparative studies that examine the evolution of behavior and the role that performance capacity plays in selection for variation in life histories and behavioral strategies among closely related species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi T, Maresh JL, Robinson PW, Peterson SH, Costa DP, Naito Y, Watanabe YY, Takahashi A (2014) The foraging benefits of being fat in a highly migratory marine mammal. Proc Roy Soc B Biol Sci 281:214–2020

    Google Scholar 

  • Adams SH, Costa DP (1993) Water conservation and protein metabolism in northern elephant seal pups during the postweaning fast. J Comp Phys B 163:367–373

    CAS  Google Scholar 

  • Andrews RD, Jones DR, Williams JD, Thorson PH, Oliver GW, Costa DP, Le Boeuf BJ (1997) Heart rates of northern elephant seals diving at sea and resting on the beach. J Exp Biol 200(15):2083–2095

    CAS  PubMed  Google Scholar 

  • Atkinson S (1997) Reproductive biology of seals. Rev of Reprod 2:175–194

    CAS  Google Scholar 

  • Atkinson S, Crocker D, Houser D, Mashburn K (2015) Stress physiology in marine mammals: how well do they fit the terrestrial model? J Comp PhysB 185:463–486

    CAS  Google Scholar 

  • Banuet-MartĂ­nez M, Espinosa-de Aquino W, Elorriaga-Verplancken FR, Flores-Morán A, GarcĂ­a OP, Camacho M, Acevedo-Whitehouse K (2017) Climatic anomaly affects the immune competence of California sea lions. PLoS One 12(6):e0179359

    Google Scholar 

  • Bartsh SS, Johnston SD, Siniff DB (1992) Territorial behavior and breeding frequency of male Weddell seals (Leptonychotes weddelli) in relation to age, size, and concentrations of serum testosterone and cortisol. Can J Zool 70(4):680–692

    CAS  Google Scholar 

  • Bennett KA, Speakman JR, Moss SE, Pomeroy P, Fedak MA (2007) Effects of mass and body composition on fasting fuel utilisation in grey seal pups (Halichoerus grypus Fabricius): an experimental study using supplementary feeding. J Exp Biol 210(17):3043–3053

    PubMed  Google Scholar 

  • Bennett KA, Fedak MA, Moss SE, Pomeroy PP, Speakman JR, Hall AJ (2013) The role of glucocorticoids in naturally fasting grey seal (Halichoerus grypus) pups: dexamethasone stimulates mass loss and protein utilisation, but not departure from the colony. J Exp Biol 216(6):984–991

    CAS  PubMed  Google Scholar 

  • Blix AS, Elsner R, Kjekshus JK (1983) Cardiac output and its distribution through capillaries and A-V shunts in diving seals. Acta Phys Scand 118(2):109–116

    CAS  Google Scholar 

  • Boily P (1995) Theoretical heat flux in water and habitat selection of phocid seals and beluga whales during the annual molt. J Theor Biol 172:235–244

    Google Scholar 

  • Boness DJ (2009) Estrus and estrous behavior. In: Perrin WF, Wursig B, Thewissen JGM (eds) Encyclopedia of marine mammals. Academic Press, San Diego, pp 392–396

    Google Scholar 

  • Boyd I (1984) The relationship between body condition and the timing of implantation in pregnant grey seals (Halichoerus grypus). J Zool 203(1):113–123

    Google Scholar 

  • Boyd IL, Barton AJP, T, Croxall JP, (1994) Foraging behaviour of Antarctic fur seals during periods of contrasting prey abundance. J Anim Ecol 63:703–713

    Google Scholar 

  • Burge MR, Hardy KJ, Schade DS (1993) Short-term fasting is a mechanism for the development of euglycemic ketoacidosis during periods of insulin deficiency. J Clin Endo Metab 76:1192–1198

    CAS  Google Scholar 

  • Burns JM (1999) The development of diving behavior in juvenile Weddell seals: pushing physiological limits in order to survive. Can J Zool 77(5):737–747

    Google Scholar 

  • Burns JM, Costa DP, Frost K, Harvey JT (2005) Development of body oxygen stores in harbor seals: effects of age, mass, and body composition. Physiol Biochem Zool 78(6):1057–1068

    CAS  PubMed  Google Scholar 

  • Butler PJ (2006) Aerobic dive limit. what is it and is it always used appropriately? Comp Biochem Phys A Mol Integ Phys 145:1–6

    Google Scholar 

  • Cammen KM, Carroll AKR, EL et al (2016) Genomic methods take the plunge: Recent advances in high-throughput sequencing of marine mammals. J Hered 107(6):481–495. https://doi.org/10.1093/jhered/esw044

    Article  CAS  PubMed  Google Scholar 

  • Carbone C, Houston AI (1996) The optimal allocation of time over the dive cycle: an approach based on aerobic and anaerobic respiration. Anim Behav 51(6):1247–1255

    Google Scholar 

  • Carlini AR, Marquez MEI, Ramdohr S, Bornemann H, Panarello HO, Daneri GA (2001) Postweaning duration and body composition changes in southern elephant seal (Mirounga leonina) pups at King George Island. Physiol Biochem Zoo 74(4):531–540

    CAS  Google Scholar 

  • Chaise LL, PrinetI TC, Gallon SL, Paterson W, McCafferty DJ, ThĂ©ry M, Ancel A, Gilbert C (2018) Local weather and body condition influence habitat use and movements on land of molting female southern elephant seals (Mirounga leonina). Ecol Evol 8(12):6081–6090

    PubMed  PubMed Central  Google Scholar 

  • Chaise LL, McCafferty DJ, Krellenstein A et al (2019) Environmental and physiological determinants of huddling behavior of molting female southern elephant seals (Mirounga leonina). Phys Behav 199:182–190

    CAS  Google Scholar 

  • Champagne CD, Crocker DE, Fowler MA, Houser DS (2012a) Fasting physiology of the pinnipeds: the challenges of fasting while maintaining high energy expenditure and nutrient delivery for lactation. In: McCue MD (ed) Comparative physiology of fasting, starvation, and food limitation. Springer, Berlin Heidelberg, pp 309–336

    Google Scholar 

  • Champagne CD, Houser DS, Fowler MA, Costa DP, Crocker DE (2012b) Gluconeogenesis is associated with high rates of tricarboxylic acid and pyruvate cycling in fasting northern elephant seals. Am J Phys Reg Integ Comp Phys 303(3):R340–R352

    CAS  Google Scholar 

  • Codde SA, Allen SG, Houser DS, Crocker DE (2016) Effects of environmental variables on surface temperature of breeding adult female northern elephant seals, Mirounga angustirostris, and pups. Therm Biol 61:98–105

    Google Scholar 

  • Cooke SJ, Blumstein DT, Buchholz R, Caro T, Fernandez-Juricic E, Franklin CE, Metcalfe J, O’Connor CM, St. Clair CC, Sutherland WJ (2014) Physiology, behavior, and conservation. Physiol Biochem Zool 87(1):1–14

    PubMed  Google Scholar 

  • Costa DP (1991) Reproductive and foraging energetics of pinnipeds: implications for life history paterns. In: Renouf D (ed) The behavior of pinnipeds. Springer, Dordrecht, pp 300–344

    Google Scholar 

  • Costa DP, Gales NJ, Goebel ME (2001) Aerobic dive limit: how often does it occur in nature? Comp Biochem Phys a: Mol Integ Phys 129(4):771–783

    CAS  Google Scholar 

  • Costa DP, Kuhn CE, Weise MJ, Arnould SSA, JP, (2004) When does physiology limit the foraging behaviour of freely diving mammals? Int Cong Ser 1280:359–366

    Google Scholar 

  • Costa DP, Huckstadt LA, Crocker DE, McDonald BI, Goebel ME, Fedak MA (2010) Approaches to studying climatic change and its role on the habitat selection of Antarctic pinnipeds. Integ Comp Biol 50(6):1018–1030

    Google Scholar 

  • Costa DP, Schwarz L, Robinson P, Schick RS, Morris PA, Condit R, Crocker DE, Kilpatrick AM (2016) A bioenergetics approach to understanding the population consequences of disturbance: elephant seals as a model system. In: Popper AN, Hawkins A (eds) The effects of noise on aquatic life II. Springer, Dordrecht, pp 161–169

    Google Scholar 

  • Cottin M, MacIntosh AJ, Kato A, Takahashi A, Debin M, Raclot T, Ropert-Coudert Y (2014) Corticosterone administration leads to a transient alteration of foraging behaviour and complexity in a diving seabird. Mar Ecol Prog Ser 496:249–262

    CAS  Google Scholar 

  • Crocker DE, Webb PM, Costa DP, Le Boeuf BJ (1998) Protein catabolism and renal function in lactating northern elephant seals. Physiol Zool 71(5):485–491

    CAS  PubMed  Google Scholar 

  • Crocker DE, Williams JD, Costa DP, Le Boeuf BJ (2001) Maternal traits and reproductive effort in northern elephant seals. Ecol 82(12):3541–3555

    Google Scholar 

  • Crocker DE, Houser DS, Webb PM (2012a) Impact of body reserves on energy expenditure, water flux, and mating success in breeding male northern elephant seals. Physiol Biochem Zool 85(1):11–20

    PubMed  Google Scholar 

  • Crocker DE, Ortiz RM, Houser DS, Webb PM, Costa DP (2012b) Hormone and metabolite changes associated with extended breeding fasts in male northern elephant seals (Mirounga angustirostris). Comp Biochem Phys A: Mol Integ Phys 161(4):388–394

    Google Scholar 

  • Crocker DE, Champagne CD, Fowler MA, Houser DS (2014) Adiposity and fat metabolism in lactating and fasting northern elephant seals. Adv Nutr 5(1):57–64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crocker DE, Wenzel BK, Champagne CD, Houser DS (2017) Adult male northern elephant seals maintain high rates of glucose production during extended breeding fasts. J Comp Phys B 187(8):1183–1192

    CAS  Google Scholar 

  • Davis RW (1983) Lactate and glucose metabolism in the resting and diving harbor seal (Phoca vitulina). J Comp Phys 153:275–288

    Google Scholar 

  • Davis RW (2019) Marine mammals: adaptations for the aquatic life. Springer Nature, Cham

    Google Scholar 

  • Davis RW, Kanatous SB (1999) Convective oxygen transport and tissue oxygen consumption in Weddell seals during aerobic dives. J Exp Biol 202(9):1091–1113

    CAS  PubMed  Google Scholar 

  • Davis RW, Williams TM (2012) The marine mammal dive response is exercise modulated to maximize aerobic dive duration. J Comp Phys A 198(8):583–591

    Google Scholar 

  • de QuirĂłs YB, Seewald JS, Sylva SP, Greer B, Niemeyer M, Bogomolni AL, Moore MJ (2013) Compositional discrimination of decompression and decomposition gas bubbles in bycaught seals and dolphins. PloS One 8(12):e83994

    Google Scholar 

  • Ensminger DC, Somo DA, Houser DS, Crocker DE (2014) Metabolic responses to adrenocorticotropic hormone (ACTH) vary with life-history stage in adult male northern elephant seals. Gen Comp Endo 204:150–157

    CAS  Google Scholar 

  • Fahlman A, Olszowka A, Bostrom B, Jones DR (2006) Deep diving mammals: dive behavior and circulatory adjustments contribute to bends avoidance. Resp Phys Neurobiol 153(1):66–77. https://doi.org/10.1016/j.resp.2005.09.014

    Article  CAS  Google Scholar 

  • Fahlman A, Loring SH, Ferrigno, et al (2011) Static inflation and deflation pressure-volume curves from excised lungs of marine mammals. J Exp Biol 214(22):3822–3828

    PubMed  PubMed Central  Google Scholar 

  • Fahlman A, Loring SH, Johnson SP, Haulena M, Trites AW, Fravel VA, van Bonn WG (2014) Inflation and deflation pressure-volume loops in anesthetized pinnipeds confirms compliant chest and lungs. Front Physiol 5:433. https://doi.org/10.3389/fphys.2014.00433

    Article  PubMed  PubMed Central  Google Scholar 

  • Fedak MA, Pullen MR, Kanwisher J (1988) Circulatory responses of seals to periodic breathing: heart rate and breathing during exercise and diving in the laboratory and open sea. Can J Zool 66(1):53–60

    Google Scholar 

  • Fowler SL, Costa DP, Arnould JPY, Gales NJ, Burns JM (2007) Ontogeny of oxygen stores and physiological diving capability in Australian sea lions. Funct Ecol 21(5):922–935

    Google Scholar 

  • Garland T Jr, Losos JB (1994) Ecological morphology of locomotor performance in squamate reptiles. In: Wainright PC, Reilly S (eds) Ecological morphology: integrative organismal biology. University of Chicago Press, Chicago, pp 240–302

    Google Scholar 

  • Glazier DS (2014) Metabolic scaling in complex living systems. Systems 2:451–540

    Google Scholar 

  • Griffiths DJ (1984) The annual cycle of the testis of the elephant seal (Mirounga leonina) at Macquarie Island. J Zool 203(2):193–204

    Google Scholar 

  • Grinnel SW, Irving L, Scholander PF (1942) Experiments on the relation between blood flow and heart rate in the diving seal. J Cell Comp Physiol 19(3):341–350

    Google Scholar 

  • Guinet C, Servera N, Mangin S, Georges JY, Lacroix A (2004) Change in plasma cortisol and metabolites during the attendance period ashore in fasting lactating subantarctic fur seals. Comp Biochem Phys a: Mol Integ Phys 137(3):523–531

    CAS  Google Scholar 

  • Guyton GP, Stanek KS, Schneider RC et al (1995) Myoglobin saturation in free-diving Weddell seals. J Appl Phys 79(4):1148–1155

    CAS  Google Scholar 

  • Halsey M (1982) Effects of high pressure on the central nervous system. Physiol Rev 62(4):1341–1377

    CAS  PubMed  Google Scholar 

  • Hassrick JL, Crocker DE, Teutschel NM, McDonald BI, Robinson PW, Simmons SE, Costa DP (2010) Condition and mass impact oxygen stores and dive duration in adult female northern elephant seals. J Exp Biol 213(4):585–592. https://doi.org/10.1242/jeb.037168

    Article  CAS  PubMed  Google Scholar 

  • Hill RD, Schneider RC, Liggins GC et al (1987) Heart rate and body temperature during free diving of Weddell seals. Am J Phys Reg Integ Comp Phys 253(2):344–351

    Google Scholar 

  • Hindell M, Slip D, Burton H (1991) The diving behavior of adult male and female southern elephant seals, Mirounga leonina (Pinnipedia, Phocidae). Aus J Zool 39(5):595–619

    Google Scholar 

  • Hindell MA, Slip DJ, Burton HR, Bryden MM (1992) Physiological implications of continuous, prolonged, and deep dives of the southern elephant seal (Mirounga leonina). Can J Zool 70:370–379

    Google Scholar 

  • Hindle AG (2020) Diving deep: understanding the genetic components of hypoxia tolerance in marine mammals. J Appl Phys 128(5):1439–1446

    CAS  Google Scholar 

  • Hokkanen JEI (1990) Temperature regulation of marine mammals. J Theor Biol 145:465–485

    CAS  PubMed  Google Scholar 

  • Hooker SK, Baird RW, Fahlman A (2009) Could beaked whales get the bends? Effect of diving behaviour and physiology on modelled gas exchange for three species: Ziphius cavirostris, Mesoplodon densirostris and Hyperoodon ampullatus. Resp Phys Neurobiol 167(3):235–246. https://doi.org/10.1016/j.resp.2009.04.023

    Article  Google Scholar 

  • Hooker SK, Fahlman A, Moore MJ et al (2012) Deadly diving? physiological and behavioural management of decompression stress in diving mammals. P Roy Soc B Biol Sci 279(1731):1041–1050. https://doi.org/10.1098/rspb.2011.2088

    Article  CAS  Google Scholar 

  • Hooper AW, Berger RW, Rubin LS, McDonald BI, Crocker DE (2019) Maternal age influences offspring behaviour and growth efficiency during provisioning in northern elephant seals. Anim Behav 151:121–130

    Google Scholar 

  • Houser DS, Champagne CD, Crocker DE (2013) A non-traditional model of the metabolic syndrome: the adaptive significance of insulin resistance in fasting-adapted seals. Front Endo 4:164

    Google Scholar 

  • Jain K (1994) High-pressure neurological syndrome (HPNS). Acta Neurol Scand 90(1):45–50

    CAS  PubMed  Google Scholar 

  • Jepson P, Arbelo M, Deaville R et al (2003) Gas-bubble lesions in stranded cetaceans. Nature 425(6958):575–576

    CAS  PubMed  Google Scholar 

  • Jobsis PD, Ponganis PJ, Kooyman GL (2001) Effects of training on forced submersion responses in harbor seals. J Exp Biol 204(22):3877–3885

    CAS  PubMed  Google Scholar 

  • Kelso EJ, Champagne CD, Tift MS, Houser DS, Crocker DE (2012) Sex differences in fuel use and metabolism during development in fasting juvenile northern elephant seals. J Exp Biol 215(15):2637–2645. https://doi.org/10.1242/jeb.068833

    Article  CAS  PubMed  Google Scholar 

  • Ketterson ED, Nolan V Jr (1992) Hormones and life histories: an integrative approach. Am Nat 140:S33–S62

    PubMed  Google Scholar 

  • Khudyakov JI, Abdollahi E, Ngo A, Sandhu G, Stephan A, Costa DP, Crocker DE (2019) Expression of obesity-related adipokine genes during fasting in a naturally obese marine mammal. Am J Phys Reg Integ Comp Phys 317(4):R521–R529

    CAS  Google Scholar 

  • Kim B (2008) Thyroid hormone as a determinant of energy expenditure and the basal metabolic rate. Thyroid 18(2):141–144

    CAS  PubMed  Google Scholar 

  • Kooyman GL (1965) Techniques used in measuring diving capacities of Weddell seals. Polar Rec 12(79):391–394

    Google Scholar 

  • Kooyman G (1973) Respiratory adaptations in marine mammals. Am Zool 13(2):457–468

    Google Scholar 

  • Kooyman G, Campbell W (1972) Heart rates in freely diving Weddell seals, Leptonychotes Weddelli. Comp Biochem Phys A 43(1):31–36

    CAS  Google Scholar 

  • Kooyman G, Schroeder J, Denison D, Hammond D, Wright J, Bergman W (1972) Blood nitrogen tensions of seals during simulated deep dives. Am J Phys 223(5):1016–1020

    CAS  Google Scholar 

  • Kooyman G, Wahrenbrock E, Castellini M, Davis R, Sinnett E (1980) Aerobic and anaerobic metabolism during voluntary diving in Weddell seals: evidence of preferred pathways from blood chemistry and behavior. J Comp Phys 138(4):335–346

    CAS  Google Scholar 

  • Kroeger C, Thompson CDE, DR, Torres LG, Sagar P, Shaffer SA (2019) Variation in corticosterone levels in two species of breeding albatrosses with divergent life histories: responses to body condition and drivers of foraging behavior. Physiol Biochem Zool 92(2):223–238

    PubMed  Google Scholar 

  • Kuhn CE, McDonald BI, Shaffer SA, Barnes J, Crocker DE, Burns J, Costa DP (2006) Diving physiology and winter foraging behavior of a juvenile leopard seal (Hydrurga leptonyx). Polar Biol 29(4):303–307. https://doi.org/10.1007/s00300-005-0053-x

  • Lee D, Martinez B, Crocker DE, Ortiz, RM (2017) Fasting increases the phosphorylation of AMPK and expression of sirtuin1 in muscle of adult male northern elephant seals (Mirounga angustirostris). Physiol Rep 5(4):e13114

    Google Scholar 

  • Lenfant C, Johansen K, Torrance JD (1970) Gas transport and oxygen storage capacity in some pinnipeds and the sea otter. Resp Phy 9(2):277–286

    CAS  Google Scholar 

  • Lidgard DC, Boness DJ, Bowen WD, McMillan JI (2005) State-dependent male mating tactics in the grey seal: the importance of body size. Behav Ecol 16(3):541–549

    Google Scholar 

  • Lidgard DC, Boness DJ, Bowen WD, McMillan JI (2008) The implications of stress on male mating behavior and success in a sexually dimorphic polygynous mammal, the grey seal. Horm Behav 53(1):241–248

    CAS  PubMed  Google Scholar 

  • Lindstedt SL, Boyce MS (1985) Seasonality, fasting endurance, and body size in mammals. Am Nat 125:873–878

    Google Scholar 

  • Liwanag HE, Berta A, Costa DP, Budge SM, Williams TM (2012) Morphological and thermal properties of mammalian insulation: the evolutionary transition to blubber in pinnipeds. Biol J Linn Soc 107(4):774–787

    Google Scholar 

  • Lydersen C, Ryg MS, Hammill MO, O’Brien PJ (1992) Oxygen stores and aerobic dive limit of ringed seals (Phoca hispida). Can J Zool 70(3):458–461

    Google Scholar 

  • McCormley MC, Champagne CD, Deyarmin JS, Stephan AP, Crocker DE, Houser DS, Khudyakov JI (2018) Repeated adrenocorticotropic hormone administration alters adrenal and thyroid hormones in free-ranging elephant seals. Conserv Phys 6(1):coy040

    Google Scholar 

  • McDonald BI, Ponganis PJ (2013) Insights from venous oxygen profiles: oxygen utilization and management in diving California sea lions. J Exp Biol 216(17):3332–3341. https://doi.org/10.1242/jeb.085985

    Article  CAS  PubMed  Google Scholar 

  • McDonald BI, Ponganis PJ (2014) Deep-diving sea lions exhibit extreme bradycardia in long-duration dives. J Exp Biol 217:1525–1534. https://doi.org/10.1242/jeb.098558

    Article  PubMed  Google Scholar 

  • McKnight, JC, Bennett, KA, Bronkhorst et al (2019) Shining new light on mammalian diving physiology using wearable near-infrared spectroscopy. PLoS Biol 17(6):e3000306

    Google Scholar 

  • Meir JU, Champagne CD, Costa DP, Williams CL, Ponganis PJ (2009) Extreme hypoxemic tolerance and blood oxygen depletion in diving elephant seals. Am J Phys Reg Int Comp Phys 297(4): R927–R939. doi:https://doi.org/10.1152/ajpregu.00247.2009

  • Mellish JE, Iverson SJ, Bowen WD (1999) Variation in milk production and lactation performance in grey seals and consequences for pup growth and weaning characteristics. Physiol Biochem Zool 72(6):677–690

    CAS  PubMed  Google Scholar 

  • Miller NJ, Postle AD, Orgeig S, Koster G, Daniels CB (2006) The composition of pulmonary surfactant from diving mammals. Resp Phys Neurobiol 152(2):152–168. https://doi.org/10.1016/j.resp.2005.08.001

    Article  CAS  Google Scholar 

  • Molyneux G, Bryden M (1978) Arteriovenous anastomoses in the skin of seals. I. The Weddell seal Leptonychotes weddelli and the elephant seal Mirounga leonina (Pinnipedia: Phocidae). Anat Rec 191(2): 239–251

    Google Scholar 

  • Moore MJ, Hammar T, Arruda J, Cramer S, Dennison S, Montie E, Fahlman A (2011) Hyperbaric computed tomographic measurement of lung compression in seals and dolphins. J Exp Biol 214(14):2390–2397. https://doi.org/10.1242/jeb.055020

    Article  PubMed  Google Scholar 

  • Mori Y (1999) The optimal allocation of time and respiratory metabolism over the dive cycle. Behav Ecol 10(2):155–160

    Google Scholar 

  • National Academies of Sciences, Engineering, and Medicine (2017) Approaches to understanding the cumulative effects of stressors on marine mammals. National Academies Press

    Google Scholar 

  • Neshumova T, Cherapanova V, Petrov E (1983) Myoglobin concentration in muscles of the seal Pusa sibirica. J Evol Bioch Phys Physiol 19:93–95

    CAS  Google Scholar 

  • Neshumova T, Cherepanova V (1984) Blood supply and myoglobin stocks in muscles of the seal (Pusa siberica) and muskrat (Ondatra zibethica). J Evol Bioch Phys 20:282

    Google Scholar 

  • Noonan LM, Ronald K, Raeside J (1991) Plasma testosterone concentrations of captive male hooded seals (Cystophora cristata). Can J Zool 69:2279–2282

    CAS  Google Scholar 

  • Noren DP (2002) Thermoregulation of weaned northern elephant seal (Mirounga angustirostris) pups in air and water. Physiol Biochem Zool 75(5):513–523

    PubMed  Google Scholar 

  • Noren SR, Iverson SJ, Boness DJ (2005) Development of the blood and muscle oxygen stores in gray seals (Halichoerus grypus): implications for juvenile diving capacity and the necessity of a terrestrial postweaning fast. Physiol Biochem Zool 78(4):482–490

    PubMed  Google Scholar 

  • Norris A, Houser DS, Crocker DE (2010) Environment and activity affect skin temperature in breeding adult male elephant seals (Mirounga angustirostris). J Exp Biol 213(24):4205–4212

    CAS  PubMed  Google Scholar 

  • Odend’Hal S, Poulter TC (1966) Pressure regulation in the middle ear cavity of sea lions: a possible mechanism. Science 153(3737):768–769

    PubMed  Google Scholar 

  • Oftedal OT, Bowen WD, Widdowson EM, Boness DJ (1991) The prenatal molt and its ecological significance in hooded and harbor seals. Can J Zool 69(9):2489–2493

    Google Scholar 

  • Paterson WD, Russell DJ, Wu GM, McConnell B, Currie JI, McCafferty DJ, Thompson D (2019) Post-disturbance haulout behaviour of harbour seals. Aquat Conserv 29:144–156

    Google Scholar 

  • Pearson LE, Liwanag HE, Hammill MO, Burns JM (2014) To each its own: thermoregulatory strategy varies among neonatal polar phocids. Comp Biochem Phys a: Mol Integ Phys 178:59–67

    CAS  Google Scholar 

  • Penso-Dolfin L, Haerty W, Hindle A, Di Palma F (2020) microRNA profiling in the Weddell Seal suggests novel regulatory mechanisms contributing to diving adaptation. BMC Genom 21:1–17

    Google Scholar 

  • Pirotta E, Booth CG, Costa DP, Fleishman E, Kraus SD, Lusseau D, Moretti D, New LF, Schick RS, Schwarz LK (2018) Understanding the population consequences of disturbance. Ecol Evol 8:9934–9946

    PubMed  PubMed Central  Google Scholar 

  • Ponganis PJ (2011) Diving Mammals. Compr Phys 1(1):447–465. https://doi.org/10.1002/cphy.c091003

    Article  Google Scholar 

  • Ponganis PJ (2015) Diving physiology of marine mammals and seabirds. Cambridge University Press, Cambridge

    Google Scholar 

  • Ponganis PJ, Kooyman GL, Castellini MA (1993) Determinants of the aerobic dive limit of Weddell seals: analysis of diving metabolic rates, postdive end tidal PO2’s, and blood and muscle oxygen stores. Physiol Zool 66(5):732–749

    Google Scholar 

  • Ponganis PJ, Kooyman GL, Baranov EA, Thorson PH, Stewart BS (1997) The aerobic submersion limit of Baikal seals, Phoca Sibirica. Can J Zool 75(8):1323–1327. https://doi.org/10.1139/z97-756

    Article  Google Scholar 

  • Pujade Busqueta L, Crocker DE, Champagne CD, McCormley MC, Deyarmin JS, Houser DS, Khudyakov JI (2020) A blubber gene expression index for evaluating stress in marine mammals. Conserv Phys 8(1):coaa082

    Google Scholar 

  • Reder S, Lydersen C, Arnold W, Kovacs KM (2003) Haulout behaviour of High Arctic harbour seals (Phoca vitulina vitulina) in Svalbard, Norway. Polar Biol 27:6–16

    Google Scholar 

  • Ridgway SH, Howard R (1979) Dolphin lung collapse and intramuscular circulation during free diving: evidence from nitrogen washout. Science 206(4423):1182–1183

    CAS  PubMed  Google Scholar 

  • Robinson KJ, Twiss SD, Hazon N, Pomeroy PP (2015) Maternal oxytocin is linked to close mother-infant proximity in grey seals (Halichoerus grypus). PLoS One 10(12): e0144577

    Google Scholar 

  • Robinson KJ, Twiss SD, Hazon N, Moss S, Pomeroy PP (2017) Positive social behaviours are induced and retained after oxytocin manipulations mimicking endogenous concentrations in a wild mammal. P Roy Soc B Biol Sci 284:20170554

    Google Scholar 

  • Ryg M, Lydersen C, Knutsen LO, Bjorge A, Smith TG, Oritsland NA (1993) Scaling of insulation in seals and whales. J Zool 230:193–206

    Google Scholar 

  • Scholander PF (1940) Experimental investigations on the respiratory function in diving mammals and birds. Hvalradets Skrifter 22:1–131

    Google Scholar 

  • Scholander P, Irving L, Grinnell S (1942) Aerobic and anaerobic changes in seal muscles during diving. J Biol Chem 142(1):431–440

    CAS  Google Scholar 

  • Schulz TM, Bowen WD (2005) The evolution of lactation strategies in pinnipeds: a phylogenetic analysis. Ecol Monog 75:159–177

    Google Scholar 

  • Sperou ES (2020) A comprehensive analysis of sex hormones and their role in reproductive suppression in female northern elephant seals (Mirounga angustirostris). Sonoma State University, Thesis

    Google Scholar 

  • Stenfors LE, Sade J, Hellstrom S, Anniko M (2001) How can the hooded seal dive to a depth of 1000 m without rupturing its tympanic membrane? A morphological and functional study. Acta Otolaryngol 121(6):689–695

    CAS  PubMed  Google Scholar 

  • Tavoni S, Champagne CD, Houser DS, Crocker DE (2013) Lactate flux and gluconeogenesis in fasting, weaned northern elephant seals (Mirounga angustirostris). J Comp Phys B 183(4):537–546. https://doi.org/10.1007/s00360-012-0720-5

    Article  CAS  Google Scholar 

  • Thompson D, Fedak MA (1993) Cardiac responses of grey seals during diving at sea. J Exp Biol 174:139–154

    CAS  PubMed  Google Scholar 

  • Thorson PH, Le Boeuf BJ (1994) Developmental aspects of diving in northern elephant seal pups. In: Le Boeuf BJ, Laws RM (eds) Elephant seals: population ecology, behavior, and physiology. University of California Press, Berkeley, pp 271–289

    Google Scholar 

  • Twiss SD, Caudron A, Pomeroy PP, Thomas CJ, Mills JP (2000) Finescale topographical correlates of behavioural investment in offspring by female grey seals, Halichoerus Grypus. Anim Behav 59(2):327–338

    CAS  PubMed  Google Scholar 

  • Twiss SD, Wright NC, Dunstrone N, Redman P, Moss S, Pomeroy PP (2002) Behavioral evidence of thermal stress from overheating in UK breeding gray seals. Mar Mamm Sci 18(2):455–468

    Google Scholar 

  • Walcott SM, Kirkham AL, Burns JM (2020) Thermoregulatory costs in molting Antarctic Weddell seals: impacts of physiological and environmental conditions. Conserv Physiol 8(1):coaa022

    Google Scholar 

  • Watanabe Y, Baranov EA, Sato K, Naito Y, Miyazaki N (2004) Foraging tactics of Baikal seals differ between day and night. Mar Ecol Prog Ser 279:283–289

    Google Scholar 

  • Watanabe Y, Baranov EA, Sato K, Naito Y, Miyazaki N (2006) Body density affects stroke patterns in Baikal seals. J Exp Biol 209:3269–3280

    PubMed  Google Scholar 

  • Weingartner GM, Thornton SJ, Andrews RD, Enstipp MR, Dorota Barts A, Hochachka PW (2012) The effects of experimentally induced hyperthyroidism on the diving physiology of harbor seals (Phoca vitulina). Fronts Phys 3:380

    Google Scholar 

  • Weitzner EL, Fanter CE, Hindle AG (2020) Pinniped ontogeny as a window into the comparative physiology and genomics of hypoxia tolerance. Int Comp Biol 60:1414–1424

    CAS  Google Scholar 

  • Williams TM, Kooyman GL (1985) Swimming performance and hydrodynamic characteristics of harbor seals Phoca vitulina. Physiol Zool 58(5):576–589

    Google Scholar 

  • Williams TM, Davis RW, Fuiman LA et al (2000) Sink or swim: Strategies for cost-efficient diving by marine mammals. Science 288(5463):133–136. https://doi.org/10.1126/science.288.5463.133

    Article  CAS  PubMed  Google Scholar 

  • Williams TM, Fuiman LA, Davis RW (2015) Locomotion and the cost of hunting in large, stealthy marine carnivores. Int Comp Biol 55(4):673–682. https://doi.org/10.1093/icb/icv025

    Article  Google Scholar 

  • Wilsterman K, Buck CL, Barnes BM, Williams CT (2015) Energy regulation in context: free-living female arctic ground squirrels modulate the relationship between thyroid hormones and activity among life history stages. Horm Behav 75:111–119

    CAS  PubMed  Google Scholar 

  • Zapol WM, Liggins GC, Schneider RC, Qvist J, Snider MT, Creasy RK, Hochachka PW (1979) Regional blood flow during simulated diving in the conscious Weddell seal. J Appl Phys 47(5):968–973

    CAS  Google Scholar 

Download references

Acknowledgements

DEC was supported on ONR grant # N000141812822. BIM was supported on ONR grant # N000141612852 and NSF grant # 1656077.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel E. Crocker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Crocker, D.E., McDonald, B.I. (2022). Physiological Capacity and Constraint Impact Behavioral Phenotype in Phocid Seals. In: Costa, D.P., McHuron, E.A. (eds) Ethology and Behavioral Ecology of Phocids . Ethology and Behavioral Ecology of Marine Mammals. Springer, Cham. https://doi.org/10.1007/978-3-030-88923-4_4

Download citation

Publish with us

Policies and ethics