Skip to main content

On the Statistical Viewpoint Concerning the Second Law of Thermodynamics—A Reminder on the Ehrenfests’ Urn Model

  • Chapter
  • First Online:
From Quantum to Classical

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 204))

Abstract

In statistical thermodynamics the 2nd law is properly spelled out in terms of conditioned probabilities. As such it makes the statement that “entropy increases with time” without preferring a time direction. In this paper we wish to explain and illustrate this statement in terms of the Ehrenfests’ urn model in a way that hopefully adds some clarifying aspects concerning the role of time-conditioned probabilities. We will relate past- and future-conditioned probabilities through Bayes’ rule, which allows us to explicitly state what is meant by time-reversal invariance in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To give a contrasting example, I remember from my first lecture onquantum field theory, in which after thescheme of canonical quantisation wasintroduced and the interaction picturementioned, the professor said: “Thereis a theorem due to Rudolf Haag,according to which the interactionpicture does not exist; but we shallhenceforth ignore that!” How should aserious beginning student deal with sucha casually tossed comment?.

  2. 2.

    The conclusions Weizsäcker drew from this insight are, however, problematic; see, [9].

  3. 3.

    In the first (german) edition and in the following english editions up to, and including, the third, the “has nothing a priori to do with dynamics” reads instead: “has nothing a priori to do with the physical concept of time or its direction” [15, p. 37], or “...jedoch hat die Statistik als mathematische Disziplin nichts mit der physikalischen Zeit zu tun und vermag daher den Zeitpfeil auch nicht zu begründen” [14, p. 23].

  4. 4.

    The subscript ‘re’ can be read as abbreviation for ‘realised’ or ‘relevant’.

  5. 5.

    Therefore we avoid to call it Bayes’ theorem.

  6. 6.

    Without using (5)–(6) one gets

    $$\begin{aligned} W(z\pm 1;t_{i+1}\vert z;t_i)W(z;t_i)= & {} W(z;t_{i+1}\vert z\pm 1;t_i)W(z\pm 1;t_i)\nonumber \\= & {} W(z\pm 1;t_i\vert z;t_{i+1})W(z;t_{i+1})\,, \end{aligned}$$
    (18)

    where the last equality is the identity \(W(a\vert b)W(b)=W(b\vert a)W(a)\). The local (in time) condition of flow equilibrium is therefore equivalent to (cf. 20)

    $$\begin{aligned} {W(z\pm 1;t_{i+1}\vert z;t_i)\over W(z\pm 1;t_i\vert z;t_{i+1})} ={W(z;t_{i+1})\over W(z;t_i)}. \end{aligned}$$
    (19)

    .

  7. 7.

    Explicitly one can see the preservation of (24) under time evolution (8) as follows: Given that the initial distribution \(W_i\) satisfies (24), the development (8) is equivalent to (22)–(23). Hence

    $$\begin{aligned} W(z-1;t_i)= & {} {z\over N-z+1}\, W(z;t_{i+1}) \end{aligned}$$
    (28)
    $$\begin{aligned} W(z+1;t_i)= & {} {z+2\over N-z-1}\, W(z+2;t_{i+1})\,, \end{aligned}$$
    (29)

    which allows to rewrite (24) for \(W_i\) into (24) for \(W_{i+1}\).

  8. 8.

    This apparently non-objective character of entropy is often complained about. But this criticism is based on a misconception, since the term thermodynamical system is not defined without a choice for \(\mathcal {O}_\mathrm{re}\). This is no different in phenomenological thermodynamics, where the choice of ‘work degrees of freedom’, \(\{y^i\}\), (the ‘relevant’ or ‘controlled’ degrees of freedom) is part of the definition of ‘system’. Only after they have been specified can one define the differential one-form of heat, called \(\omega \), as the difference between the differential of total energy, dE, and the differential one-form of reversible work, called \(\alpha :=f_idy^i\); hence \(\omega :=dE-\alpha \). Note that neither \(\omega \) nor \(\alpha \) are exact. In particular, \(\omega \ne dQ\) for some function of state Q. In contrast to E, which is a function of states, \(\omega \) and \(\alpha \) are each a function of processes, which means that given a curve \(\gamma \) on the manifold of (equilibrium) states, \(\omega \) and \(\alpha \) can be evaluated on (i.e. integrated along) \(\gamma \). But it is meaningless to ask for the ‘value’ of heat and work on states. The value of heat associated to a process depends on the choice of \(\alpha \), which in turn depends on the choice of ‘relevant’ \(\{y^i\}\). Roughly speaking, heat is the amount of energy not transmitted in the channels (degrees of freedom) controlled by the \(\{y^i\}\). This dependence of heat on the \(\{y^i\}\) is directly inherited by entropy S, through \(T\,dS=\omega \), where T (temperature) and S (entropy) are functions of state. They exist if and only if \(\omega \) has an integrating factor (here 1/T), which is the case if and only if \(\omega \wedge d\omega =0\), or in differential-geometric terminology, if the kernel distribution of \(\omega \) is integrable. This integrability is, in turn, equivalent to the statement that in any neighbourhood of a given state there is another state that cannot be connected to the given one by a process (curve) on which the value of \(\omega \) vanishes. To require that this latter be the case is just Carathéodory’s principle of adiabatic inaccessibility [1], which allows to deduce the existence of S whose dependence on \(\{y^i\}\) is now obvious.

  9. 9.

    Note that we talk about recurrence in the space \(\Omega \) of macrostates (‘coarse grained’ states), not in the space \(\Gamma \) of microstates.

  10. 10.

    Usually this expression is called the relative entropy [of W relative to \(W_{\scriptscriptstyle \mathrm stat}\)]. As [absolute] entropy of W one then understands the expression \(-\sum _zW(z)\ln W(z)\). The H-theorem would be valid for the latter only if the constant distribution (in our case \(W(z)=1/(N+1)\)) is an equilibrium distribution, which is not true for the urn model.

  11. 11.

    ‘Elementary’ is merely to be understood as mathematical standard terminology, not in any physical sense. For example, in the urn model, \(\Omega \) is obtained after coarse graining from the space of physically ‘elementary’ events.

References

  1. C. Carathéodory, Untersuchungen über die Grundlagen der Thermodynamik. Math. Ann. 67, 355–386 (1909). https://doi.org/10.1007/BF01450409

  2. P. Ehrenfest, T. Ehrenfest, The Conceptual Foundations of the Statistical Approach in Mechanics (Dover Publications, Inc., New York, 1990). Translation of the 1912 german original by Michael J. Moravcsik

    Google Scholar 

  3. P. Ehrenfest, T. Ehrenfest, Über eine Aufgabe aus der Wahrscheinlichkeitsrechnung, die mit der kinetischen Deutung der Entropievermehrung zusammenhängt. Mathematisch-Naturwissenschaftliche Blätter 3(11,12) (1906)

    Google Scholar 

  4. P. Ehrenfest, T. Ehrenfest, Über zwei bekannte Einwände gegen das Boltzmannsche \(H\)-Theorem. Phys. Zeitsch. 9, 311–314 (1907)

    MATH  Google Scholar 

  5. P. Ehrenfest, T. Ehrenfest, Begriffliche Grundlagen der statistischen Auffassung in der Mechanik, in Encyklopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen. Vierter Band: Mechanik, ed. by F. Klein, C. Müller, vol. IV:2:II (B.G. Teubner, Leipzig, 1912)

    Google Scholar 

  6. D. Giulini, Book review: the physical basis of the direction of time (fifth edition) by H.D. Zeh. Class. Quantum Grav. 25(20), 209003 (2 pp) (2008). https://doi.org/10.1088/0264-9381/25/20/209003

  7. M. Kac, Random walk and the theory of Brownian motion. Am. Math. Mon. 54(7), 369–391 (1947). https://doi.org/10.2307/2304386

  8. M. Kac, Probability and Related Topics in Physical Sciences (Interscience Publishers, London, 1959). Proceedings of the Summer Seminar in Applied Mathematics by the American Mathematical Society at Boulder, Colorado, June 23 to July 19, 1957

    Google Scholar 

  9. C. Kiefer, Weizsäckers Zeitbegriff aus heutiger Sicht. Acta Historica Leopoldina 63, 177–186 (2014)

    Google Scholar 

  10. F. Kohlrausch, E. Schrödinger, Das Ehrenfestsche Modell der \(H\)-Kurve. Phys. Zeitsch. 27, 306–313 (1926)

    MATH  Google Scholar 

  11. R. Kubo, H-theorems for markoffian processes, in Perspectives in Statistical Physics (M.S. Green Memorial Volume). ed. by H.J. Raveché (North-Holland Publishing Company, Amsterdam, 1981), pp. 101–110

    Google Scholar 

  12. E. Schrödinger, Gesammelte Abhandlungen, Band 1: Beiträge zur statistischen Mechanik (Verlag der Österreichischen Akademie der Wissenschaften und Friedrich Vieweg & Sohn, Wien und Braunschweig/Wiesbaden, 1984)

    Google Scholar 

  13. C.F. von Weizsäcker, Der zweite Hauptsatz und der Unterschied von Vergangenheit und Zukunft. Ann. der Phys. 428(3–4), 275–283 (1939). https://doi.org/10.1002/andp.19394280309. Reprinted in C.F.v.W. book “Die Einheit der Natur”, Carl Hanser Verlag, München (1971), chapter II 2, pp. 172–182

  14. H.D. Zeh, Die Physik der Zeitrichtung. Lecture Notes in Physics, vol. 200, 1st edn. (Springer, Berlin, 1984)

    Google Scholar 

  15. H.D. Zeh, The Physical Basis of the Direction of Time, 3rd edn. (Springer, Berlin, 1999)

    Book  Google Scholar 

  16. H.D. Zeh, The Physical Basis of the Direction of Time. The Frontiers Collection. 5th edn. (Springer, Berlin, 2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Giulini .

Editor information

Editors and Affiliations

7 Appendix

7 Appendix

In this Appendix we collect some elementary notions of probability theory, adapted to our specific example.

The space of elementary eventsFootnote 11 is \(\Omega =\{0,1,\dots ,N\}\). By

$$\begin{aligned} \mathcal {X}:= & {} \bigl \{X:\Omega \rightarrow \mathbb {R}\bigr \}\,, \end{aligned}$$
(57)
$$\begin{aligned} \mathcal {W}:= & {} \bigl \{W:\Omega \rightarrow \mathbb {R}_{\ge 0}\mid \sum _{z\in \Omega }W(z)=1\bigr \}\,, \end{aligned}$$
(58)

we denote the sets of random variables and probability distributions respectively, where \(\mathcal {W}\subset \mathcal {X}\). The map \(\mathcal {X}\rightarrow \mathbb {R}^{N+1}\), \(X\mapsto (X(0),X(1),\cdots ,X(N))\) defines a bijection which allows us to identify \(\mathcal {X}\) with \(\mathbb {R}^{N+1}\). This identifies \(\mathcal {W}\) with the N-simplex

$$\begin{aligned} \Delta ^N:=\bigl \{(W(0),\cdots ,W(N))\in \mathbb {R}^{N+1}\mid W(z)\ge 0,\, \sum _{z}W(z)=1\bigr \} \subset \mathbb {R}^{N+1}\,. \end{aligned}$$
(59)

Its boundary, \(\partial \Delta ^N\), is the union of all \((N-K)\)-simplices:

$$\begin{aligned} \Delta ^{i_1\cdots i_K}:=\bigl \{(W(0),\dots ,W(N))\in \Delta ^N\mid 0=W(i_1)=\cdots =W(i_K)\bigr \} \,, \end{aligned}$$
(60)

for all K. Its interior is \({\displaystyle {\mathop {\mathcal {W}}^{\circ }}}:=\mathcal {W}-\partial \mathcal {W}\), so that \(W\in {\displaystyle {\mathop {\mathcal {W}}^{\circ }}}\Leftrightarrow W(z)\not =0\forall z\).

Expectation value \({E}\), variance \({V}\), and standard deviation \({S}\) are functions \(\mathcal {X}\times \mathcal {W}\rightarrow \mathbb {R}\), defined as follows:

$$\begin{aligned}&{E}:\mathcal {X}\times \mathcal {W}\rightarrow \mathbb {R},\quad {E}(X,W):=\sum _{z\in \Omega }X(z)W(z) \,, \end{aligned}$$
(61)
$$\begin{aligned}&{V}:\mathcal {X}\times \mathcal {W}\rightarrow \mathbb {R}_{\ge 0},\quad {V}(X,W):={E}((X-\langle X\rangle )^2,W)={E}(X^2,W)-{E}^2(X,W)\,, \end{aligned}$$
(62)
$$\begin{aligned}&{S}:\mathcal {X}\times \mathcal {W}\rightarrow \mathbb {R}_{\ge 0},\quad {S}(X,W):=\sqrt{{V}(X,W)}\,, \end{aligned}$$
(63)

where in (62) \(\langle X\rangle \) simply denotes the constant function \(\langle X\rangle :z\mapsto {E}(X,W)\), and \({E}^2(X,W):=[{E}(X,W)]^2\). In the main text we also write \({E}(X,s)\) if the symbol s uniquely labels a point in \(\mathcal {W}\), like \(s=\text {ap}\) for the a priori distribution (1), or \(E(X,t_i)\) for the distribution \(W_i\) at time \(t_i\).

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giulini, D. (2022). On the Statistical Viewpoint Concerning the Second Law of Thermodynamics—A Reminder on the Ehrenfests’ Urn Model. In: Kiefer, C. (eds) From Quantum to Classical. Fundamental Theories of Physics, vol 204. Springer, Cham. https://doi.org/10.1007/978-3-030-88781-0_11

Download citation

Publish with us

Policies and ethics