Skip to main content

Disease Influence on BBB Transport in Neurodegeneration

  • Chapter
  • First Online:
Drug Delivery to the Brain

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 33))

  • 1370 Accesses

Abstract

For the pharmacotherapy of neurodegenerative diseases, drugs must pass the blood–brain barrier (BBB). The BBB seems to play an important role in disease initiation and or progression, and many changes in BBB properties in neurodegeneration have been reported. In vivo studies including measurements of unbound drug concentrations in plasma and brain are needed for insight into BBB transport, intra-brain and target site distribution, and specific changes related to neurodegenerative conditions. However, it is surprising that only a limited number of such studies have been performed to date. This chapter summarizes the published work on these in vivo studies and provides a perspective on what is needed to advance and foster more understanding in the future . Though it is generally thought that the BBB is compromised in neurodegenerative disorders, quantitative studies indicate that this is not necessarily always the case. It is recommended to increase in vivo studies that can integrate the impact of neurodegenerative processes, to complement studies on neurodegenerative components in isolation, and to improve our understanding of target site distribution of drugs intended to treat the disease condition. As in vivo studies on human brain sampling are ethically restricted, we must rely on animal models and translational mathematical approaches to infer relevance for clinical work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott NJ, Khan EU, Rollinson CM, Reichel A, Janigro D, Dombrowski SM, Dobbie MS, Begley DJ (2002) Drug resistance in epilepsy: the role of the blood–brain barrier. Novartis Found Symp 243:38–47. discussion 47–53, 180–185

    CAS  PubMed  Google Scholar 

  • Abuznait AH, Cain C, Ingram D, Burk D, Kaddoumi A (2011) Up-regulation of P-glycoprotein reduces intracellular accumulation of beta amyloid: investigation of P-glycoprotein as a novel therapeutic target for Alzheimer's disease. J Pharm Pharmacol 63(8):1111–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed RM, Ke Y, Vucic S, Ittner LM, Seeley W, Hodges JR, Piguet O, Halliday G, Kiernan MC (2018) Physiological changes in neurodegeneration - mechanistic insights and clinical utility. Nat Rev Neurol 14:259–271

    Article  CAS  PubMed  Google Scholar 

  • Aijaz S, Balda MS, Matter K (2006) Tight junctions: molecular architecture and function. Int Rev Cytol 248:261–298

    Article  CAS  PubMed  Google Scholar 

  • Al Ahmad A, Gassmann M, Ogunshola OO (2012) Involvement of oxidative stress in hypoxia- induced blood–brain barrier breakdown. Microvasc Res 84(2):222–225

    Article  PubMed  CAS  Google Scholar 

  • Alexander GM, Godwin DW (2006) Metabotropic glutamate receptors as a strategic target for the treatment of epilepsy. Epilepsy Res 71:1–22

    Article  CAS  PubMed  Google Scholar 

  • Allt G, Lawrenson JG (2001) Pericytes: cell biology and pathology. Cells Tissues Organs 169:1–11

    Article  CAS  PubMed  Google Scholar 

  • Amenta PS, Jallo JI, Tuma RF, Elliott MB (2012) A cannabinoid type 2 receptor agonist attenuates blood–brain barrier damage and neurodegeneration in a murine model of traumatic brain injury. J Neurosci Res 90(12):2293–2305

    Article  CAS  PubMed  Google Scholar 

  • Anderson GD, Shen DD (2007) Where is the evidence that p-glycoprotein limits brain uptake of antiepileptic drug and contributes to drug resistance in epilepsy? Epilepsia 48(12):2372–2374

    Article  PubMed  Google Scholar 

  • Armulik A, Genové G, Betsholtz C (2011a) Pericytes: developmental, physiological, and patho- logical perspectives, problems, and promises. Dev Cell 21(2):193–215

    Article  CAS  PubMed  Google Scholar 

  • Armulik A, Mäe M, Betsholtz C (2011b) Pericytes and the blood–brain barrier: recent advances and implications for the delivery of CNS therapy. Ther Deliv 2(4):419–422

    Article  PubMed  Google Scholar 

  • Arnold S (2012) The power of life–cytochrome c oxidase takes center stage in metabolic control, cell signalling and survival. Mitochondrion 12(1):46–56

    Article  CAS  PubMed  Google Scholar 

  • Artal-Sanz M, Tavernarakis N (2005) Proteolytic mechanisms in necrotic cell death and neurode- generation. FEBS Lett 579(15):3287–3296

    Article  CAS  PubMed  Google Scholar 

  • Ates N, Esen N, Ilbay G (1999) Absence epilepsy and regional blood–brain barrier permeability: the effects of pentylenetetrazole-induced convulsions. Pharmacol Res 39(4):305–310

    Article  CAS  PubMed  Google Scholar 

  • Baeten KM, Akassoglou K (2011) Extracellular matrix and matrix receptors in blood–brain barrier formation and stroke. Periodicals, inc. Dev Neurobiol 71:1018–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagwe-Parab S, Kaur G (2019) Molecular targets and therapeutic interventions for iron induced neurodegeneration. Brain Res Bull 156:1–9

    Article  PubMed  CAS  Google Scholar 

  • Bailey TL, Rivara CB, Rocher AB, Hof PR (2004) The nature and effects of cortical microvascular pathology in aging and Alzheimer’s disease. Neurol Res 26:573–578

    Article  PubMed  Google Scholar 

  • Balabanov R, Dore-Duffy P (1998) Role of the CNS microvascular pericyte in the blood–brain barrier. J Neurosci Res 53(6):637–644

    Article  CAS  PubMed  Google Scholar 

  • Baltes S, Gastens AM, Fedrowitz M, Potschka H, Kaever V, Löscher W (2007b) Differences in the transport of the antiepileptic drugs phenytoin, levetiracetam and carbamazepine by human and mouse P-glycoprotein. Neuropharmacology 52(2):333–346

    Article  CAS  PubMed  Google Scholar 

  • Banerjee S, Bhat MA (2007) Neuron-glial interactions in blood–brain barrier formation. Annu Rev Neurosci 30:235–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bankstahl JP, Hoffmann K, Bethmann K, Löscher W (2008) Glutamate is critically involved in seizure-induced overexpression of P-glycoprotein in the brain. Neuropharmacology 54(6):1006–1016

    Article  CAS  PubMed  Google Scholar 

  • Bankstahl JP, Bankstahl M, Kuntner C, Stanek J, Wanek T, Meier M, Ding XQ, Müller M, Langer O, Löscher W (2011) A novel positron emission tomography imaging protocol identifies seizure-induced regional overactivity of P-glycoprotein at the blood–brain barrier. J Neurosci 31(24):8803–8811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baranczyk-Kuzma A, Audus KL, Borchardt RT (1989) Catecholamine-metabolizing enzymes of bovine brain microvessel endothelial cell monolayers. J Neurochem 46(6):1956–1960

    Article  Google Scholar 

  • Bell RD, Zlokovic BV (2009) Neurovascular mechanisms and blood–brain barrier disorder in Alzheimer's disease. Acta Neuropathol 118(1):103–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, Zlokovic BV (2010) Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68(3):409–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell RD, Winkler EA, Singh I, Sagare AP, Deane R, Wu Z, Holtzman DM, Betsholtz C, Armulik A, Sallstrom J, Berk BC, Zlokovic BV (2012) Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature 485(7399):512–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bendayan R, Ronaldson PT, Gingras D, Bendayan M (2006) In situ localization of P-glycoprotein (ABCB1) in human and rat brain. J Histochem Cytochem 54:1159–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berg D, Youdim MB (2006) Role of iron in neurodegenerative disorders. Top Magn Reson Imaging 17(1):5–17

    Article  PubMed  Google Scholar 

  • Bertram L, Tanzi RE (2005) The genetic epidemiology of neurodegenerative disease. J Clin Invest 115(6):1449–1457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE (2007) Systematic meta- analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet 39(1):17–23

    Article  CAS  PubMed  Google Scholar 

  • Bethmann K, Fritschy JM, Brandt C, Löscher W (2008) Antiepileptic drug resistant rats differ from drug responsive rats in GABA A receptor subunit expression in a model of temporal lobe epilepsy. Neurobiol Dis 31(2):169–187

    Article  CAS  PubMed  Google Scholar 

  • Betti M, Minelli A, Ambrogini P, Ciuffoli S, Viola V, Galli F, Canonico B, Lattanzi D, Colombo E, Sestili P, Cuppini R (2011) Dietary supplementation with α-tocopherol reduces neuroinflam- mation and neuronal degeneration in the rat brain after kainic acid-induced status epilepticus. Free Radic Res 45(10):1136–1142

    Article  CAS  PubMed  Google Scholar 

  • Bittigau P, Sifringer M, Genz K, Reith E, Pospischil D, Govindarajalu S, Dzietko M, Pesditschek S, Mai I, Dikranian K, Olney JW, Ikonomidou C (2002) Antiepileptic drugs and apoptotic neurodegeneration in the developing brain. Proc Natl Acad Sci U S A 99(23):15089–15094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanchard JW, Bula M, Davila-Velderrain J, Akay LA, Zhu L, Frank A, Victor MB, Bonner JM, Mathys H, Lin Y-T, Ko T, Bennett DA, Cam HP, Kellis M, Tsai L-H (2020) Reconstruction of the human blood–brain barrier in vitro reveals a pathogenic mechanism of APOE4 in pericytes. Nat Med 26:952–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouw MR, Ederoth P, Lundberg J, Ungerstedt U, Nordstrom CH, Hammarlund-Udenaes M (2001) Increased blood-brain barrier permeability of morphine in a patient with severe brain lesions as determined by microdialysis. Acta Anest Scand 45:390–392

    Article  CAS  Google Scholar 

  • Bové J, Perier C (2012) Neurotoxin-based models of Parkinson's disease. Neuroscience 211:51–76

    Article  PubMed  CAS  Google Scholar 

  • Brandt C, Bethmann K, Gastens AM, Löscher W (2006) The multidrug transporter hypothesis of drug resistance in epilepsy: proof-of-principle in a rat model of temporal lobe epilepsy. Neurobiol Dis 24(1):202–211

    Article  CAS  PubMed  Google Scholar 

  • Brenn A, Grube M, Peters M, Fischer A, Jedlitschky G, Kroemer HK, Warzok RW, Vogelgesang S (2011) Beta-amyloid downregulates MDR1-P-glycoprotein (Abcb1) expression at the blood–brain barrier in mice. Int J Alzheimers Dis 2011:690121

    PubMed  PubMed Central  Google Scholar 

  • Britschgi M, Wyss-Coray T (2007) Immune cells may fend off Alzheimer disease. Nat Med 13:408–409

    Article  CAS  PubMed  Google Scholar 

  • Brownless J, Williams CH (1993) Peptidases, peptides and the mammalian blood–brain barrier. J Neurochem 60:1089–1096

    Google Scholar 

  • Bulbarelli A, Lonati E, Brambilla A, Orlando A, Cazzaniga E, Piazza F, Ferrarese C, Masserini M, Sancini G (2012) Aβ42 production in brain capillary endothelial cells after oxygen and glucose deprivation. Mol Cell Neurosci 49(4):415–422

    Article  CAS  PubMed  Google Scholar 

  • Cheng T, Petraglia AL, Li Z, Thiyagarajan M, Zhong Z, Wu Z, Liu D, Maggirwar SB, Deane R, Fernandez JA, LaRue B, Griffin JH, Chopp M, Zlokovic BV (2006) Activated protein C inhib- its tissue plasminogen activator-induced brain hemorrhage. Nat Med 12:1278–1285

    Article  CAS  PubMed  Google Scholar 

  • Chodobski A, Zink BJ, Szmydynger-Chodobska J (2011) Blood–brain barrier pathophysiology in traumatic brain injury. Transl Stroke Res 2(4):492–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cholerton B, Baker LD, Craft S (2011) Insulin resistance and pathological brain ageing. Diabet Med 28(12):1463–1475

    Article  CAS  PubMed  Google Scholar 

  • Christensen J (2012) Traumatic brain injury: Risks of epilepsy and implications for medicolegal assessment. Epilepsia 53(Suppl 4):43–47

    Article  PubMed  Google Scholar 

  • Christensen J, Højskov CS, Dam M, Poulsen JH (2001) Plasma concentration of topiramate correlates with cerebrospinal fluid concentration. Ther Drug Monit 23(5):529–535

    Article  CAS  PubMed  Google Scholar 

  • Chun JT, Wang L, Pasinetti GM, Finch CE, Zlokovic BV (1999) Glycoprotein 330/megalin (LRP-2) has low prevalence as mRNA and protein in brain microvessels and choroid plexus. Exp Neurol 157(1):194–201

    Article  CAS  PubMed  Google Scholar 

  • Clinckers R, Smolders I, Meurs A, Ebinger G, Michotte Y (2005a) Quantitative in vivo microdi- alysis study on the influence of multidrug transporters on the blood–brain barrier passage of oxcarbazepine: concomitant use of hippocampal monoamines as pharmacodynamic markers for the anticonvulsant activity. J Pharmacol Exp Ther 314(2):725–731

    Article  CAS  PubMed  Google Scholar 

  • Clinckers R, Smolders I, Meurs A, Ebinger G, Michotte Y (2005b) Hippocampal dopamine and serotonin elevations as pharmacodynamic markers for the anticonvulsant efficacy of oxcar- bazepine and 10,11-dihydro-10-hydroxycarbamazepine. Neurosci Lett 390(1):48–53

    Article  CAS  PubMed  Google Scholar 

  • Clinckers R, Smolders I, Michotte Y, Ebinger G, Danhof M, Voskuyl RA, Della PO (2008) Impact of efflux transporters and of seizures on the pharmacokinetics of oxcarbazepine metabolite in the rat brain. Br J Pharmacol 155(7):1127–1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen-Kashi MK, Cooper I, Teichberg VI (2009) Closing the gap between the in-vivo and in-vitro blood–brain barrier tightness. Brain Res 1284:12–21

    Article  CAS  Google Scholar 

  • Cope EC, Morris DR, Levenson CW (2012) Improving treatments and outcomes: an emerging role for zinc in traumatic brain injury. Nutr Rev 70(7):410–413

    Article  PubMed  Google Scholar 

  • Coppedè F, Mancuso M, Siciliano G, Migliore L, Murri L (2006) Genes and the environment in neurodegeneration. Biosci Rep 26(5):341–367

    Article  PubMed  CAS  Google Scholar 

  • Cowan CM, Raymond LA (2006) Selective neuronal degeneration in Huntington’s disease. Curr Top Dev Biol 75:25–71

    Article  CAS  PubMed  Google Scholar 

  • De Lange EC (2013) The mastermind approach to CNS drug therapy: translational prediction of human brain distribution, target site kinetics, and therapeutic effects. Fluids Barriers CNS 10(1):12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Lange ECM, van der Brink W, Yamamoto Y, de Witte W, Wong YC (2017) Novel CNS drug discovery and development approach: model-based integration to predict neuro-pharmacokinetics and pharmacodynamics. Expert Opin Drug Discovery 12(12):1207–1218

    Article  CAS  Google Scholar 

  • De Lange ECM, Vd Berg DJ, Bellanti F, Voskuyl RA, Syvänen S (2018) P-glycoprotein protein expression versus functionality at the blood-brain barrier using immunohistochemistry, microdialysis and mathematical modeling. Eur J Pharm Sci 23(124):61–70

    Article  CAS  Google Scholar 

  • De Vos KJ, Grierson AJ, Ackerley S, Miller CJJ (2008) Role of axonal transport in neurodegenerative diseases. Annu Rev Neurosci 31:151–173

    Article  PubMed  CAS  Google Scholar 

  • Deeken JF, Loscher W (2007) The blood–brain barrier and cancer: transporters, treatment, and Trojan horses. Clin Cancer Res 13:1663–1674

    Article  CAS  PubMed  Google Scholar 

  • Deleu D, Northway MG, Hanssens Y (2002) Clinical pharmacokinetic and pharmacodynamic properties of drugs used in the treatment of Parkinson's disease. Clin Pharmacokinet 41(4):261–309

    Article  CAS  PubMed  Google Scholar 

  • Deprez F, Zattoni M, Mura ML, Frei K, Fritschy JM (2011) Adoptive transfer of T lymphocytes in immunodeficient mice influences epileptogenesis and neurodegeneration in a model of tempo- ral lobe epilepsy. Neurobiol Dis 44(2):174–184

    Article  CAS  PubMed  Google Scholar 

  • Desai BS, Monahan AJ, Carvey PM, Hendey B (2007) Blood–brain barrier pathology in Alzheimer's and Parkinson's disease: implications for drug therapy. Cell Transplant 16(3):285–299

    Article  PubMed  Google Scholar 

  • Dimitrijevic OB, Stamatovic SM, Keep RF, Andjelkovic AV (2007) Absence of the chemokine receptor CCR2 protects against cerebral ischemia/reperfusion injury in mice. Stroke 38(4):1345–1353

    Article  CAS  PubMed  Google Scholar 

  • Dohgu S, Takata F, Matsumoto J, Kimura I, Yamauchi A, Kataoka Y (2019) Monomeric α-synuclein induces blood-brain barrier dysfunction through activated brain pericytes releasing inflammatory mediators in vitro. Microvasc Res 124:61–66

    Article  CAS  PubMed  Google Scholar 

  • Dombrowski SM, Desai SY, Marroni M, Cucullo L, Goodrich K, Bingaman W, Mayberg MR, Bengez L, Janigro D (2001) Overexpression of multiple drug resistance genes in endothelial cells from patients with refractory epilepsy. Epilepsia 42(12):1501–1506

    Article  CAS  PubMed  Google Scholar 

  • Drake CT, Iadecola C (2007) The role of neuronal signaling in controlling cerebral blood flow. Brain Lang 102:141–152

    Article  PubMed  Google Scholar 

  • Dutheil F, Jacob A, Dauchy S, Beaune P, Scherrmann JM, Declèves X, Loriot MA (2010) ABC transporters and cytochromes P450 in the human central nervous system: influence on brain pharmacokinetics and contribution to neurodegenerative disorders. Expert Opin Drug Metab Toxicol 6(10):1161–1174

    Article  CAS  PubMed  Google Scholar 

  • Engelhardt B, Vajkoczy P, Weller RO (2017) The movers and shapers in immune privilege of the CNS. Nat Immunol 18(2):123–131

    Article  CAS  PubMed  Google Scholar 

  • Erickson AC, Couchman JR (2000) Still more complexity in mammalian basement membranes. J Histochem Cytochem 48(10):1291–1306

    Article  CAS  PubMed  Google Scholar 

  • Erickson MA, Hartvigson PE, Morofuji Y, Owen JB, Butterfield DA, Banks WA (2012) Lipopolysaccharide impairs amyloid beta efflux from brain: altered vascular sequestration, cerebrospinal fluid reabsorption, peripheral clearance and transporter function at the blood– brain barrier. J Neuroinflammation 9(1):150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan J, Cowan CM, Zhang LY, Hayden MR, Raymond LA (2009) Interaction of postsynaptic den- sity protein-95 with NMDA receptors influences excitotoxicity in the yeast artificial chromo- some mouse model of Huntington's disease. J Neurosci 29(35):10928–10938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng MR, Turluck D, Burleigh J, Lister R, Fan C, Middlebrook A, Taylor C, Su T (2001) Brain microdialysis and PK/PD correlation of pregabalin in rats. Eur J Drug Metab Pharmacokinet 26(1–2):123–128

    Article  CAS  PubMed  Google Scholar 

  • Feng S, Cen J, Huang Y, Shen H, Yao L, Wang Y, Chen Z (2011) Matrix metalloproteinase-2 and −9 secreted by leukemic cells increase the permeability of blood–brain barrier by disrupt- ing tight junction proteins. PLoS One 6(8):e20599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finder VH (2010) Alzheimer's disease: a general introduction and pathomechanism. J Alzheimers Dis 22(Suppl 3):5–19

    Article  PubMed  CAS  Google Scholar 

  • Freeman LR, Keller JN (2012) Oxidative stress and cerebral endothelial cells: regulation of the blood–brain-barrier and antioxidant based interventions. Biochim Biophys Acta 1822(5):822–829

    Article  CAS  PubMed  Google Scholar 

  • Fu H, Hardy J, Duff KE (2018) Selective vulnerability in neurodegenerative diseases. Nat Neurosci 21(10):1350–1358. https://doi.org/10.1038/s41593-018-0221-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukushima H, Fujimoto M, Ide M (1990) Quantitative detection of blood–brain barrier-associated enzymes in cultured endothelial cells of porcine brain microvessels. In Vitro Cell Dev Biol 26(6):612–620

    Article  CAS  PubMed  Google Scholar 

  • Ghosh C, Puvenna V, Gonzalez-Martinez J, Janigro D, Marchi N (2011) Blood–brain barrier P450 enzymes and multidrug transporters in drug resistance: a synergistic role in neurological diseases. Curr Drug Metab 12(8):742–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girouard H, Bonev AD, Hannah RM, Meredith A, Aldrich RW, Nelson MT (2010) Astrocytic endfoot Ca2+ and BK channels determine both arteriolar dilation and constriction. Proc Natl Acad Sci U S A 107(8):3811–3816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorman AM (2008) Neuronal cell death in neurodegenerative diseases: recurring themes around protein handling. J Cell Mol Med 12(6A):2263–2280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenhalgh AD, Ogungbenro K, Rothwell NJ, Galea JP (2011) Translational pharmacokinetics: challenges of an emerging approach to drug development in stroke. Expert Opin Drug Metab Toxicol 7(6):681–695

    Article  CAS  PubMed  Google Scholar 

  • Grünblatt E, Mandel S, Youdim MB (2000) MPTP and 6-hydroxydopamine-induced neurodegen- eration as models for Parkinson's disease: neuroprotective strategies. J Neurol 247(Suppl 2):II95–II102

    Google Scholar 

  • Guo X, Geng M, Du G (2005) Glucose transporter 1, distribution in the brain and in neural disorders: its relationship with transport of neuroactive drugs through the blood–brain barrier. Biochem Genet 43(3–4):175–187

    CAS  PubMed  Google Scholar 

  • Gustafsson S, Gustavsson T, Roshanbin S, Hultqvist G, Hammarlund-Udenaes M, Sehlin D, Syvänen S (2018) Blood-brain Barrier Integrity in a Mouse Model of Alzheimer's Disease With or Without Acute 3D6 Immunotherapy. Neuropharmacology 143:1–9

    Article  CAS  PubMed  Google Scholar 

  • Hartz AM, Miller DS, Bauer B (2010) Restoring blood–brain barrier P-glycoprotein reduces brain amyloid-beta in a mouse model of Alzheimer's disease. Mol Pharmacol 77(5):715–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkins BT, Davis TP (2005) The blood–brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57(2):173–185

    Article  CAS  PubMed  Google Scholar 

  • Hermann DM, Bassetti CL (2007) Implications of ATP-binding cassette transporters for brain pharmacotherapies. Trends Pharmacol Sci 28:128–134

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Romero MC, Delgado-Cortés MJ, Sarmiento M, de Pablos RM, Espinosa-Oliva AM, Argüelles S, Bández MJ, Villarán RF, Mauriño R, Santiago M, Venero JL, Herrera AJ, Cano J, Machado A (2012) Peripheral inflammation increases the deleterious effect of CNS inflammation on the nigrostriatal dopaminergic system. Neurotoxicology 33(3):347–360

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann K, Gastens AM, Volk HA, Löscher W (2006) Expression of the multidrug transporter MRP2 in the blood–brain barrier after pilocarpine-induced seizures in rats. Epilepsy Res 69(1):1–14. Epub 2006 Feb 28

    Article  CAS  PubMed  Google Scholar 

  • Holtzman DM, Zlokovic BV (2007) Role of Ab transport and clearance in the pathogenesis and treatment of Alzheimer’s disease. In: Sisodia S, Tanzi RE (eds) Alzheimer’s disease: advances in genetics, molecular and cellular biology. Springer, New York, pp 179–198

    Chapter  Google Scholar 

  • Hossmann KA (1994) Viability thresholds and the penumbra of focal ischemia. Ann Neurol 36:557–565

    Article  CAS  PubMed  Google Scholar 

  • Hynes RO, Lander AD (1992) Contact and adhesive specificities in the associations, migrations, and targeting of cells and axons. Cell 68(2):303–322

    Article  CAS  PubMed  Google Scholar 

  • Iadecola C (2010) The overlap between neurodegenerative and vascular factors in the pathogenesis of dementia. Acta Neuropathol 120(3):287–296

    Article  PubMed  PubMed Central  Google Scholar 

  • Jellinger KA (2012) Interaction between pathogenic proteins in neurodegenerative disorders. J Cell Mol Med 16(6):1166–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalaria RN (2010) Vascular basis for brain degeneration: faltering controls and risk factors for dementia. Nutr Rev 68(Suppl 2):S74–S87

    Article  PubMed  Google Scholar 

  • Kerr IG, Zimm S, Collins JM, O'Neill D, Poplack DG (1984) Effect of intravenous dose and sched- ule on cerebrospinal fluid pharmacokinetics of 5-fluorouracil in the monkey. Cancer Res 44:4929–4932

    CAS  PubMed  Google Scholar 

  • Ketharanathan N, Yamamoto Y, Rohlwink U, Wildschut ED, Mathôt RAA, de Lange ECM, Wildt SN, Argent AC, Tibboel D, Figaji AA (2019) Combining Brain Microdialysis and Translational Pharmacokinetic Modeling to Predict Drug Concentrations in Pediatric Severe Traumatic Brain Injury: The Next Step Toward Evidence-Based Pharmacotherapy? J Neurotrauma 1 36(1):111–117

    Article  Google Scholar 

  • Kirk J, Plumb J, Mirakhur M, McQuaid S (2003) Tight junctional abnormality in multiple sclerosis white matter affects all calibres of vessel and is associated with blood–brain barrier leakage and active demyelination. J Pathol 201:319–327

    Article  PubMed  Google Scholar 

  • Krantic S, Mechawar N, Reix S, Quirion R (2005) Molecular basis of programmed cell death involved in neurodegeneration. Trends Neurosci 28(12):670–676

    Article  CAS  PubMed  Google Scholar 

  • Krueger M, Bechmann I (2010) CNS pericytes: concepts, misconceptions, and a way out. Glia 58(1):1–10

    Article  PubMed  Google Scholar 

  • Kuhnke D, Jedlitschky G, Grube M, Krohn M, Jucker M, Mosyagin I, Cascorbi I, Walker LC, Kroemer HK, Warzok RW, Vogelgesang S (2007) MDR1-P-glycoprotein (ABCB1) mediates transport of Alzheimer's amyloid-beta peptides–implications for the mechanisms of abeta clearance at the blood–brain barrier. Brain Pathol 17(4):347–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamas M, González-Mariscal L, Gutiérrez R (2002) Presence of claudins mRNA in the brain. Selective modulation of expression by kindling epilepsy. Brain Res Mol Brain Res 104(2):250–254

    Article  CAS  PubMed  Google Scholar 

  • Lee G, Bendayan R (2004) Functional expression and localization of P-glycoprotein in the central nervous system: relevance to the pathogenesis and treatment of neurological disorders. Pharm Res 21(8):1313–1330

    Article  CAS  PubMed  Google Scholar 

  • Lessing D, Bonini NM (2009) Maintaining the brain: insight into human neurodegeneration from Drosophila melanogaster mutants. Nat Rev Genet 10:359–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipton SA (2005) The molecular basis of memantine action in Alzheimer’s disease and other neurologic disorders: low-affinity, uncompetitive antagonism. Curr Alzheimer Res 2:155–165

    Article  CAS  PubMed  Google Scholar 

  • Lo EH, Dalkara T, Moskowitz MA (2003) Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 4:399–415

    Article  CAS  PubMed  Google Scholar 

  • Lok J, Gupta P, Guo S, Kim WJ, Whalen MJ, van Leyen K, Lo EH (2007) Cell-cell signaling in the neurovascular unit. Neurochem Res 32:2032–2045

    Article  CAS  PubMed  Google Scholar 

  • Loscher W, Potschka H (2005) Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci 6:591–602

    Article  PubMed  CAS  Google Scholar 

  • Löscher W, Luna-Tortós C, Römermann K, Fedrowitz M (2011) Do ATP-binding cassette transporters cause pharmacoresistance in epilepsy? Problems and approaches in determining which antiepileptic drugs are affected. Curr Pharm Des 17(26):2808–2828

    Article  PubMed  Google Scholar 

  • Lu M, Hu G (2012) Targeting metabolic inflammation in Parkinson's disease: implications for prospective therapeutic strategies. Clin Exp Pharmacol Physiol 39(6):577–585

    Article  CAS  PubMed  Google Scholar 

  • Luer MS (1999) Interventions to achieve tonic exposure to levodopa: delaying or preventing the onset of motor complications. Pharmacotherapy 19(11 Pt 2):169S–179S

    Article  CAS  PubMed  Google Scholar 

  • Luna-Tortós C, Rambeck B, Jürgens UH, Löscher W (2009) The antiepileptic drug topiramate is a substrate for human P-glycoprotein but not multidrug resistance proteins. Pharm Res 26(11):2464–2470

    Article  PubMed  CAS  Google Scholar 

  • Luna-Tortós C, Fedrowitz M, Löscher W (2010) Evaluation of transport of common antiepileptic drugs by human multidrug resistance-associated proteins (MRP1, 2 and 5) that are overex- pressed in pharmacoresistant epilepsy. Neuropharmacology 58(7):1019–1032

    Article  PubMed  CAS  Google Scholar 

  • Marchi N, Hallene KL, Kight KM, Cucullo L, Moddel G, Bingaman W, Dini G, Vezzani A, Janigro D (2004) Significance of MDR1 and multiple drug resistance in refractory human epileptic brain. BMC Med 2:37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marroni M, Marchi N, Cucullo L, Abbott NJ, Signorelli K, Janigro D (2003) Vascular and paren- chymal mechanisms in multiple drug resistance: a lesson from human epilepsy. Curr Drug Targets 4(4):297–304

    Article  CAS  PubMed  Google Scholar 

  • Maxwell K, Berliner JA, Cancilla PA (1987) Induction of gamma glutamyltranspeptidase in cultured cerebral endothelial cells by a product released by astrocytes. Brain Res 410:309–314

    Article  CAS  PubMed  Google Scholar 

  • Mazarati AM, Sofia RD, Wasterlain CG (2002) Anticonvulsant and antiepileptogenic effects of fluorofelbamate in experimental status epilepticus. Seizure 11(7):423–430

    Article  PubMed  Google Scholar 

  • Merker HJ (1994) Morphology of the basement membrane. Microsc Res Tech 28(2):95–124

    Article  CAS  PubMed  Google Scholar 

  • Michalak Z, Lebrun A, Di Miceli M, Rousset MC, Crespel A, Coubes P, Henshall DC, Lerner-Natoli M, Rigau V (2012) IgG leakage may contribute to neuronal dysfunction in drug-refractory epilepsies with blood–brain barrier disruption. J Neuropathol Exp Neurol 71(9):826–838

    Article  CAS  PubMed  Google Scholar 

  • Mihajlica N, Betsholtz C, Hammarlund-Udenaes M (2018) Pharmacokinetics of pericyte involvement in small-molecular drug transport across the blood-brain barrier. Eur J Pharm Sci 122:77–84

    Article  CAS  PubMed  Google Scholar 

  • Miltiadous P, Stamatakis A, Koutsoudaki PN, Tiniakos DG, Stylianopoulou F (2011) IGF-I ame- liorates hippocampal neurodegeneration and protects against cognitive deficits in an animal model of temporal lobe epilepsy. Exp Neurol 231(2):223–235

    Article  CAS  PubMed  Google Scholar 

  • Miyakawa T (2010) Vascular pathology in Alzheimer's disease. Psychogeriatrics 10(1):39–44

    Article  PubMed  Google Scholar 

  • Mooradian AD, Chung HC, Shah GN (1997) GLUT-1 expression in the cerebra of patients with Alzheimer’s disease. Neurobiol Aging 18:469–474

    Article  CAS  PubMed  Google Scholar 

  • Morgan L, Shah B, Rivers LE, Barden L, Groom AJ, Chung R, Higazi D, Desmond H, Smith T, Staddon JM (2007) Inflammation and dephosphorylation of the tight junction protein occludin in an experimental model of multiple sclerosis. Neuroscience 147:664–673

    Article  CAS  PubMed  Google Scholar 

  • Mosconi L, Sorbi S, de Leon MJ, Li Y, Nacmias B, Myoung PS, Tsui W, Ginestroni A, Bessi V, Fayyazz M, Caffarra P, Pupi A (2006) Hypometabolism exceeds atrophy in presymptomatic early-onset familial Alzheimer's disease. J Nucl Med 47(11):1778–1786

    CAS  PubMed  Google Scholar 

  • Mosconi L, De Santi S, Li J, Tsui WH, Li Y, Boppana M, Laska E, Rusinek H, de Leon MJ (2008) Hippocampal hypometabolism predicts cognitive decline from normal aging. Neurobiol Aging 29(5):676–692

    Article  CAS  PubMed  Google Scholar 

  • Mulder M, Blokland A, van den Berg DJ, Schulten H, Bakker AHF, Terwel D, Honig W, de Kloet ER, Havekes LM, Steinbusch HWM, de Lange ECM (2001) Apolipoprotein E protects against neuropathology induced by a high-fat diet and maintains the integrity of the blood–brain bar- rier during aging. Lab Investig 81(7):953–960

    Article  CAS  PubMed  Google Scholar 

  • Navarro A, Boveris A (2010) Brain mitochondrial dysfunction in aging, neurodegeneration, and Parkinson’s disease. Front Aging Neurosci 2:34

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ndode-Ekane XE, Hayward N, Gröhn O, Pitkänen A (2010) Vascular changes in epilepsy: func- tional consequences and association with network plasticity in pilocarpine-induced experimen- tal epilepsy. Neuroscience 166(1):312–332

    Article  CAS  PubMed  Google Scholar 

  • Nga Bien-Ly C, Boswell A, Jeet S, Beach TG, Hoyte K, Luk W, Shihadeh V, Ulufatu S, Foreman O, Lu Y, DeVoss J, van der Brug M, Watts RJ (2015) Lack of widespread BBB disruption in alzheimer's disease models: focus on therapeutic antibodies. Neuron 88(2):289–297

    Article  PubMed  CAS  Google Scholar 

  • Nico B, Frigeri A, Nicchia GP, Corsi P, Ribatti D, Quondamatteo F, Herken R, Girolamo F, Marzullo A, Svelto M, Svelto M, Roncali L (2003) Severe alterations of endothelial and glial cells in the blood–brain barrier of dystrophic mdx mice. Glia 42:235–251

    Article  PubMed  Google Scholar 

  • Ohtsuki S, Terasaki T (2007) Contribution of carrier-mediated transport systems to the blood– brain barrier as a supporting and protecting interface for the brain; importance for CNS drug discovery and development. Pharm Res 24:1745–1758

    Article  CAS  PubMed  Google Scholar 

  • Okouchi M, Ekshyyan O, Maracine M, Aw TY (2007) Neuronal apoptosis in neurodegeneration. Antioxid Redox Signal 9(8):1059–1096

    Article  CAS  PubMed  Google Scholar 

  • Owen JB, Sultana R, Aluise CD, Erickson MA, Price TO, Bu G, Banks WA, Butterfield DA (2010) Oxidative modification to LDL receptor-related protein 1 in hippocampus from subjects with Alzheimer disease: implications for Aβ accumulation in AD brain. Free Radic Biol Med 49(11):1798–1803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padou V, Boyet S, Nehlig A (1995) Changes in transport of [14C] alpha-aminoisobutyric acid across the blood–brain barrier during pentylenetetrazol-induced status epilepticus in the imma- ture rat. Epilepsy Res 22(3):175–183

    Article  CAS  PubMed  Google Scholar 

  • Palmer AM (2011) The role of the blood brain barrier in neurodegenerative disorders and their treatment. J Alzheimers Dis 24(4):643–656

    Article  CAS  PubMed  Google Scholar 

  • Parodi-Rullán R, Sone JY, Fossati S (2019) Endothelial Mitochondrial Dysfunction in Cerebral Amyloid Angiopathy and Alzheimer's Disease. J Alzheimers Dis 72(4):1019–1039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paulsson M (1992) Basement membrane proteins: structure, assembly, and cellular interactions. Crit Rev Biochem Mol Biol 27(1–2):93–127

    CAS  PubMed  Google Scholar 

  • Paweletz CP, Wiener MC, Bondarenko AY, Yates NA, Song Q, Liaw A, Lee AY, Hunt BT, Henle ES, Meng F, Sleph HF, Holahan M, Sankaranarayanan S, Simon AJ, Settlage RE, Sachs JR, Shearman M, Sachs AB, Cook JJ, Hendrickson RC (2010) Application of an end-to-end biomarker discovery platform to identify target engagement markers in cerebrospinal fluid by high resolution differential mass spectrometry. J Proteome Res 9(3):1392–1401

    Article  CAS  PubMed  Google Scholar 

  • Perez-Pinzon MA, Stetler RA, Fiskum G (2012) Novel mitochondrial targets for neuroprotection. J Cereb Blood Flow Metab 32(7):1362–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pflanzner T, Petsch B, André-Dohmen B, Müller-Schiffmann A, Tschickardt S, Weggen S, Stitz L, Korth C, Pietrzik CU (2012) Cellular prion protein participates in amyloid-β transcytosis across the blood–brain barrier. J Cereb Blood Flow Metab 32(4):628–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pop V, Badaut J (2011) A neurovascular perspective for long-term changes after brain trauma. Transl Stroke Res 2(4):533–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Portelli J, Aourz N, De Bundel D, Meurs A, Smolders I, Michotte Y, Clinckers R (2009) Intrastrain differences in seizure susceptibility, pharmacological response and basal neurochemistry of Wistar rats. Epilepsy Res 87(2–3):234–246

    Article  CAS  PubMed  Google Scholar 

  • Potschka H, Löscher W (2001a) In vivo evidence for P-glycoprotein-mediated transport of phenytoin at the blood brain barrier of rats. Epilepsia 42:1231–1240

    Article  CAS  PubMed  Google Scholar 

  • Potschka H, Löscher W (2001b) Multidrug resistance-associated protein is involved in the regulation of extracellular levels of phenytoin in the brain. Neuroreport 12(11):2387–2389

    Article  CAS  PubMed  Google Scholar 

  • Potschka H, Fedrowitz M, Löscher W (2001) P-glycoprotein and multidrug resistance-associated protein are involved in the regulation of extracellular levels of the major antiepileptic drug carbamazepine in the brain. Neuroreport 12:3557–3560

    Article  CAS  PubMed  Google Scholar 

  • Potschka H, Fedrowitz M, Loscher W (2002) P-Glycoprotein-mediated efflux of phenobarbital, lamotrigine, and felbamate at the blood–brain barrier, evidence from microdialysis experiments in rats. Neurosci Lett 327(3):173–176

    Article  CAS  PubMed  Google Scholar 

  • Potschka H, Fedrowitz M, Loscher W (2003a) Multidrug resistance protein MRP2 contributes to the blood–brain barrier function and restricts antiepileptic drug activity. J Pharmacol Exp Ther 306:124–131

    Article  CAS  PubMed  Google Scholar 

  • Potschka H, Fedrowitz M, Loscher W (2003b) Brain access and anticonvulsant efficacy of carba- mazepine, lamotrigine, and felbamate in ABCC2/MRP2-deficient TR- rats. Epilepsia 44(12):1479–1486

    Article  CAS  PubMed  Google Scholar 

  • Potschka H, Baltes S, Loscher W (2004) Inhibition of multidrug transporters by verapamil or pro- benecid does not alter blood–brain barrier penetration of levetiracetam in rats. Epilepsy Res 58(2–3):85–91

    Article  CAS  PubMed  Google Scholar 

  • Price DL, Sisodia SS, Borchelt DR (1998) Genetic neurodegenerative diseases: the human illness and transgenic models. Science 282:1079–1083

    Article  CAS  PubMed  Google Scholar 

  • Prins ML, Giza CC (2006) Induction of monocarboxylate transporter 2 expression and ketone transport following traumatic brain injury in juvenile and adult rats. Dev Neurosci 28(4–5):447–456

    Article  CAS  PubMed  Google Scholar 

  • Prinz M, Priller J, Sisodia SS, Ransohoff RM (2011) Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat Neurosci 14(10):1227–1235

    Article  CAS  PubMed  Google Scholar 

  • Qin T, Prins S, Groeneveld GJ, Van Westen G, de Vries HE, Wong YC, Bischoff LJM, de Lange ECM (2020) Utility of Animal Models to Understand Human Alzheimer's Disease, Using the Mastermind Research Approach to Avoid Unnecessary Further Sacrifices of Animals. Int J Mol Sci Apr 30:21(9)

    Google Scholar 

  • Ravenstijn PG, Merlini M, Hameetman M, Murray TK, Ward MA, Lewis H, Ball G, Mottart C, de de Ville de Goyet C, Lemarchand T, van Belle K, O'Neill MJ, Danhof M, de Lange EC (2008) The exploration of rotenone as a toxin for inducing Parkinson's disease in rats, for application in BBB transport and PK-PD experiments. J Pharmacol Toxicol Methods 57(2):114–130

    Article  CAS  PubMed  Google Scholar 

  • Ravenstijn PGM, Drenth H, Baatje MS, O’Neill MJ, Danhof M, de Lange ECM (2012) Evaluation of BBB transport and CNS drug metabolism in diseased and control brain after intravenous l-DOPA in a unilateral rat model of Parkinson’s disease. Fluids Barriers CNS 9:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reale M, Iarlori C, Thomas A, Gambi D, Perfetti B, Di Nicola M, Onofrj M (2009) Peripheral cytokines profile in Parkinson's disease. Brain Behav Immun 23(1):55–63

    Article  CAS  PubMed  Google Scholar 

  • Reed M, Damodarasamy M, Banks WA (2019) The extracellular matrix of the blood-brain barrier: structural and functional roles in health, aging, and Alzheimer's disease. Tissue Barriers 7(4):1651157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Romanitan MO, Popescu BO, Winblad B, Bajenaru OA, Bogdanovic N (2007) Occludin is over- expressed in Alzheimer's disease and vascular dementia. J Cell Mol Med 11(3):569–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg GA, Yang Y (2007) Vasogenic edema due to tight junction disruption by matrix metal- loproteinases in cerebral ischemia. Neurosurg Focus 22:E4

    Article  PubMed  Google Scholar 

  • Rosenfeld JV, Maas AI, Bragge P, Morganti-Kossmann MC, Manley GT, Gruen RL (2012) Early management of severe traumatic brain injury. Lancet 380(9847):1088–1098

    Article  PubMed  Google Scholar 

  • Sagare AP, Deane R, Zlokovic BV (2012) Low-density lipoprotein receptor-related protein 1: A physiological Aβ homeostatic mechanism with multiple therapeutic opportunities. Pharmacol Ther 136(1):94–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahin D, Ilbay G, Ates N (2003) Changes in the blood–brain barrier permeability and in the brain tissue trace element concentrations after single and repeated pentylenetetrazole-induced sei- zures in rats. Pharmacol Res 48(1):69–73

    Article  CAS  PubMed  Google Scholar 

  • Samuraki M, Matsunari I, Chen WP, Yajima K, Yanase D, Fujikawa A, Takeda N, Nishimura S, Matsuda H, Yamada M (2007) Partial volume effect-corrected FDG PET and grey matter volume loss in patients with mild Alzheimer’s disease. Eur J Nucl Med Mol Imaging 34:1658–1669

    Article  PubMed  Google Scholar 

  • Sandoval KE, Witt KA (2008) Blood–brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis 32(2):200–219

    Article  CAS  PubMed  Google Scholar 

  • Sayre LM, Perry G, Smith MA (2008) Oxidative stress and neurotoxicity. Chem Res Toxicol 21(1):172–188

    Article  PubMed  Google Scholar 

  • Scearce-Levie K, Sanchez PE, Lewcock JW (2020) Leveraging preclinical models for the development of Alzheimer disease therapeutics. Nat Rev Drug Discov 19:447–462

    Article  CAS  PubMed  Google Scholar 

  • Schinkel A, Smit J, van Tellingen O, Beijnen J, Wagenaar E, van Deemter L et al (1994) Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood–brain barrier and to increased sensitivity to drugs. Cell 77:491–502

    Article  CAS  PubMed  Google Scholar 

  • Scism JL, Powers KM, Artru AA, Lewis L, Shen DD (2000) Probenecid-inhibitable efflux trans- port of valproic acid in the brain parenchymal cells of rabbits: a microdialysis study. Brain Res 884(1–2):77–86

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DJ (2011) Alzheimer's disease. Cold Spring Harb Perspect Biol 1:3–7

    Google Scholar 

  • Serrano GE, Lelutiu N, Rojas A, Cochi S, Shaw R, Makinson CD, Wang D, FitzGerald GA, Dingledine R (2011) Ablation of cyclooxygenase-2 in forebrain neurons is neuroprotective and dampens brain inflammation after status epilepticus. J Neurosci 31(42):14850–14860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma HS, Castellani RJ, Smith MA, Sharma A (2012) The blood–brain barrier in Alzheimer's disease: novel therapeutic targets and nanodrug delivery. Int Rev Neurobiol 102:47–90

    Article  CAS  PubMed  Google Scholar 

  • Shlosberg D, Benifla M, Kaufer D, Friedman A (2010) Blood–brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol 6(7):393–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui A, Kerb R, Weale ME, Brinkmann U, Smith A, Goldstein DB, Wood NW, Sisodiya SM (2003) Association of multidrug resistance in epilepsy with a polmorhism in the drug- transporter gene ABCB1. N Engl J Med 348:1442–1448

    Article  CAS  PubMed  Google Scholar 

  • Sills GJ, Kwan P, Butler E, de Lange EC, van den Berg DJ, Brodie MJ (2002) P-glycoprotein- mediated efflux of antiepileptic drugs: preliminary studies in mdr1a knockout mice. Epilepsy Behav 3(5):427–432

    Article  PubMed  Google Scholar 

  • Simpson IA, Carruthers A, Vannucci SJ (2007) Supply and demand in cerebral energy metabo- lism: the role of nutrient transporters. J Cereb Blood Flow Metab 27(11):1766–1791

    Article  CAS  PubMed  Google Scholar 

  • Sisodiya SM, Mefford HC (2011) Genetic contribution to common epilepsies. Curr Opin Neurol 24(2):140–145

    Article  PubMed  Google Scholar 

  • Sivanandam TM, Thakur MK (2012) Traumatic brain injury: a risk factor for Alzheimer's disease. Neurosci Biobehav Rev 36(5):1376–1381

    Article  PubMed  Google Scholar 

  • Soto C (2008) Endoplasmic reticulum stress, PrP trafficking, and neurodegeneration. Dev Cell 15(3):339–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soto C, Estrada LD (2008) Protein misfolding and neurodegeneration. Arch Neurol 65(2):184–189

    Article  PubMed  Google Scholar 

  • Spector R (2009) Nutrient transport systems in brain: 40 years of progress. J Neurochem 111(2):315–320

    Article  CAS  PubMed  Google Scholar 

  • Spector R, Johanson CE (2007) Vitamin transport and homeostasis in mammalian brain: focus on Vitamins B and E. J Neurochem 103:425–438

    Article  CAS  PubMed  Google Scholar 

  • Stokin GB, Goldstein LSB (2006) Axonal transport and Alzheimer’s disease. Annu Rev Biochem 75:607–627

    Article  CAS  PubMed  Google Scholar 

  • Sweeney MD, Sagare AP, Zlokovic BV (2018) Blood-brain Barrier Breakdown in Alzheimer Disease and Other Neurodegenerative Disorders. Nat. Rev Neurol 14(3):133–150

    CAS  Google Scholar 

  • Syvänen S, Luurtsema G, Molthoff CF, Windhorst AD, Huisman MC, Lammertsma AA, Voskuyl RA, de Lange EC (2011) (R)-[11C]verapamil PET studies to assess changes in P-glycoprotein expression and functionality in rat blood–brain barrier after exposure to kainate-induced status epilepticus. BMC Med Imaging 11:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Syvänen S, Schenke M, van den Berg DJ, Voskuyl RA, de Lange EC (2012) Alteration in P-glycoprotein functionality affects intrabrain distribution of quinidine more than brain entry-a study in rats subjected to status epilepticus by kainate. AAPS J 14(1):87–96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takano T, Han X, Deane R, Zlokovic B, Nedergaard M (2007) Two-photon imaging of astrocytic Ca2+ signaling and the microvasculature in experimental mice models of Alzheimer’s disease. Ann N Y Acad Sci 1097:40–50

    Article  CAS  PubMed  Google Scholar 

  • Tanzi RE, Moir RD, Wagner SL (2004) Clearance of Alzheimer’s A beta peptide: the many roads to perdition. Neuron 43:605–608

    CAS  PubMed  Google Scholar 

  • Tate SK, Sisodiya SM (2007) Multidrug resistance in epilepsy: a pharmacogenomic update. Expert Opin Pharmacother 8:1441–1449

    Article  CAS  PubMed  Google Scholar 

  • Tayarani I, Cloez I, Clément M, Bourre JM (1989) Antioxidant enzymes and related trace elements in aging brain capillaries and choroid plexus. J Neurochem 53:817–824

    Article  CAS  PubMed  Google Scholar 

  • Tudor AF, Elson-Schwab I, Khurana V, Steinhilb ML, Spires TL, Hyman BT, Feany MB (2007) Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nat Cell Biol 9:139–148

    Article  CAS  Google Scholar 

  • Vallejo-Illarramendi A, Domercq M, Pérez-Cerdá F, Ravid R, Matute C (2006) Increased expres- sion and function of glutamate transporters in multiple sclerosis. Neurobiol Dis 21(1):154–164

    Article  CAS  PubMed  Google Scholar 

  • Van Assema DM, Goos JD, van der Flier WM, Lubberink M, Boellaard R, Windhorst AD, Scheltens P, Lammertsma AA, van Berckel BN (2012) No evidence for additional blood–brain barrier P-glycoprotein dysfunction in Alzheimer's disease patients with microbleeds. J Cereb Blood Flow Metab 32(8):1468–1471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Cauwenberghe C, Van Broeckhoven C, Sleegers K (2016) The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet Med 18:421–430

    Article  PubMed  Google Scholar 

  • Van Damme P, Dewil M, Robberecht W, Van Den Bosch L (2005) Excitotoxicity and amyotrophic lateral sclerosis. Neurodegener Dis 2:147–159

    Article  PubMed  Google Scholar 

  • Van Vliet EA, van Schaik R, Edelbroek PM, Voskuyl RA, Redeker S, Aronica E, Wadman WJ, Gorter JA (2007) Region-specific overexpression of P-glycoprotein at the blood–brain barrier affects brain uptake of phenytoin in epileptic rats. J Pharmacol Exp Ther 322(1):141–147

    Article  PubMed  CAS  Google Scholar 

  • Van Vliet EA, Zibell G, Pekcec A, Schlichtiger J, Edelbroek PM, Holtman L, Aronica E, Gorter JA (2010) Potschka. COX-2 inhibition controls P-glycoprotein expression and promotes brain delivery of phenytoin in chronic epileptic rats. Neuropharmacology 58(2):404–412

    Article  PubMed  CAS  Google Scholar 

  • Vautier S, Milane A, Fernandez C, Chacun H, Lacomblez L, Farinotti R (2009) Role of two efflux proteins, ABCB1 and ABCG2 in blood–brain barrier transport of bromocriptine in a murine model of MPTP-induced dopaminergic degeneration. J Pharm Pharm Sci 12(2):199–208

    Article  CAS  PubMed  Google Scholar 

  • Viggars AP, Wharton SB, Simpson JE, Matthews FE, Brayne C, Savva GM, Garwood C, Drew D, Shaw PJ, Ince PG (2011) Alterations in the blood brain barrier in ageing cerebral cortex in relationship to Alzheimer-type pathology: a study in the MRC-CFAS population neuropathol- ogy cohort. Neurosci Lett 505(1):25–30

    Article  CAS  PubMed  Google Scholar 

  • Vogelgesang S, Jedlitschky G, Brenn A, Walker LC (2011) The role of the ATP-binding cassette transporter P-glycoprotein in the transport of β-amyloid across the blood–brain barrier. Curr Pharm Des 17(26):2778–2786

    Article  CAS  PubMed  Google Scholar 

  • Volk B, Hettmansperger U, Papp TH, Amelizad Z, Oesch F, Knoth R (1991) Mapping of phenytoin- inducible cytochrome P450 immunoreactivity in the mouse central nervous system. Neuroscience 42:215–235

    Article  CAS  PubMed  Google Scholar 

  • Volk HA, Arabadzisz D, Fritschy JM, Brandt C, Bethmann K, Löscher W (2006) Antiepileptic drug-resistant rats differ from drug-responsive rats in hippocampal neurodegeneration and GABA(A) receptor ligand binding in a model of temporal lobe epilepsy. Neurobiol Dis 21(3):633–646

    Article  CAS  PubMed  Google Scholar 

  • Von Tell D, Armulik A, Betsholtz C (2006) Pericytes and vascular stability. Exp Cell Res 312:623–629

    Article  CAS  Google Scholar 

  • Weaver SM, Chau A, Portelli JN, Grafman J (2012) Genetic polymorphisms influence recovery from traumatic brain injury. Neuroscientist 18(6):631–644

    Article  CAS  PubMed  Google Scholar 

  • Weber JT (2012) Altered calcium signaling following traumatic brain injury. Front Pharmacol 3:60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weinreb O, Amit T, Bar-Am O, Youdim MB (2007a) Induction of neurotrophic factors GDNF and BDNF associated with the mechanism of neurorescue action of rasagiline and ladostigil: new insights and implications for therapy. Ann N Y Acad Sci 1122:155–168

    Article  CAS  PubMed  Google Scholar 

  • Wenk GL (2003) Neuropathologic changes in Alzheimer's disease. J Clin Psychiatry 64(Suppl 9):7–10

    PubMed  Google Scholar 

  • Williams SK, Gillis JF, Matthews MA, Wagnert RC, Bitensky MW (1980) Isolation and characteriza- tion of brain endothelial cells: morphology and enzyme activity. J Neurochem 35(2):374–381

    Article  CAS  PubMed  Google Scholar 

  • Witt KA, Gillespie TJ, Huber JD, Egleton RD, Davis TP (2001) Peptide drug modifications to enhance bioavailability and blood–brain barrier permeability. Peptides 22:2329–2343

    Article  CAS  PubMed  Google Scholar 

  • Wolburg H, Noell S, Mack A, Wolburg-Buchholz K, Fallier-Becker P (2009) Brain endothelial cells and the glio-vascular complex. Cell Tissue Res 335(1):75–96

    Article  PubMed  Google Scholar 

  • Wu Z, Guo H, Chow N, Sallstrom J, Bell RD, Deane R, Brooks AI, Kanagala S, Rubio A, Sagare A, Liu D, Li F, Armstrong D, Gasiewicz T, Zidovetzki R, Song X, Hofman F, Zlokovic BV (2005) Role of the MEOX2 homeobox gene in neurovascular dysfunction in Alzheimer disease. Nat Med 11(9):959–965

    Article  CAS  PubMed  Google Scholar 

  • Wyss-Coray T, Lin C, Sanan DA, Mucke L, Masliah E (2000) Chronic overproduction of trans- forming growth factor-beta1 by astrocytes promotes Alzheimer's disease-like microvascular degeneration in transgenic mice. Am J Pathol 156(1):139–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto Y, Välitalo PA, Wong YC, Huntjens DR, Proost JH, Vermeulen A, Krauwinkel W, Beukers MW, van den Berg DJ, Hartman RH, Wong YC, Danhof M, Kokkif H, Kokkif M, van Hasselt JGC, de Lange ECM (2018) Prediction of human CNS pharmacokinetics using a physiologically-based pharmacokinetic modeling approach. Eur J Pharm Sci 15(112):168–179

    Article  CAS  Google Scholar 

  • Yang Y, Rosenberg GA (2011) MMP-mediated disruption of claudin-5 in the blood–brain barrier of rat brain after cerebral ischemia. Methods Mol Biol 762:333–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Lunde LK, Nuntagij P, Oguchi T, Camassa LM, Nilsson LN, Lannfelt L, Xu Y, Amiry- Moghaddam M, Ottersen OP, Torp R (2011) Loss of astrocyte polarization in the tg-ArcSwe mouse model of Alzheimer's disease. J Alzheimers Dis 27(4):711–722

    Article  CAS  PubMed  Google Scholar 

  • Yang AC, Stevens MY, Chen MB, Lee DP, Stähli D, Gate D, Contrepois K, Chen W, Iram T, Zhang L, Vest RT, Chaney A, Lehallier B, Olsson N, du Bois H, Hsieh R, Cropper HC, Berdnik D, Li L, Wang EY, Traber GM, Bertozzi CR, Luo J, Snyder MP, Elias JE, Quake SR, James ML, Wyss-Coray T (2020) Physiological blood-brain transport is impaired with age by a shift in transcytosis. Nature

    Google Scholar 

  • Yu F, Wang Z, Tchantchou F, Chiu CT, Zhang Y, Chuang DM (2012) Lithium ameliorates neuro- degeneration, suppresses neuroinflammation, and improves behavioral performance in a mouse model of traumatic brain injury. J Neurotrauma 29(2):362–374

    Article  PubMed  PubMed Central  Google Scholar 

  • Zattoni M, Mura ML, Deprez F, Schwendener RA, Engelhardt B, Frei K, Fritschy JM (2011) Brain infiltration of leukocytes contributes to the pathophysiology of temporal lobe epilepsy. J Neurosci 31(11):4037–4050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zenaro E, Piacentino G, Constantin G (2017) The blood-brain barrier in Alzheimer's disease. Neurobiol Dis 107:41–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XM, Mao XJ, Zhang HL, Zheng XY, Pham T, Adem A, Winblad B, Mix E, Zhu J (2012) Overexpression of apolipoprotein E4 increases kainic-acid-induced hippocampal neurodegen- eration. Exp Neurol 233(1):323–332

    Article  CAS  PubMed  Google Scholar 

  • Zlokovic BV (2006) Remodeling after stroke. Nat Med 12:390–391

    Article  CAS  PubMed  Google Scholar 

  • Zlokovic BV (2008) The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 57(2):178–201

    Article  CAS  PubMed  Google Scholar 

  • Zlokovic BV (2010) Neurodegeneration and the neurovascular unit. Nat Med 16:1370–1371

    Article  CAS  PubMed  Google Scholar 

  • Zlokovic BV (2011) Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders. Nat Rev Neurosci 12(12):723–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zlokovic BV, Yamada S, Holtzman D, Ghiso J, Frangione B (2000) Clearance of amyloid beta- peptide from brain: transport or metabolism? Nat Med 6(7):718–719

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth C. M. de Lange .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Lange, E.C.M. (2022). Disease Influence on BBB Transport in Neurodegeneration. In: de Lange, E.C., Hammarlund-Udenaes, M., Thorne, R.G. (eds) Drug Delivery to the Brain. AAPS Advances in the Pharmaceutical Sciences Series, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-030-88773-5_22

Download citation

Publish with us

Policies and ethics