Skip to main content

Drug Discovery Methods for Studying Brain Drug Delivery and Distribution

  • Chapter
  • First Online:
Drug Delivery to the Brain

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 33))

  • 1396 Accesses

Abstract

Methods used in drug discovery laboratories for assessing the delivery of small molecules to the brain have changed significantly in recent years. There is now more focus on measuring or estimating target unbound drug concentrations in the brain and evaluating the quantitative aspects of drug transport across the blood-brain barrier (BBB). The techniques for the investigation of the rate and extent of BBB transport of new chemical entities (NCEs) are discussed in this chapter. Combinatory methodology for rapid mapping of the extent of brain drug delivery via assessment of the unbound drug brain partitioning coefficient is presented. The chapter also explains the procedures for approximation of subcellular distribution of NCEs, particularly into the lysosomes. The principles, technical issues, advantages, and potential applications of techniques for evaluation of intra-brain distribution, i.e., equilibrium dialysis-based brain homogenate and brain slice methods, are described. The assessment of the extent of BBB transport and intracellular distribution of NCEs, the identification of intra-brain distribution patterns, and their integration with pharmacodynamic measurements are valuable implements for candidate evaluation and selection in drug discovery and development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A brain :

Amount of drug in brain tissue

AUCtot,brain:

Area under the total brain concentration-time curve

AUCtot,plasma:

Area under the total plasma concentration-time curve

BBB:

Blood-brain barrier

BCRP:

Breast cancer resistance-associated protein

BCSFB:

Blood-CSF barrier

CB:

Cellular barrier

C buffer :

Concentration of compound in the buffer (brain slice method)

C tot,blood :

Total drug concentration in blood

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

C tot,plasma :

Total drug concentration in plasma

Ctot,brain:

Total drug concentration in brain

Cu,brainISF:

Unbound drug concentration in brain interstitial fluid

Cu,cell:

Unbound drug concentration in intracellular fluid

Cu,cyto:

Unbound drug concentration in cytosol

Cu,lyso:

Unbound drug concentration in lysosomes

C u,plasma :

Unbound drug concentration in plasma

DMPK:

Drug metabolism and pharmacokinetics

ECF:

Extracellular fluid (same as ISF)

ED:

Equilibrium dialysis

ER:

Efflux ratio

f u,brain :

Fraction of unbound drug in brain homogenate

f u,brain,corrected :

fu,brain corrected for pH partitioning into cells

f u,hD :

Fraction of unbound drug in diluted brain homogenate

f u,plasma :

Fraction of unbound drug in plasma

HTS:

High-throughput screening

ICF:

Intracellular fluid in the brain

ISF:

Interstitial fluid in the brain

K d :

Equilibrium dissociation constant

Kp,brain:

Ratio of total-brain-to-total plasma drug concentrations (also abbreviated as BB)

Kp,uu,brain:

Ratio of brain ISF-to-plasma unbound drug concentrations

Kp,uu,cell:

Ratio of brain ICF-to-ISF unbound drug concentrations

Kp,uu,cyto:

Ratio of cytosolic-to-extracellular unbound drug concentrations

K p,uu,lyso :

Ratio of lysosomic-to-cytosolic unbound drug concentrations

LC-MS/MS:

Liquid chromatography tandem mass spectrometry

logBB:

Logarithm of Kp,brain (BB)

MWCO:

Molecular weight cut-off

NCE:

New chemical entity

neuroPK:

Neuropharmacokinetics

Papp:

Unidirectional apparent permeability coefficient measured in the apical-to-basolateral direction (cm/s)

PBS:

Phosphate-buffered saline

PD:

Pharmacodynamics

PET:

Positron emission tomography

P-gp:

P-glycoprotein

PK:

Pharmacokinetics

PLD:

Drug-induced phospholipidosis

PS:

Permeability surface area product (μL/min · g brain−1)

V ss :

Apparent volume of distribution at steady state

V u,brain :

Volume of distribution of unbound drug in brain (mL · g brain−1)

References

  • Abbott NJ (2004) Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int 45(4):545–552

    Article  CAS  PubMed  Google Scholar 

  • Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37(1):13–25

    Article  CAS  PubMed  Google Scholar 

  • Abbott NJ, Pizzo ME, Preston JE, Janigro D, Thorne RG (2018) The role of brain barriers in fluid movement in the CNS: is there a ‘glymphatic’ system? Acta Neuropathol 135(3):387–407

    Article  CAS  PubMed  Google Scholar 

  • Abraham MH (2011) The permeation of neutral molecules, ions, and ionic species through membranes: brain permeation as an example. J Pharm Sci 100(5):1690–1701

    Article  CAS  PubMed  Google Scholar 

  • Agarwal S, Uchida Y, Mittapalli RK, Sane R, Terasaki T, Elmquist WF (2012) Quantitative Proteomics of Transporter Expression in Brain Capillary Endothelial Cells Isolated from P-gp, BCRP, and P-gp/BCRP Knockout Mice. Drug Metab Dispos

    Google Scholar 

  • Banker MJ, Clark TH, Williams JA (2003) Development and validation of a 96-well equilibrium dialysis apparatus for measuring plasma protein binding. J Pharm Sci 92(5):967–974

    Article  CAS  PubMed  Google Scholar 

  • Bauer M, Zeitlinger M, Karch R, Matzneller P, Stanek J, Jager W, Bohmdorfer M, Wadsak W, Mitterhauser M, Bankstahl JP, Loscher W, Koepp M, Kuntner C, Muller M, Langer O (2012) Pgp-mediated interaction between (R)-[11C]verapamil and tariquidar at the human blood-brain barrier: a comparison with rat data. Clin Pharmacol Ther 91(2):227–233

    Article  CAS  PubMed  Google Scholar 

  • Bean JW, Sargent DF, Schwyzer R (1988) Ligand/receptor interactions – the influence of the microenvironment on macroscopic properties. Electrostatic interactions with the membrane phase. J Recept Res 8(1–4):375–389

    Article  CAS  PubMed  Google Scholar 

  • Becker S, Liu X (2006) Evaluation of the utility of brain slice methods to study brain penetration. Drug Metab Dispos 34(5):855–861

    Article  CAS  PubMed  Google Scholar 

  • Begley DJ (1996) The blood-brain barrier: principles for targeting peptides and drugs to the central nervous system. J Pharm Pharmacol 48(2):136–146

    Article  CAS  PubMed  Google Scholar 

  • Begley DJ (2004) Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther 104(1):29–45

    Article  CAS  PubMed  Google Scholar 

  • Bendayan R, Lee G, Bendayan M (2002) Functional expression and localization of P-glycoprotein at the blood brain barrier. Microsc Res Tech 57(5):365–380

    Article  CAS  PubMed  Google Scholar 

  • Benkwitz C, Liao M, Laster MJ, Sonner JM, Eger EI 2nd, Pearce RA (2007) Determination of the EC50 amnesic concentration of etomidate and its diffusion profile in brain tissue: implications for in vitro studies. Anesthesiology 106(1):114–123

    Article  CAS  PubMed  Google Scholar 

  • Berry LM, Roberts J, Be X, Zhao Z, Lin MH (2010) Prediction of V(ss) from in vitro tissue-binding studies. Drug Metab Dispos 38(1):115–121

    Article  CAS  PubMed  Google Scholar 

  • Blasberg R, Levi G, Lajtha A (1970) A comparison of inhibition of steady state, new transport, and exchange fluxes of amino acids in brain slices. Biochim Biophys Acta 203(3):464–483

    Article  CAS  PubMed  Google Scholar 

  • Bostrom E, Simonsson US, Hammarlund-Udenaes M (2006) In vivo blood-brain barrier transport of oxycodone in the rat: indications for active influx and implications for pharmacokinetics/pharmacodynamics. Drug Metab Dispos 34(9):1624–1631

    Article  PubMed  CAS  Google Scholar 

  • Bouw MR, Xie R, Tunblad K, Hammarlund-Udenaes M (2001) Blood-brain barrier transport and brain distribution of morphine-6-glucuronide in relation to the antinociceptive effect in rats--pharmacokinetic/pharmacodynamic modelling. Br J Pharmacol 134 (8):1796-1804

    Google Scholar 

  • Boya P, Kroemer G (2008) Lysosomal membrane permeabilization in cell death. Oncogene 27(50):6434–6451

    Article  CAS  PubMed  Google Scholar 

  • Boya P, Andreau K, Poncet D, Zamzami N, Perfettini JL, Metivier D, Ojcius DM, Jaattela M, Kroemer G (2003) Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion. J Exp Med 197(10):1323–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunner D, Balci F, Ludvig EA (2012) Comparative psychology and the grand challenge of drug discovery in psychiatry and neurodegeneration. Behav Processes 89(2):187–195

    Article  PubMed  Google Scholar 

  • Bundgaard C, Jorgensen M, Mork A (2007) An integrated microdialysis rat model for multiple pharmacokinetic/pharmacodynamic investigations of serotonergic agents. J Pharmacol Toxicol Methods 55(2):214–223

    Article  CAS  PubMed  Google Scholar 

  • Bundgaard C, Jensen CJ, Garmer M (2012a) Species comparison of in vivo P-glycoprotein-mediated brain efflux using mdr1a-deficient rats and mice. Drug Metab Dispos 40(3):461–466

    Article  CAS  PubMed  Google Scholar 

  • Bundgaard C, Sveigaard C, Brennum LT, Stensbol TB (2012b) Associating in vitro target binding and in vivo CNS occupancy of serotonin reuptake inhibitors in rats: the role of free drug concentrations. Xenobiotica 42(3):256–265

    Article  PubMed  CAS  Google Scholar 

  • Butlen-Ducuing F, Petavy F, Guizzaro L, Zienowicz M, Haas M, Alteri E, Salmonson T, Corruble E (2016) Regulatory watch: Challenges in drug development for central nervous system disorders: a European Medicines Agency perspective. Nat Rev Drug Discov 15(12):813–814

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Loryan I, Payan M, Keep RF, Smith DE, Hammarlund-Udenaes M (2014) Effect of transporter inhibition on the distribution of cefadroxil in rat brain. Fluids Barriers CNS 11(1):25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chesney MA, Perouansky M, Pearce RA (2003) Differential uptake of volatile agents into brain tissue in vitro. Measurement and application of a diffusion model to determine concentration profiles in brain slices. Anesthesiology 99(1):122–130

    Article  CAS  PubMed  Google Scholar 

  • Collingridge GL (1995) The brain slice preparation: a tribute to the pioneer Henry McIlwain. J Neurosci Methods 59(1):5–9

    Article  CAS  PubMed  Google Scholar 

  • Cserr HF, Patlak, C.S. (1992) Secretion and bulk flow of interstitial fluid. In: Bradbury, MWB (Ed), Physiology and Pharmacology of the Blood-Brain Barrier Springer, Berlin:245-261

    Google Scholar 

  • Cummings J, Aisen PS, DuBois B, Frolich L, Jack CR Jr, Jones RW, Morris JC, Raskin J, Dowsett SA, Scheltens P (2016) Drug development in Alzheimer’s disease: the path to 2025. Alzheimers Res Ther 8:39

    Article  PubMed  PubMed Central  Google Scholar 

  • Dagenais C, Zong J, Ducharme J, Pollack GM (2001) Effect of mdr1a P-glycoprotein gene disruption, gender, and substrate concentration on brain uptake of selected compounds. Pharm Res 18(7):957–963

    Article  CAS  PubMed  Google Scholar 

  • Daniel WA (2003) Mechanisms of cellular distribution of psychotropic drugs. Significance for drug action and interactions. Prog Neuropsychopharmacol Biol Psychiatry 27(1):65–73

    Article  CAS  PubMed  Google Scholar 

  • Daniel WA, Wojcikowski J (1997) Contribution of lysosomal trapping to the total tissue uptake of psychotropic drugs. Pharmacol Toxicol 80(2):62–68

    Article  CAS  PubMed  Google Scholar 

  • Daniel WA, Wojcikowski J (1999a) Lysosomal trapping as an important mechanism involved in the cellular distribution of perazine and in pharmacokinetic interaction with antidepressants. Eur Neuropsychopharmacol 9(6):483–491

    Article  CAS  PubMed  Google Scholar 

  • Daniel WA, Wojcikowski J (1999b) The role of lysosomes in the cellular distribution of thioridazine and potential drug interactions. Toxicol Appl Pharmacol 158(2):115–124

    Article  CAS  PubMed  Google Scholar 

  • Daniel WA, Bickel MH, Honegger UE (1995) The contribution of lysosomal trapping in the uptake of desipramine and chloroquine by different tissues. Pharmacol Toxicol 77(6):402–406

    Article  CAS  PubMed  Google Scholar 

  • Daniel WA, Syrek M, Haduch A, Wojcikowski J (1998) Pharmacokinetics of phenothiazine neuroleptics after chronic coadministration of carbamazepine. Pol J Pharmacol 50(6):431–442

    CAS  PubMed  Google Scholar 

  • Daniel WA, Syrek M, Haduch A, Wojcikowski J (2000) Different effects of amitriptyline and imipramine on the pharmacokinetics and metabolism of perazine in rats. J Pharm Pharmacol 52(12):1473–1481

    Article  CAS  PubMed  Google Scholar 

  • Danon JJ, Reekie TA, Kassiou M (2019) Challenges and Opportunities in Central Nervous System Drug Discovery. Trends in Chemistry 1(6):612–624

    Article  CAS  Google Scholar 

  • Davson H, Segal, M.B. (1995) Physiology of the CSF and Blood-Brain Barriers. CRC Press, Boca Raton, USA

    Google Scholar 

  • Davson H, Hollingsworth G, Segal MB (1970) The mechanism of drainage of the cerebrospinal fluid. Brain 93(4):665–678

    Article  CAS  PubMed  Google Scholar 

  • de Boer AG, Gaillard PJ (2007) Drug targeting to the brain. Annu Rev Pharmacol Toxicol 47:323–355

    Article  PubMed  CAS  Google Scholar 

  • De Duve C (1970) The role of lysosomes in cellular pathology. Triangle 9(6):200–208

    PubMed  Google Scholar 

  • De Duve C (1971) Tissue fractionation. Past and present. J Cell Biol 50(1):20d–55d

    Article  PubMed  Google Scholar 

  • de Duve C (1975) The role of lysosomes in the pathogeny of disease. Scand J Rheumatol Suppl 12:63–66

    PubMed  Google Scholar 

  • de Lange EC (2013a) The mastermind approach to CNS drug therapy: translational prediction of human brain distribution, target site kinetics, and therapeutic effects. Fluids Barriers CNS 10(1):12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Lange EC (2013b) Utility of CSF in translational neuroscience. J Pharmacokinet Pharmacodyn

    Google Scholar 

  • de Lange EC, Danhof M (2002) Considerations in the use of cerebrospinal fluid pharmacokinetics to predict brain target concentrations in the clinical setting: implications of the barriers between blood and brain. Clin Pharmacokinet 41(10):691–703

    Article  PubMed  Google Scholar 

  • de Lange EC, de Boer BA, Breimer DD (1999) Microdialysis for pharmacokinetic analysis of drug transport to the brain. Adv Drug Deliv Rev 36(2–3):211–227

    Article  PubMed  Google Scholar 

  • de Lange EC, Ravenstijn PG, Groenendaal D, van Steeg TJ (2005) Toward the prediction of CNS drug-effect profiles in physiological and pathological conditions using microdialysis and mechanism-based pharmacokinetic-pharmacodynamic modeling. AAPS J 7(3):E532–E543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Demeule M, Regina A, Jodoin J, Laplante A, Dagenais C, Berthelet F, Moghrabi A, Beliveau R (2002) Drug transport to the brain: key roles for the efflux pump P-glycoprotein in the blood-brain barrier. Vascul Pharmacol 38(6):339–348

    Article  CAS  PubMed  Google Scholar 

  • Deo AK, Theil FP, Nicolas JM (2013) Confounding Parameters in Preclinical Assessment of Blood-Brain Barrier Permeation: An Overview With Emphasis on Species Differences and Effect of Disease States. Mol Pharm

    Google Scholar 

  • Di L, Umland JP, Chang G, Huang Y, Lin Z, Scott DO, Troutman MD, Liston TE (2011) Species independence in brain tissue binding using brain homogenates. Drug Metab Dispos 39(7):1270–1277

    Article  CAS  PubMed  Google Scholar 

  • Di L, Rong H, Feng B (2012a) Demystifying Brain Penetration in Central Nervous System Drug Discovery. J Med Chem

    Google Scholar 

  • Di L, Umland JP, Trapa PE, Maurer TS (2012b) Impact of recovery on fraction unbound using equilibrium dialysis. J Pharm Sci 101(3):1327–1335

    Article  CAS  PubMed  Google Scholar 

  • Doran A, Obach RS, Smith BJ, Hosea NA, Becker S, Callegari E, Chen C, Chen X, Choo E, Cianfrogna J, Cox LM, Gibbs JP, Gibbs MA, Hatch H, Hop CE, Kasman IN, Laperle J, Liu J, Liu X, Logman M, Maclin D, Nedza FM, Nelson F, Olson E, Rahematpura S, Raunig D, Rogers S, Schmidt K, Spracklin DK, Szewc M, Troutman M, Tseng E, Tu M, Van Deusen JW, Venkatakrishnan K, Walens G, Wang EQ, Wong D, Yasgar AS, Zhang C (2005) The impact of P-glycoprotein on the disposition of drugs targeted for indications of the central nervous system: evaluation using the MDR1A/1B knockout mouse model. Drug Metab Dispos 33(1):165–174

    Article  CAS  PubMed  Google Scholar 

  • Doran AC, Osgood SM, Mancuso JY, Shaffer CL (2012) An Evaluation of Using Rat-derived Single-dose Neuropharmacokinetic Parameters to Project Accurately Large Animal Unbound Brain Drug Concentrations. Drug Metab Dispos

    Google Scholar 

  • Dos-Anjos S, Martinez-Villayandre B, Montori S, Salas A, Perez-Garcia CC, Fernandez-Lopez A (2008) Quantitative gene expression analysis in a brain slice model: influence of temperature and incubation media. Anal Biochem 378(1):99–101

    Article  CAS  PubMed  Google Scholar 

  • Duvvuri M, Krise JP (2005) A novel assay reveals that weakly basic model compounds concentrate in lysosomes to an extent greater than pH-partitioning theory would predict. Mol Pharm 2(6):440–448

    Article  CAS  PubMed  Google Scholar 

  • Eaton WW, Martins SS, Nestadt G, Bienvenu OJ, Clarke D, Alexandre P (2008) The burden of mental disorders. Epidemiol Rev 30:1–14

    Article  PubMed  Google Scholar 

  • Elebring T, Gill A, Plowright AT (2012) What is the most important approach in current drug discovery: doing the right things or doing things right? Drug Discov Today 17(21–22):1166–1169

    Article  PubMed  Google Scholar 

  • Elmquist WF, Sawchuk RJ (1997) Application of microdialysis in pharmacokinetic studies. Pharm Res 14(3):267–288

    Article  CAS  PubMed  Google Scholar 

  • Elmquist WF, Sawchuk RJ (2000) Use of microdialysis in drug delivery studies. Adv Drug Deliv Rev 45(2–3):123–124

    Article  CAS  PubMed  Google Scholar 

  • Farrington GK, Caram-Salas N, Haqqani AS, Brunette E, Eldredge J, Pepinsky B, Antognetti G, Baumann E, Ding W, Garber E, Jiang S, Delaney C, Boileau E, Sisk WP, Stanimirovic DB (2014) A novel platform for engineering blood-brain barrier-crossing bispecific biologics. FASEB J 28(11):4764–4778

    Article  CAS  PubMed  Google Scholar 

  • Fenstermacher JD (1992) The blood-brain barrier is not a “barrier” for many drugs. NIDA Res Monogr 120:108–120

    CAS  PubMed  Google Scholar 

  • Fenstermacher J, Kaye T (1988) Drug Diffusion within the Brain. Ann Ny Acad Sci 531:29–39

    Article  CAS  PubMed  Google Scholar 

  • Fichtl B, Von Nieciecki A, Walter K (1991a) Tissue binding versus plasma binding of drugs: general principles and pharmacokinetic consequences. In: Testa B, advances in drug research, vol 20. Academic Press, pp 117–166

    Google Scholar 

  • Fichtl B, Von Nieciecki A, Walter K (1991b) ChemInform abstract: tissue binding versus plasma binding of drugs: general principles and pharmacokinetic consequences. ChemInform 22

    Google Scholar 

  • Freitas RA (1999) Nanomedicine, volume I: basic capabilities

    Google Scholar 

  • Freskgard PO, Urich E (2017) Antibody therapies in CNS diseases. Neuropharmacology 120:38–55

    Article  CAS  PubMed  Google Scholar 

  • Friden M, Gupta A, Antonsson M, Bredberg U, Hammarlund-Udenaes M (2007) In vitro methods for estimating unbound drug concentrations in the brain interstitial and intracellular fluids. Drug Metab Dispos 35(9):1711–1719

    Article  CAS  PubMed  Google Scholar 

  • Friden M, Ducrozet F, Middleton B, Antonsson M, Bredberg U, Hammarlund-Udenaes M (2009a) Development of a high-throughput brain slice method for studying drug distribution in the central nervous system. Drug Metab Dispos 37(6):1226–1233

    Article  CAS  PubMed  Google Scholar 

  • Friden M, Winiwarter S, Jerndal G, Bengtsson O, Wan H, Bredberg U, Hammarlund-Udenaes M, Antonsson M (2009b) Structure-brain exposure relationships in rat and human using a novel data set of unbound drug concentrations in brain interstitial and cerebrospinal fluids. J Med Chem 52(20):6233–6243

    Article  CAS  PubMed  Google Scholar 

  • Friden M, Ljungqvist H, Middleton B, Bredberg U, Hammarlund-Udenaes M (2010) Improved measurement of drug exposure in the brain using drug-specific correction for residual blood. J Cereb Blood Flow Metab 30(1):150–161

    Article  CAS  PubMed  Google Scholar 

  • Friden M, Bergstrom F, Wan H, Rehngren M, Ahlin G, Hammarlund-Udenaes M, Bredberg U (2011) Measurement of unbound drug exposure in brain: modeling of pH partitioning explains diverging results between the brain slice and brain homogenate methods. Drug Metab Dispos 39(3):353–362

    Article  CAS  PubMed  Google Scholar 

  • Friden M, Wennerberg M, Antonsson M, Sandberg-Stall M, Farde L, Schou M (2014) Identification of positron emission tomography (PET) tracer candidates by prediction of the target-bound fraction in the brain. EJNMMI Res 4(1):50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fung EN, Chen YH, Lau YY (2003) Semi-automatic high-throughput determination of plasma protein binding using a 96-well plate filtrate assembly and fast liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 795(2):187–194

    Article  CAS  PubMed  Google Scholar 

  • Gaillard PJ, de Boer AG (2000) Relationship between permeability status of the blood-brain barrier and in vitro permeability coefficient of a drug. Eur J Pharm Sci 12(2):95–102

    Article  CAS  PubMed  Google Scholar 

  • Gaillard PJ, Visser CC, Appeldoorn CC, Rip J (2012) Targeted Blood-to-Brain Drug Delivery - 10 Key Development Criteria. Curr Pharm Biotechnol 13(12):2328–2339

    Article  CAS  PubMed  Google Scholar 

  • Garberg P, Ball M, Borg N, Cecchelli R, Fenart L, Hurst RD, Lindmark T, Mabondzo A, Nilsson JE, Raub TJ, Stanimirovic D, Terasaki T, Oberg JO, Osterberg T (2005) In vitro models for the blood-brain barrier. Toxicol In Vitro 19(3):299–334

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Garcia E, Andrieux K, Gil S, Couvreur P (2005) Colloidal carriers and blood-brain barrier (BBB) translocation: a way to deliver drugs to the brain? Int J Pharm 298(2):274–292

    Article  CAS  PubMed  Google Scholar 

  • Ghose AK, Viswanadhan VN, Wendoloski JJ (1999) A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem 1(1):55–68

    Article  CAS  PubMed  Google Scholar 

  • Ghose AK, Herbertz T, Hudkins RL, Dorsey BD, Mallamo JP (2012) Knowledge-Based, Central Nervous System (CNS) Lead Selection and Lead Optimization for CNS Drug Discovery. ACS Chem Neurosci 3(1):50–68

    Article  CAS  PubMed  Google Scholar 

  • Gibaldi M (1969) Effect of mode of administration on drug distribution in a two-compartment open system. J Pharm Sci 58(3):327–331

    Article  CAS  PubMed  Google Scholar 

  • Glees P, Voth D (1988) Clinical and ultrastructural observations of maturing human frontal cortex. Part I (Biopsy material of hydrocephalic infants). Neurosurg Rev 11(3–4):273–278

    Article  CAS  PubMed  Google Scholar 

  • Gredell JA, Turnquist PA, Maciver MB, Pearce RA (2004) Determination of diffusion and partition coefficients of propofol in rat brain tissue: implications for studies of drug action in vitro. Br J Anaesth 93(6):810–817

    Article  CAS  PubMed  Google Scholar 

  • Gunn RN, Summerfield SG, Salinas CA, Read KD, Guo Q, Searle GE, Parker CA, Jeffrey P, Laruelle M (2012) Combining PET biodistribution and equilibrium dialysis assays to assess the free brain concentration and BBB transport of CNS drugs. J Cereb Blood Flow Metab

    Google Scholar 

  • Gupta A, Chatelain P, Massingham R, Jonsson EN, Hammarlund-Udenaes M (2006) Brain distribution of cetirizine enantiomers: comparison of three different tissue-to-plasma partition coefficients: K(p), K(p,u), and K(p,uu). Drug Metab Dispos 34 (2):318-323

    Google Scholar 

  • Gustafsson S, Eriksson J, Syvanen S, Eriksson O, Hammarlund-Udenaes M, Antoni G (2017) Combined PET and microdialysis for in vivo estimation of drug blood-brain barrier transport and brain unbound concentrations. Neuroimage 155:177–186

    Article  CAS  PubMed  Google Scholar 

  • Gustafsson S, Sehlin D, Lampa E, Hammarlund-Udenaes M, Loryan I (2019) Heterogeneous drug tissue binding in brain regions of rats, Alzheimer’s patients and controls: impact on translational drug development. Sci Rep 9(1):5308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hammarlund-Udenaes M (2010) Active-site concentrations of chemicals - are they a better predictor of effect than plasma/organ/tissue concentrations? Basic Clin Pharmacol Toxicol 106(3):215–220

    Article  CAS  PubMed  Google Scholar 

  • Hammarlund-Udenaes M (2017) Microdialysis as an Important Technique in Systems Pharmacology-a Historical and Methodological Review. AAPS J 19(5):1294–1303

    Article  CAS  PubMed  Google Scholar 

  • Hammarlund-Udenaes M, Paalzow LK, de Lange EC (1997) Drug equilibration across the blood-brain barrier--pharmacokinetic considerations based on the microdialysis method. Pharm Res 14 (2):128-134

    Google Scholar 

  • Hammarlund-Udenaes M, Friden M, Syvanen S, Gupta A (2008) On the rate and extent of drug delivery to the brain. Pharm Res 25(8):1737–1750

    Article  CAS  PubMed  Google Scholar 

  • Hammarlund-Udenaes M, Bredberg U, Friden M (2009) Methodologies to assess brain drug delivery in lead optimization. Curr Top Med Chem 9(2):148–162

    Article  CAS  PubMed  Google Scholar 

  • Harashima H, Sugiyama Y, Sawada Y, Iga T, Hanano M (1984) Comparison between in-vivo and in-vitro tissue-to-plasma unbound concentration ratios (Kp,f) of quinidine in rats. J Pharm Pharmacol 36 (5):340-342

    Google Scholar 

  • He X, Huang Y, Li B, Gong CX, Schuchman EH (2010) Deregulation of sphingolipid metabolism in Alzheimer’s disease. Neurobiol Aging 31(3):398–408

    Article  CAS  PubMed  Google Scholar 

  • Hitchcock SA, Pennington LD (2006) Structure-brain exposure relationships. J Med Chem 49(26):7559–7583

    Article  CAS  PubMed  Google Scholar 

  • Huang JD (1983) Errors in estimating the unbound fraction of drugs due to the volume shift in equilibrium dialysis. J Pharm Sci 72(11):1368–1369

    Article  CAS  PubMed  Google Scholar 

  • Huwyler J, Wu D, Pardridge WM (1996) Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci U S A 93(24):14164–14169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffrey P, Summerfield SG (2007) Challenges for blood-brain barrier (BBB) screening. Xenobiotica 37(10–11):1135–1151

    Article  CAS  PubMed  Google Scholar 

  • Kaitin KI, DiMasi JA (2011) Pharmaceutical innovation in the 21st century: new drug approvals in the first decade, 2000-2009. Clin Pharmacol Ther 89(2):183–188

    Article  CAS  PubMed  Google Scholar 

  • Kakee A, Terasaki T, Sugiyama Y (1996) Brain efflux index as a novel method of analyzing efflux transport at the blood-brain barrier. J Pharmacol Exp Ther 277(3):1550–1559

    CAS  PubMed  Google Scholar 

  • Kakee A, Terasaki T, Sugiyama Y (1997) Selective brain to blood efflux transport of para-aminohippuric acid across the blood-brain barrier: in vivo evidence by use of the brain efflux index method. J Pharmacol Exp Ther 283(3):1018–1025

    CAS  PubMed  Google Scholar 

  • Kalvass JC, Maurer TS (2002) Influence of nonspecific brain and plasma binding on CNS exposure: implications for rational drug discovery. Biopharm Drug Dispos 23(8):327–338

    Article  CAS  PubMed  Google Scholar 

  • Kalvass JC, Maurer TS, Pollack GM (2007a) Use of plasma and brain unbound fractions to assess the extent of brain distribution of 34 drugs: comparison of unbound concentration ratios to in vivo p-glycoprotein efflux ratios. Drug Metab Dispos 35(4):660–666

    Article  CAS  PubMed  Google Scholar 

  • Kalvass JC, Olson ER, Cassidy MP, Selley DE, Pollack GM (2007b) Pharmacokinetics and pharmacodynamics of seven opioids in P-glycoprotein-competent mice: assessment of unbound brain EC50,u and correlation of in vitro, preclinical, and clinical data. J Pharmacol Exp Ther 323(1):346–355

    Article  CAS  PubMed  Google Scholar 

  • Kariv I, Cao H, Oldenburg KR (2001) Development of a high throughput equilibrium dialysis method. J Pharm Sci 90(5):580–587

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann AM, Krise JP (2007) Lysosomal sequestration of amine-containing drugs: analysis and therapeutic implications. J Pharm Sci 96(4):729–746

    Article  CAS  PubMed  Google Scholar 

  • Kell DB, Dobson PD, Oliver SG (2011) Pharmaceutical drug transport: the issues and the implications that it is essentially carrier-mediated only. Drug Discov Today 16(15–16):704–714

    Article  CAS  PubMed  Google Scholar 

  • Kell DB, Dobson PD, Bilsland E, Oliver SG (2013) The promiscuous binding of pharmaceutical drugs and their transporter-mediated uptake into cells: what we (need to) know and how we can do so. Drug Discov Today 18(5–6):218–239

    Article  CAS  PubMed  Google Scholar 

  • Kelly J (2009) Principles of CNS Drug Development: From Test Tube to Clinic and Beyond.

    Google Scholar 

  • Ketharanathan N, Yamamoto Y, Rohlwink UK, Wildschut ED, Mathot RAA, de Lange ECM, de Wildt SN, Argent AC, Tibboel D, Figaji AA (2019) Combining Brain Microdialysis and Translational Pharmacokinetic Modeling to Predict Drug Concentrations in Pediatric Severe Traumatic Brain Injury: The Next Step Toward Evidence-Based Pharmacotherapy? J Neurotrauma 36(1):111–117

    Article  PubMed  Google Scholar 

  • Kielbasa W, Stratford RE Jr (2012) Exploratory translational modeling approach in drug development to predict human brain pharmacokinetics and pharmacologically relevant clinical doses. Drug Metab Dispos 40(5):877–883

    Article  CAS  PubMed  Google Scholar 

  • Kitamura A, Okura T, Higuchi K, Deguchi Y (2016) Cocktail-Dosing Microdialysis Study to Simultaneously Assess Delivery of Multiple Organic-Cationic Drugs to the Brain. J Pharm Sci 105(2):935–940

    Article  CAS  PubMed  Google Scholar 

  • Klotz IM (1973) Physiochemical aspects of drug-protein interactions: a general perspective. Ann N Y Acad Sci 226:18–35

    Article  CAS  PubMed  Google Scholar 

  • Kodaira H, Kusuhara H, Fujita T, Ushiki J, Fuse E, Sugiyama Y (2011) Quantitative evaluation of the impact of active efflux by p-glycoprotein and breast cancer resistance protein at the blood-brain barrier on the predictability of the unbound concentrations of drugs in the brain using cerebrospinal fluid concentration as a surrogate. J Pharmacol Exp Ther 339(3):935–944

    Article  CAS  PubMed  Google Scholar 

  • Kornhuber J, Muehlbacher M, Trapp S, Pechmann S, Friedl A, Reichel M, Muhle C, Terfloth L, Groemer TW, Spitzer GM, Liedl KR, Gulbins E, Tripal P (2011) Identification of novel functional inhibitors of acid sphingomyelinase. PLoS One 6(8):e23852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurz H, Fichtl B (1983) Binding of drugs to tissues. Drug Metab Rev 14(3):467–510

    Article  CAS  PubMed  Google Scholar 

  • Kusuhara H, Sugiyama Y (2002) Role of transporters in the tissue-selective distribution and elimination of drugs: transporters in the liver, small intestine, brain and kidney. J Control Release 78(1–3):43–54

    Article  CAS  PubMed  Google Scholar 

  • Lee G, Dallas S, Hong M, Bendayan R (2001a) Drug transporters in the central nervous system: brain barriers and brain parenchyma considerations. Pharmacol Rev 53(4):569–596

    Article  CAS  PubMed  Google Scholar 

  • Lee G, Schlichter L, Bendayan M, Bendayan R (2001b) Functional expression of P-glycoprotein in rat brain microglia. J Pharmacol Exp Ther 299(1):204–212

    CAS  PubMed  Google Scholar 

  • Li JY, Sugimura K, Boado RJ, Lee HJ, Zhang C, Duebel S, Pardridge WM (1999) Genetically engineered brain drug delivery vectors: cloning, expression and in vivo application of an anti-transferrin receptor single chain antibody-streptavidin fusion gene and protein. Protein Eng 12(9):787–796

    Article  CAS  PubMed  Google Scholar 

  • Lin JH (2004) How significant is the role of P-glycoprotein in drug absorption and brain uptake? Drugs Today (Barc) 40(1):5–22

    Article  CAS  Google Scholar 

  • Lin JH (2008) CSF as a surrogate for assessing CNS exposure: an industrial perspective. Curr Drug Metab 9(1):46–59

    Article  CAS  PubMed  Google Scholar 

  • Lin TH, Lin JH (1990) Effects of protein binding and experimental disease states on brain uptake of benzodiazepines in rats. J Pharmacol Exp Ther 253(1):45–50

    Article  CAS  PubMed  Google Scholar 

  • Lin JH, Sugiyama Y, Awazu S, Hanano M (1982) In vitro and in vivo evaluation of the tissue-to-blood partition coefficient for physiological pharmacokinetic models. J Pharmacokinet Biopharm 10(6):637–647

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Smith BJ, Chen C, Callegari E, Becker SL, Chen X, Cianfrogna J, Doran AC, Doran SD, Gibbs JP, Hosea N, Liu J, Nelson FR, Szewc MA, Van Deusen J (2005) Use of a physiologically based pharmacokinetic model to study the time to reach brain equilibrium: an experimental analysis of the role of blood-brain barrier permeability, plasma protein binding, and brain tissue binding. J Pharmacol Exp Ther 313(3):1254–1262

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Smith BJ, Chen C, Callegari E, Becker SL, Chen X, Cianfrogna J, Doran AC, Doran SD, Gibbs JP, Hosea N, Liu J, Nelson FR, Szewc MA, Van Deusen J (2006) Evaluation of cerebrospinal fluid concentration and plasma free concentration as a surrogate measurement for brain free concentration. Drug Metab Dispos 34(9):1443–1447

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Chen C, Smith BJ (2008) Progress in brain penetration evaluation in drug discovery and development. J Pharmacol Exp Ther 325(2):349–356

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Van Natta K, Yeo H, Vilenski O, Weller PE, Worboys PD, Monshouwer M (2009a) Unbound drug concentration in brain homogenate and cerebral spinal fluid at steady state as a surrogate for unbound concentration in brain interstitial fluid. Drug Metab Dispos 37(4):787–793

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Vilenski O, Kwan J, Apparsundaram S, Weikert R (2009b) Unbound brain concentration determines receptor occupancy: a correlation of drug concentration and brain serotonin and dopamine reuptake transporter occupancy for eighteen compounds in rats. Drug Metab Dispos 37(7):1548–1556

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Ding X, Deshmukh G, Liederer BM, Hop CE (2012) Use of Cassette Dosing Approach to Assess Brain Penetration in Drug Discovery. Drug Metab Dispos

    Google Scholar 

  • Lloyd JB (2000) Lysosome membrane permeability: implications for drug delivery. Adv Drug Deliv Rev 41(2):189–200

    Article  CAS  PubMed  Google Scholar 

  • Logan R, Funk RS, Axcell E, Krise JP (2012) Drug-drug interactions involving lysosomes: mechanisms and potential clinical implications. Expert Opin Drug Metab Toxicol 8(8):943–958

    Article  CAS  PubMed  Google Scholar 

  • Longhi R, Corbioli S, Fontana S, Vinco F, Braggio S, Helmdach L, Schiller J, Boriss H (2011) Brain tissue binding of drugs: evaluation and validation of solid supported porcine brain membrane vesicles (TRANSIL) as a novel high-throughput method. Drug Metab Dispos 39(2):312–321

    Article  CAS  PubMed  Google Scholar 

  • Loryan I, Friden M, Hammarlund-Udenaes M (2013) The brain slice method for studying drug distribution in the CNS. Fluids Barriers CNS 10(1):6

    Article  PubMed  PubMed Central  Google Scholar 

  • Loryan I, Sinha V, Mackie C, Van Peer A, Drinkenburg W, Vermeulen A, Morrison D, Monshouwer M, Heald D, Hammarlund-Udenaes M (2014) Mechanistic understanding of brain drug disposition to optimize the selection of potential neurotherapeutics in drug discovery. Pharm Res 31(8):2203–2219

    Article  CAS  PubMed  Google Scholar 

  • Loryan I, Sinha V, Mackie C, Van Peer A, Drinkenburg WH, Vermeulen A, Heald D, Hammarlund-Udenaes M, Wassvik CM (2015) Molecular properties determining unbound intracellular and extracellular brain exposure of CNS drug candidates. Mol Pharm 12(2):520–532

    Article  CAS  PubMed  Google Scholar 

  • Loryan I, Melander E, Svensson M, Payan M, Konig F, Jansson B, Hammarlund-Udenaes M (2016) In-depth neuropharmacokinetic analysis of antipsychotics based on a novel approach to estimate unbound target-site concentration in CNS regions: link to spatial receptor occupancy. Mol Psychiatry 21(11):1527–1536

    Article  CAS  PubMed  Google Scholar 

  • Loryan I, Hoppe E, Hansen K, Held F, Kless A, Linz K, Marossek V, Nolte B, Ratcliffe P, Saunders D, Terlinden R, Wegert A, Welbers A, Will O, Hammarlund-Udenaes M (2017) Quantitative Assessment of Drug Delivery to Tissues and Association with Phospholipidosis: A Case Study with Two Structurally Related Diamines in Development. Mol Pharm 14(12):4362–4373

    Article  CAS  PubMed  Google Scholar 

  • MacIntyre AC, Cutler DJ (1988) The potential role of lysosomes in tissue distribution of weak bases. Biopharm Drug Dispos 9(6):513–526

    Article  CAS  PubMed  Google Scholar 

  • Manitpisitkul P, White RE (2004) Whatever happened to cassette-dosing pharmacokinetics? Drug Discov Today 9(15):652–658

    Article  CAS  PubMed  Google Scholar 

  • Mano Y, Higuchi S, Kamimura H (2002) Investigation of the high partition of YM992, a novel antidepressant, in rat brain - in vitro and in vivo evidence for the high binding in brain and the high permeability at the BBB. Biopharm Drug Dispos 23(9):351–360

    Article  CAS  PubMed  Google Scholar 

  • Maurer TS, Debartolo DB, Tess DA, Scott DO (2005) Relationship between exposure and nonspecific binding of thirty-three central nervous system drugs in mice. Drug Metab Dispos 33(1):175–181

    Article  CAS  PubMed  Google Scholar 

  • McIlwain H (1951a) Glutamic acid and glucose as substrates for mammalian brain. J Ment Sci 97(409):674–680

    Article  CAS  PubMed  Google Scholar 

  • McIlwain H (1951b) Metabolic response in vitro to electrical stimulation of sections of mammalian brain. Biochem J 48(4):lvi

    CAS  PubMed  Google Scholar 

  • Mehta D, Jackson R, Paul G, Shi J, Sabbagh M (2017) Why do trials for Alzheimer’s disease drugs keep failing? A discontinued drug perspective for 2010-2015. Expert Opinion on Investigational Drugs 26(6):735–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuno N, Niwa T, Yotsumoto Y, Sugiyama Y (2003) Impact of drug transporter studies on drug discovery and development. Pharmacol Rev 55(3):425–461

    Article  CAS  PubMed  Google Scholar 

  • Muehlbacher M, Tripal P, Roas F, Kornhuber J (2012) Identification of Drugs Inducing Phospholipidosis by Novel in vitro Data. ChemMedChem

    Google Scholar 

  • Nadanaciva S, Lu S, Gebhard DF, Jessen BA, Pennie WD, Will Y (2011) A high content screening assay for identifying lysosomotropic compounds. Toxicol In Vitro 25(3):715–723

    Article  CAS  PubMed  Google Scholar 

  • Ndengele MM, Cuzzocrea S, Masini E, Vinci MC, Esposito E, Muscoli C, Petrusca DN, Mollace V, Mazzon E, Li D, Petrache I, Matuschak GM, Salvemini D (2009) Spinal ceramide modulates the development of morphine antinociceptive tolerance via peroxynitrite-mediated nitroxidative stress and neuroimmune activation. J Pharmacol Exp Ther 329(1):64–75

    Article  CAS  PubMed  Google Scholar 

  • Neuwelt E, Abbott NJ, Abrey L, Banks WA, Blakley B, Davis T, Engelhardt B, Grammas P, Nedergaard M, Nutt J, Pardridge W, Rosenberg GA, Smith Q, Drewes LR (2008) Strategies to advance translational research into brain barriers. Lancet Neurol 7(1):84–96

    Article  CAS  PubMed  Google Scholar 

  • Newman GC, Hospod FE, Patlak CS (1988a) Brain slice glucose utilization. J Neurochem 51(6):1783–1796

    Article  CAS  PubMed  Google Scholar 

  • Newman GC, Hospod FE, Wu P (1988b) Thick brain slices model the ischemic penumbra. J Cereb Blood Flow Metab 8(4):586–597

    Article  CAS  PubMed  Google Scholar 

  • Newman GC, Hospod FE, Schissel SL (1991) Ischemic brain slice glucose utilization: effects of slice thickness, acidosis, and K+. J Cereb Blood Flow Metab 11(3):398–406

    Article  CAS  PubMed  Google Scholar 

  • Nicholson C, Sykova E (1998) Extracellular space structure revealed by diffusion analysis. Trends Neurosci 21(5):207–215

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuki S, Takizawa T, Takanaga H, Hori S, Hosoya K, Terasaki T (2004) Localization of organic anion transporting polypeptide 3 (oatp3) in mouse brain parenchymal and capillary endothelial cells. J Neurochem 90(3):743–749

    Article  CAS  PubMed  Google Scholar 

  • Ooie T, Terasaki T, Suzuki H, Sugiyama Y (1997) Quantitative brain microdialysis study on the mechanism of quinolones distribution in the central nervous system. Drug Metab Dispos 25(7):784–789

    CAS  PubMed  Google Scholar 

  • Padowski JM, Pollack GM (2011a) The influence of distributional kinetics into a peripheral compartment on the pharmacokinetics of substrate partitioning between blood and brain tissue. J Pharmacokinet Pharmacodyn 38(6):743–767

    Article  CAS  PubMed  Google Scholar 

  • Padowski JM, Pollack GM (2011b) Influence of time to achieve substrate distribution equilibrium between brain tissue and blood on quantitation of the blood-brain barrier P-glycoprotein effect. Brain Res 1426:1–17

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM (1989) Strategies for drug delivery through the blood-brain barrier. Neurobiol Aging 10(5):636–637. discussion 648–650

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM (1997) Drug delivery to the brain. J Cereb Blood Flow Metab 17(7):713–731

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM (2006) Molecular Trojan horses for blood-brain barrier drug delivery. Curr Opin Pharmacol 6(5):494–500

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM, Boado RJ, Black KL, Cancilla PA (1992) Blood-brain barrier and new approaches to brain drug delivery. West J Med 156(3):281–286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patlak CS, Hospod FE, Trowbridge SD, Newman GC (1998) Diffusion of radiotracers in normal and ischemic brain slices. J Cereb Blood Flow Metab 18(7):776–802

    Article  CAS  PubMed  Google Scholar 

  • Plise EG, Tran D, Salphati L (2010) Semi-automated protein binding methodology using equilibrium dialysis and a novel mixed-matrix cassette approach. J Pharm Sci 99(12):5070–5078

    Article  CAS  PubMed  Google Scholar 

  • Puris E, Gynther M, de Lange ECM, Auriola S, Hammarlund-Udenaes M, Huttunen KM, Loryan I (2019) Mechanistic study on the use of the l-type amino acid transporter 1 for brain intracellular delivery of ketoprofen via prodrug: a novel approach supporting the development of prodrugs for intracellular targets. Mol Pharm 16(7):3261–3274

    Article  CAS  PubMed  Google Scholar 

  • Raub TJ, Lutzke BS, Andrus PK, Sawada GA, Staton BA (2006) Early preclinical evaluation of brain exposure in support of hit identification and lead optimization. In: Borchardt RT, Middagh CR (eds) Optimization of drug-like properties during lead optimization, Biotechnology: pharmaceutical aspects series. Am Assoc Pharm Sci Press, Arlington

    Google Scholar 

  • Read KD, Braggio S (2010) Assessing brain free fraction in early drug discovery. Expert Opin Drug Metab Toxicol 6(3):337–344

    Article  CAS  PubMed  Google Scholar 

  • Reichel A (2006) The role of blood-brain barrier studies in the pharmaceutical industry. Curr Drug Metab 7(2):183–203

    Article  CAS  PubMed  Google Scholar 

  • Reichel A (2009) Addressing central nervous system (CNS) penetration in drug discovery: basics and implications of the evolving new concept. Chem Biodivers 6(11):2030–2049

    Article  CAS  PubMed  Google Scholar 

  • Reichel A, Begley D, Abbott N (2003) An overview of in vitro techniques for blood-brain barrier studies. In: Nag S, Methods in molecular medicine The blood-brain barrier: biology and research tools, Humana Press Inc, Totowa Volume 89

    Google Scholar 

  • Rice ME (1999) Use of ascorbate in the preparation and maintenance of brain slices. Methods 18(2):144–149

    Article  CAS  PubMed  Google Scholar 

  • Rodgers T, Jones HM, Rowland M (2012) Tissue lipids and drug distribution: dog versus rat. J Pharm Sci 101(12):4615–4626

    Article  CAS  PubMed  Google Scholar 

  • Romer J, Bickel MH (1979) A method to estimate binding constants at variable protein concentrations. J Pharm Pharmacol 31(1):7–11

    Article  CAS  PubMed  Google Scholar 

  • Rouser G, Simon G, Kritchevsky G (1969) Species variations in phospholipid class distribution of organs. I. Kidney, liver and spleen. Lipids 4(6):599–606

    Article  CAS  PubMed  Google Scholar 

  • Sargent DF, Schwyzer R (1986) Membrane lipid phase as catalyst for peptide-receptor interactions. Proc Natl Acad Sci U S A 83(16):5774–5778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sargent DF, Bean JW, Schwyzer R (1988) Conformation and orientation of regulatory peptides on lipid membranes. Key to the molecular mechanism of receptor selection. Biophys Chem 31(1–2):183–193

    Article  CAS  PubMed  Google Scholar 

  • Sawada Y, Hanano M, Sugiyama Y, Harashima H, Iga T (1984) Prediction of the volumes of distribution of basic drugs in humans based on data from animals. J Pharmacokinet Biopharm 12(6):587–596

    Article  CAS  PubMed  Google Scholar 

  • Scherrmann JM (2002) Drug delivery to brain via the blood-brain barrier. Vascul Pharmacol 38(6):349–354

    Article  CAS  PubMed  Google Scholar 

  • Schoepp DD (2011) Where will new neuroscience therapies come from? Nat Rev Drug Discov 10(10):715–716

    Article  CAS  PubMed  Google Scholar 

  • Schou M, Varnäs K, Lundquist S, Nakao R, Amini N, Takano A, Finnema SJ, Halldin C, Farde L (2015) Large variation in brain exposure of reference CNS drugs: a PET study in nonhuman primates. Int J Neuropsychopharmacol 18(10):pyv036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schultz ML, Tecedor L, Chang M, Davidson BL (2011) Clarifying lysosomal storage diseases. Trends Neurosci 34(8):401–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwab ME, Buchli AD (2012) Drug research: plug the real brain drain. Nature 483(7389):267–268

    Article  CAS  PubMed  Google Scholar 

  • Schwarz E, Prabakaran S, Whitfield P, Major H, Leweke FM, Koethe D, McKenna P, Bahn S (2008) High throughput lipidomic profiling of schizophrenia and bipolar disorder brain tissue reveals alterations of free fatty acids, phosphatidylcholines, and ceramides. J Proteome Res 7(10):4266–4277

    Article  CAS  PubMed  Google Scholar 

  • Segall MD (2012) Multi-parameter optimization: identifying high quality compounds with a balance of properties. Curr Pharm Des 18(9):1292–1310

    Article  CAS  PubMed  Google Scholar 

  • Shaffer CL (2010) Defining Neuropharmacokinetic Parameters in CNS Drug Discovery to Determine Cross-species Pharmacologic Exposure-Response Relationships. Annu Rep Med Chem 45:55–70

    CAS  Google Scholar 

  • Shen DD, Artru AA, Adkison KK (2004) Principles and applicability of CSF sampling for the assessment of CNS drug delivery and pharmacodynamics. Adv Drug Deliv Rev 56(12):1825–1857

    Article  CAS  PubMed  Google Scholar 

  • Simon G, Rouser G (1969) Species variations in phospholipid class distribution of organs. II. Heart and skeletal muscle. Lipids 4(6):607–614

    CAS  PubMed  Google Scholar 

  • Smith QR (1991) The blood-brain barrier and the regulation of amino acid uptake and availability to brain. Adv Exp Med Biol 291:55–71

    Article  CAS  PubMed  Google Scholar 

  • Smith DA, Di L, Kerns EH (2010) The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nat Rev Drug Discov 9(12):929–939

    Article  CAS  PubMed  Google Scholar 

  • Stanimirovic DB, Sandhu JK, Costain WJ (2018) Emerging Technologies for Delivery of Biotherapeutics and Gene Therapy Across the Blood-Brain Barrier. BioDrugs 32(6):547–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens J, Ploeger BA, Hammarlund-Udenaes M, Osswald G, van der Graaf PH, Danhof M, de Lange EC (2012) Mechanism-based PK-PD model for the prolactin biological system response following an acute dopamine inhibition challenge: quantitative extrapolation to humans. J Pharmacokinet Pharmacodyn 39(5):463–477

    Article  CAS  PubMed  Google Scholar 

  • Stokes CE, Murphy D, Paton JF, Kasparov S (2003) Dynamics of a transgene expression in acute rat brain slices transfected with adenoviral vectors. Exp Physiol 88(4):459–466

    Article  CAS  PubMed  Google Scholar 

  • Su TZ, Lunney E, Campbell G, Oxender DL (1995) Transport of gabapentin, a gamma-amino acid drug, by system l alpha-amino acid transporters: a comparative study in astrocytes, synaptosomes, and CHO cells. J Neurochem 64(5):2125–2131

    Article  CAS  PubMed  Google Scholar 

  • Summerfield SG, Stevens AJ, Cutler L, del Carmen OM, Hammond B, Tang SP, Hersey A, Spalding DJ, Jeffrey P (2006) Improving the in vitro prediction of in vivo central nervous system penetration: integrating permeability, P-glycoprotein efflux, and free fractions in blood and brain. J Pharmacol Exp Ther 316(3):1282–1290

    Article  CAS  PubMed  Google Scholar 

  • Summerfield SG, Read K, Begley DJ, Obradovic T, Hidalgo IJ, Coggon S, Lewis AV, Porter RA, Jeffrey P (2007) Central nervous system drug disposition: the relationship between in situ brain permeability and brain free fraction. J Pharmacol Exp Ther 322(1):205–213

    Article  CAS  PubMed  Google Scholar 

  • Sun N, Avdeef A (2011) Biorelevant pK(a) (37 degrees C) predicted from the 2D structure of the molecule and its pK(a) at 25 degrees C. J Pharm Biomed Anal 56(2):173–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sykova E, Nicholson C (2008) Diffusion in brain extracellular space. Physiol Rev 88(4):1277–1340

    Article  CAS  PubMed  Google Scholar 

  • Syvanen S, Hooker A, Rahman O, Wilking H, Blomquist G, Langstrom B, Bergstrom M, Hammarlund-Udenaes M (2008) Pharmacokinetics of P-glycoprotein inhibition in the rat blood-brain barrier. J Pharm Sci 97(12):5386–5400

    Article  CAS  PubMed  Google Scholar 

  • Syvanen S, Lindhe O, Palner M, Kornum BR, Rahman O, Langstrom B, Knudsen GM, Hammarlund-Udenaes M (2009) Species differences in blood-brain barrier transport of three positron emission tomography radioligands with emphasis on P-glycoprotein transport. Drug Metab Dispos 37(3):635–643

    Article  CAS  PubMed  Google Scholar 

  • Syvanen S, Schenke M, van den Berg DJ, Voskuyl RA, de Lange EC (2012) Alteration in P-glycoprotein functionality affects intrabrain distribution of quinidine more than brain entry-a study in rats subjected to status epilepticus by kainate. AAPS J 14(1):87–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka H, Mizojiri K (1999) Drug-protein binding and blood-brain barrier permeability. J Pharmacol Exp Ther 288(3):912–918

    CAS  PubMed  Google Scholar 

  • Terasaki T, Hosoya K (1999) The blood-brain barrier efflux transporters as a detoxifying system for the brain. Adv Drug Deliv Rev 36(2–3):195–209

    Article  CAS  PubMed  Google Scholar 

  • Terasaki T, Ohtsuki S (2005) Brain-to-blood transporters for endogenous substrates and xenobiotics at the blood-brain barrier: an overview of biology and methodology. NeuroRx 2(1):63–72

    Article  PubMed  PubMed Central  Google Scholar 

  • Thorne RG, Nicholson C (2006) In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc Natl Acad Sci U S A 103(14):5567–5572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorne RG, Emory CR, Ala TA, Frey WH 2nd (1995) Quantitative analysis of the olfactory pathway for drug delivery to the brain. Brain Res 692(1–2):278–282

    Article  CAS  PubMed  Google Scholar 

  • Thorne RG, Hrabetova S, Nicholson C (2004) Diffusion of epidermal growth factor in rat brain extracellular space measured by integrative optical imaging. J Neurophysiol 92(6):3471–3481

    Article  CAS  PubMed  Google Scholar 

  • Thorne RG, Lakkaraju A, Rodriguez-Boulan E, Nicholson C (2008) In vivo diffusion of lactoferrin in brain extracellular space is regulated by interactions with heparan sulfate. Proc Natl Acad Sci U S A 105(24):8416–8421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuji A, Terasaki T, Takabatake Y, Tenda Y, Tamai I, Yamashima T, Moritani S, Tsuruo T, Yamashita J (1992) P-glycoprotein as the drug efflux pump in primary cultured bovine brain capillary endothelial cells. Life Sci 51(18):1427–1437

    Article  CAS  PubMed  Google Scholar 

  • Tsuji A, Tamai I, Sakata A, Tenda Y, Terasaki T (1993) Restricted transport of cyclosporin A across the blood-brain barrier by a multidrug transporter. P-glycoprotein. Biochem Pharmacol 46(6):1096–1099

    Article  CAS  PubMed  Google Scholar 

  • Uchida Y, Ohtsuki S, Kamiie J, Terasaki T (2011a) Blood-brain barrier (BBB) pharmacoproteomics: reconstruction of in vivo brain distribution of 11 P-glycoprotein substrates based on the BBB transporter protein concentration, in vitro intrinsic transport activity, and unbound fraction in plasma and brain in mice. J Pharmacol Exp Ther 339(2):579–588

    Article  CAS  PubMed  Google Scholar 

  • Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, Kamiie J, Terasaki T (2011b) Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors. J Neurochem 117(2):333–345

    Article  CAS  PubMed  Google Scholar 

  • Van Eeckhaut A, Lanckmans K, Sarre S, Smolders I, Michotte Y (2009) Validation of bioanalytical LC-MS/MS assays: evaluation of matrix effects. J Chromatogr B Analyt Technol Biomed Life Sci 877(23):2198–2207

    Article  PubMed  CAS  Google Scholar 

  • van Liempd S, Morrison D, Sysmans L, Nelis P, Mortishire-Smith R (2011) Development and validation of a higher-throughput equilibrium dialysis assay for plasma protein binding. J Lab Autom 16(1):56–67

    Article  PubMed  CAS  Google Scholar 

  • Van Peer AP, Belpaire FM, Bogaert MG (1981) Binding of drugs in serum, blood cells and tissues of rabbits with experimental acute renal failure. Pharmacology 22(2):146–152

    Article  PubMed  Google Scholar 

  • Vauquelin G, Packeu A (2009) Ligands, their receptors and … plasma membranes. Mol Cell Endocrinol:311 (1-2):1-10

    Google Scholar 

  • Vauquelin G, Van Liefde I (2005) G protein-coupled receptors: a count of 1001 conformations. Fundam Clin Pharmacol 19(1):45–56

    Article  CAS  PubMed  Google Scholar 

  • Vauquelin G, Bostoen S, Vanderheyden P, Seeman P (2012) Clozapine, atypical antipsychotics, and the benefits of fast-off D(2) dopamine receptor antagonism. Naunyn Schmiedebergs Arch Pharmacol 385(4):337–372

    Article  CAS  PubMed  Google Scholar 

  • Vendel E, Rottschäfer V, de Lange ECM (2019) The need for mathematical modelling of spatial drug distribution within the brain. Fluids and barriers of the CNS 16(1):12–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Vuignier K, Schappler J, Veuthey JL, Carrupt PA, Martel S (2010) Drug-protein binding: a critical review of analytical tools. Anal Bioanal Chem 398(1):53–66

    Article  CAS  PubMed  Google Scholar 

  • Wager TT, Liras JL, Mente S, Trapa P (2012) Strategies to minimize CNS toxicity: in vitro high-throughput assays and computational modeling. Expert Opin Drug Metab Toxicol 8(5):531–542

    Article  CAS  PubMed  Google Scholar 

  • Wan H, Rehngren M, Giordanetto F, Bergstrom F, Tunek A (2007) High-throughput screening of drug-brain tissue binding and in silico prediction for assessment of central nervous system drug delivery. J Med Chem 50(19):4606–4615

    Article  CAS  PubMed  Google Scholar 

  • Wan H, Ahman M, Holmen AG (2009) Relationship between brain tissue partitioning and microemulsion retention factors of CNS drugs. J Med Chem 52(6):1693–1700

    Article  CAS  PubMed  Google Scholar 

  • Wanek T, Mairinger S, Langer O (2013) Radioligands targeting P-glycoprotein and other drug efflux proteins at the blood-brain barrier. J Labelled Comp Radiopharm 56(3–4):68–77

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Welty DF (1996) The simultaneous estimation of the influx and efflux blood-brain barrier permeabilities of gabapentin using a microdialysis-pharmacokinetic approach. Pharm Res 13(3):398–403

    Article  CAS  PubMed  Google Scholar 

  • Wang YY, Lui PC, Li JY (2009) Receptor-mediated therapeutic transport across the blood-brain barrier. Immunotherapy 1(6):983–993

    Article  CAS  PubMed  Google Scholar 

  • Watson J, Wright S, Lucas A, Clarke KL, Viggers J, Cheetham S, Jeffrey P, Porter R, Read KD (2009) Receptor occupancy and brain free fraction. Drug Metab Dispos 37(4):753–760

    Article  CAS  PubMed  Google Scholar 

  • Weaver DF, Weaver CA (2011) Exploring neurotherapeutic space: how many neurological drugs exist (or could exist)? J Pharm Pharmacol 63(1):136–139

    Article  CAS  PubMed  Google Scholar 

  • Wellmann H, Kaltschmidt B, Kaltschmidt C (1999) Optimized protocol for biolistic transfection of brain slices and dissociated cultured neurons with a hand-held gene gun. J Neurosci Methods 92(1–2):55–64

    Article  CAS  PubMed  Google Scholar 

  • Westerhout J, Danhof M, De Lange EC (2011) Preclinical prediction of human brain target site concentrations: considerations in extrapolating to the clinical setting. J Pharm Sci 100(9):3577–3593

    Article  CAS  PubMed  Google Scholar 

  • Westerhout J, Ploeger B, Smeets J, Danhof M, de Lange EC (2012) Physiologically based pharmacokinetic modeling to investigate regional brain distribution kinetics in rats. AAPS J 14(3):543–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolak D, Thorne R (2013) Diffusion of Macromolecules in the Brain: Implications for Drug Delivery. Mol Pharm

    Google Scholar 

  • Yamamoto Y, Valitalo PA, van den Berg DJ, Hartman R, van den Brink W, Wong YC, Huntjens DR, Proost JH, Vermeulen A, Krauwinkel W, Bakshi S, Aranzana-Climent V, Marchand S, Dahyot-Fizelier C, Couet W, Danhof M, van Hasselt JG, de Lange EC (2017) A Generic Multi-Compartmental CNS Distribution Model Structure for 9 Drugs Allows Prediction of Human Brain Target Site Concentrations. Pharm Res 34(2):333–351

    Article  CAS  PubMed  Google Scholar 

  • Yokogawa K, Ishizaki J, Ohkuma S, Miyamoto K (2002) Influence of lipophilicity and lysosomal accumulation on tissue distribution kinetics of basic drugs: a physiologically based pharmacokinetic model. Methods Find Exp Clin Pharmacol 24(2):81–93

    Article  CAS  PubMed  Google Scholar 

  • Young RC, Mitchell RC, Brown TH, Ganellin CR, Griffiths R, Jones M, Rana KK, Saunders D, Smith IR, Sore NE et al (1988) Development of a new physicochemical model for brain penetration and its application to the design of centrally acting H2 receptor histamine antagonists. J Med Chem 31(3):656–671

    Article  CAS  PubMed  Google Scholar 

  • Zhao R, Kalvass JC, Pollack GM (2009) Assessment of blood-brain barrier permeability using the in situ mouse brain perfusion technique. Pharm Res 26(7):1657–1664

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irena Loryan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Loryan, I., Hammarlund-Udenaes, M. (2022). Drug Discovery Methods for Studying Brain Drug Delivery and Distribution. In: de Lange, E.C., Hammarlund-Udenaes, M., Thorne, R.G. (eds) Drug Delivery to the Brain. AAPS Advances in the Pharmaceutical Sciences Series, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-030-88773-5_13

Download citation

Publish with us

Policies and ethics