Skip to main content

Nanocelluloses: Production, Characterization and Market

  • Chapter
  • First Online:
Nanotoxicology in Safety Assessment of Nanomaterials

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1357))

Abstract

Nanocelluloses are a very promising material that has been widely explored for the most diverse applications. The pursuit for sustainable and environmentally friendly materials is in line with the nature of nanocelluloses and therefore they have emerged as the perfect candidate for plastics substitution, food additive, rheology controller, 3D printing of diverse structures, among many other possibilities. This derives from their interesting characteristics, such as reduced size and high specific surface area, high tensile strength, crystallinity and transparency, and from the fact that, such as cellulose, they are obtained from renewable sources, with relative ease for functionalization in order to obtain desired specificities. Thus, the industry is trying to react and effectively respond to the exponential growth of published research in the last years, and therefore new facilities (not only lab and pilot plants but already industrial sites) have been producing nanocelluloses. This new fibrous materials can be obtained from different raw-materials by different methodologies, leading to different types of nanocelluloses with, obviously, different characteristics. Nonetheless, technical and economical constraints have been addressed, such as the high energy demand or the clogging of homogenizers/microfluidizers.

This chapter intends to present a review addressing the main features related to the production, characterization and market of nanocelluloses and providing additional information regarding the vast literature published in these domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The following keywords were used for the search in the Web of Science database: “nanocellulose” OR “cellul*” NEAR/1 (“microfib*” OR “nanofib*” OR “bact*” OR “microb*” OR “nanocryst*” OR “microcryst*” OR “whisk*”).

References

  1. Abdul Khalil HPS, Davoudpour Y, Nazrul Islam M, Mustapha A, Sudesh K, Dungani R, Jawaid M (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665

    Article  CAS  PubMed  Google Scholar 

  2. Agenda 2020 Technology Alliance (2016) Cellulose nanomaterials – research roadmap

    Google Scholar 

  3. Agoda-Tandjawa G, Durand S, Berot S, Blassel C, Gaillard C, Garnier C, Doublier J-L (2010) Rheological characterization of microfibrillated cellulose suspensions after freezing. Carbohydr Polym 80(3):677–686

    Article  CAS  Google Scholar 

  4. Ahola S, Österberg M, Laine J (2008a) Cellulose nanofibrils – adsorption with poly(amideamine) epichlorohydrin studied by QCM-D and application as a paper strength additive. Cellulose 15(2):303–314

    Article  CAS  Google Scholar 

  5. Ahola S, Salmi J, Johansson L, Laine J, Österberg M (2008b) Model films from native cellulose Nanofibrils. Preparation, swelling, and surface interactions. Biomacromolecules 9:1273–1282

    Article  CAS  PubMed  Google Scholar 

  6. Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues-wheat straw and soy hulls. Bioresour Technol 99:1664–1671

    Article  CAS  PubMed  Google Scholar 

  7. Alexandrescu L, Syverud K, Gatti A, Chinga-Carrasco G (2013) Cytotoxicity tests of cellulose nanofibril-based structures. Cellulose 20:1765–1775

    Article  CAS  Google Scholar 

  8. Alves L, Ferraz E, Gamelas JAF (2019) Composites of nanofibrillated cellulose with clay minerals: a review. Adv Colloid Interf Sci 272:101994

    Article  CAS  Google Scholar 

  9. Alves L, Ferraz E, Lourenço AF, Ferreira PJ, Rasteiro MG, Gamelas JAF (2020) Tuning rheology and aggregation behaviour of TEMPO oxidized cellulose nanofibrils aqueous suspensions by addition of different acids. Carbohydr Polym 237:116109. https://doi.org/10.1016/j.carbpol.2020.116109

    Article  CAS  PubMed  Google Scholar 

  10. Andrade FK, Morais JPS, Muniz CR, Nascimento JHO, Vieira RS, Gama FMP, Rosa MF (2019) Stable microfluidized bacterial cellulose suspension. Cellulose 26:5851–5864

    Article  CAS  Google Scholar 

  11. Ankerfors M (2012) Microfibrillated cellulose: Energy-efficient preparation techniques and key properties. Litentiate thesis presented to Innventia AB and KTH Royal Institute of Technology

    Google Scholar 

  12. Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27

    Article  CAS  Google Scholar 

  13. Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574

    Article  CAS  Google Scholar 

  14. Bacakova L, Pajorova J, Bacakova M, Skogberg A, Kallio P, Kolarova K, Svorcik V (2019) Versatile application of Nanocellulose: from industry to skin tissue engineering and wound healing. Nano 9(2):164

    CAS  Google Scholar 

  15. Benhamou K, Dufresne A, Magnin A, Mortha G, Kaddami H (2014) Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time. Carbohydr Polym 99:74–83

    Article  CAS  PubMed  Google Scholar 

  16. Besbes I, Alila S, Boufi S (2011a) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84:975–983

    Article  CAS  Google Scholar 

  17. Besbes I, Vilar MR, Boufi S (2011b) Nanofibrillated cellulose from alfa, eucalyptus and pine fibres: preparation, characteristics and reinforcing potential. Carbohydr Polym 86:1198–1206

    Article  CAS  Google Scholar 

  18. Bras J, Viet D, Bruzzese C, Dufresne A (2011) Correlation between stiffness of sheets prepared from cellulose whiskers and nanoparticles dimensions. Carbohydr Polym 84:211–215

    Article  CAS  Google Scholar 

  19. Brodin F, Eriksen Ø (2015) Preparation of individualised lignocellulose microfibrils based on thermomechanical pulp and their effect on paper properties. Nordic Pulp Paper Res J 30:443–451

    Article  CAS  Google Scholar 

  20. Catalán J, Ilves M, Järventaus H, Hannukainen KS, Kontturi E, Vanhala E, Alenius H, Savolainen KM, Norppa H (2015) Genotoxic and immunotoxic effects of cellulose nanocrystals in vitro. Environ Moecular Mutagenesis 56:171–182

    Article  CAS  Google Scholar 

  21. Catalán J, Rydman E, Aimonen K, Hannukainen KS, Suhonen S, Vanhala E, Moreno C, Meyer V, Perez DD, Sneck A, Forsström U, Højgaard C, Willemoes M, Winther JR, Vogel U, Wolff H, Alenius H, Savolainen KM, Norppa H (2017) Genotoxic and inflammatory effects of nanofibrillated cellulose in murine lungs. Mutagenesis 32(1):23–31

    Article  PubMed  CAS  Google Scholar 

  22. Chen Y, Wan J, Dong X, Ma Y (2013) Fiber properties of eucalyptus Kraft pulp with different carboxyl group contents. Cellulose 20:2839–2846

    Article  CAS  Google Scholar 

  23. Chen W, Chen F, Zhang G, Liu X, Kong S, Cai W, Wang J, Du L, Wu C (2019) Fabrication of cellulose nanocrystal composite filter papers for rapid and highly efficient removal of bacteria from aqueous solutions. Cellulose 26:7027–7035

    Article  CAS  Google Scholar 

  24. Chinga-Carrasco G, Yu Y, Diserud O (2011a) Quantitative electron microscopy of cellulose nanofibril structures from eucalyptus and Pinus radiata Kraft pulp fibers. Microsc Microanal 17:563–571

    Article  CAS  PubMed  Google Scholar 

  25. Chinga-Carrasco G, Miettinen A, Hendriks CLL, Gamstedt EK, Kataja M (2011b) Structural characterisation of Kraft pulp Fibres and their Nanofibrillated materials for biodegradable composite applications. In nanocomposites and polymers with analytical methods (ed J Cuppoletti). INTECH:243–260

    Google Scholar 

  26. Chinga-Carrasco G, Tobjörk D, Österbacka R (2012) Inkjet-printed silver nanoparticles on nano-engineered cellulose films for electrically conducting structures and organic transistors: concept and challenges. J Nanopart Res 14:1213

    Article  CAS  Google Scholar 

  27. Chinga-Carrasco G, Averianova N, Kondalenko O, Garaeva M, Petrov V, Leinsvang B, Karlsen T (2014) The effect of residual fibres on the micro-topography of cellulose nanopaper. Micron 56:80–84

    Article  CAS  PubMed  Google Scholar 

  28. Clift MJ, Foster EJ, Vanhecke D, Studer D, Wick P, Gehr P, Rothen-Rutishauser B, Weder C (2011) Investigating the interaction of cellulose nanofibers derived from cotton with a sophisticated 3D human lung cell coculture. Biomacromolecules 12:3666–3673

    Article  CAS  PubMed  Google Scholar 

  29. Colić M, Mihajlovic D, Mathew A, Naseri N, Kokol V (2015) Cytocompatibility and immunomodulatory properties of wood based nanofibrillated cellulose. Cellulose 22:763–778

    Article  CAS  Google Scholar 

  30. Das K, Ray D, Bandyopadhyay NR, Ghosh T, Mohanty AK, Misra M (2009) A study of the mechanical, thermal and morphological properties of microcrystalline cellulose particles prepared from cotton slivers using different acid concentrations. Cellulose 16:783–793

    Article  CAS  Google Scholar 

  31. Delgado-Aguilar M, González I, Tarrés Q, Alcalà M, Pèlach MÀ (2015) Approaching a low-cost production of cellulose nanofibers for papermaking applications. Bioresources 10:5345–5355

    CAS  Google Scholar 

  32. Dimic-Misic K, Salo T, Paltakari J, Gane P (2014) Comparing the rheological properties of novel nanofibrillar cellulose-formulated pigment coating colours with those using traditional thickener. Nordic Pulp Paper Res J 29(2):253–270

    Article  CAS  Google Scholar 

  33. Dimic-Misic K, Vanhatalo K, Dahl O, Gane P (2018) Rheological properties comparison of aqueous dispersed nanocellulose derived from a novel pathway-produced microcrystalline cellulose or by conventional methods. Appl Rheol 28:64474

    Google Scholar 

  34. Dinand E, Chanzy H., Vignon M. R. (1999) Suspensions of cellulose microfibrils from sugar beet pulp. Food Hydrocoll 13: 275–283

    Google Scholar 

  35. Dong S, Hirani AA, Colacino KR, Lee YW, Roman M (2012) Cytotoxicity and cellular uptake of cellulose nanocrystals. Nano Life 2(3):1241006

    Article  CAS  Google Scholar 

  36. Dufresne A (2012) Nanocellulose – from nature to high performance tailored materials. De Gruyter, Germany. ISBN 978-3-11-025456-3

    Book  Google Scholar 

  37. Dufresne A, Cavaille J, Vignon MR (1997) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64:1185–1194

    Article  CAS  Google Scholar 

  38. Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells : processing and characterization of starch – cellulose microfibril composites. J Appl Polym Sci 76:2080–2092

    Article  CAS  Google Scholar 

  39. Ehman N, Tarrés Q, Delgado Aguilar M, Vallejos ME, Felissia F, Area MC, Mutjé P (2016) From pine sawdust to cellulose nanofibres. Cellul Chem Technol 50(3–4):361–367

    CAS  Google Scholar 

  40. Ehman NV, Lourenço AF, McDonagh BH, Vallejos ME, Felissia FE, Ferreira PJT, Chinga-Carrasco G, Area MC (2020) Influence of initial chemical composition and characteristics of pulps on the production and properties of lignocellulosic nanofibers. Int J Biol Macromol 143:453–461

    Article  CAS  PubMed  Google Scholar 

  41. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33

    Article  CAS  Google Scholar 

  42. Eriksen Ø, Syverud K, Gregersen Ø (2008) The use of microfibrillated cellulose produced from Kraft pulp as strength enhancer in TMP paper. Nordic Pulp Paper Res J 23:299–304

    Article  CAS  Google Scholar 

  43. Espinosa E, Tarrés Q, Delgado-Aguilar M, González I, Mutjé P, Rodríguez A (2016) Suitability of wheat straw semichemical pulp for the fabrication of lignocellulosic nanofibres and their application to papermaking slurries. Cellulose 23:837–852

    Article  CAS  Google Scholar 

  44. Eyholzer C, Bordeanu N, Lopez-Suevos F, Rentsch D, Zimmermann T, Oksman K (2010) Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form. Cellulose 17:19–30

    Article  CAS  Google Scholar 

  45. Foster EJ, Moon RJ, Agarwal UP, Bortner MJ, Bras J, Camarero-Espinosa S, Chan KJ, Clift MJD, Cranston ED, Eichhorn SJ, Fox DM, Hamad WY, Heux L, Jean B, Korey M, Nieh W, Ong KJ, Reid MS, Renneckar S, Roberts R, Shatkin JA, Simonsen J, Stinson-Bagby K, Wanasekara N, Youngblood J (2018) Current characterization methods for cellulose nanomaterials. Chem Soc Rev 47(8):2609–2679

    Article  CAS  PubMed  Google Scholar 

  46. Fraschini C, Chauve G, Le Berre J-F, Ellis S, Méthot M, Connor BO, Bouchard J (2014) Critical discussion of light scattering and microscopy techniques for CNC particle sizing. Nordic Pulp Paper Res J 29:31–40

    Article  CAS  Google Scholar 

  47. Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165

    Article  CAS  PubMed  Google Scholar 

  48. Future Markets Inc (2014) The global market for nanocellulose

    Google Scholar 

  49. Gabr MH, Phong NT, Abdelkareem MA, Okubo K, Uzawa K, Kimpara I, Fujii T (2013) Mechanical, thermal, and moisture absorption properties of nano-clay reinforced nano-cellulose biocomposites. Cellulose 20:819–826

    Article  CAS  Google Scholar 

  50. Gama M, Dourado F, Bielecki S (2016) Bacterial Nanocellulose: From Biotechnology to Bio-Economy. Elsevier ISBN: 978–0–444-63458-0

    Google Scholar 

  51. Gamelas JAF, Pedrosa J, Lourenço AF, Mutjé P, González I, Chinga-Carrasco G, Singh G, Erreira PJT (2015a) On the morphology of cellulose nanofibrils obtained by TEMPO-mediated oxidation and mechanical treatment. Micron 72:28–33

    Article  CAS  PubMed  Google Scholar 

  52. Gamelas JAF, Pedrosa J, Lourenço AF, Ferreira PJ (2015b) Surface properties of distinct nanofibrillated celluloses assessed by inverse gas chromatography. Colloids Surf A Physicochem Eng Asp 469:36–41

    Article  CAS  Google Scholar 

  53. Gane PAC, Schenker M, Subramanian R, Schoelkopf J (2018) Process for the production of gel-based composite materials. Patent EP 3:266–931

    Google Scholar 

  54. Gardner DJ, Oporto GS, Mills R, Azizi Samir MAS (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhes Sci Technol 22:545–567

    Article  CAS  Google Scholar 

  55. González I, Vilaseca F, Alcalá M, Pèlach MA, Boufi S, Mutjé P (2013) Effect of the combination of biobeating and NFC on the physico-mechanical properties of paper. Cellulose 20:1425–1435

    Article  CAS  Google Scholar 

  56. Hassan ML, Mathew AP, Hassan EA, El-wakil NA, Oksman K (2012) Nanofibers from bagasse and rice straw: process optimization and properties. Wood Sci Technol 46:193–205

    Article  CAS  Google Scholar 

  57. Heggset EB, Chinga-Carrasco G, Syverud K (2017) Temperature stability of nanocellulose dispersions. Carbohydr Polym 157:114–121

    Article  CAS  PubMed  Google Scholar 

  58. Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose ( MFC ) nanofibers. Eur Polym J 43:3434–3441

    Article  CAS  Google Scholar 

  59. Henriksson M, Berglund LA, Isaksson P, Lindstro T, Nishino T (2008) Cellulose Nanopaper structures of high toughness. Biomacromolecules 9:1579–1585

    Article  CAS  PubMed  Google Scholar 

  60. Horseman T, Tajvidi M, Diop CIK, Gardner DJ (2017) Preparation and property assessment of neat lignocellulose nanofibrils (LCNF) and their composite films. Cellulose 24(6):2455–2468

    Article  CAS  Google Scholar 

  61. Hu L, Zheng G, Yao J, Liu N, Weil B, Eskilsson M, Karabulut E, Ruan Z, Fan S, Bloking JT, McGehee MD, Wågberg L, Cui Y (2013) Transparent and conductive paper from nanocellulose fibers. Energy Environ Sci 6:513

    Article  CAS  Google Scholar 

  62. Hubbe MA, Tayeb P, Joyce M, Tyagi P, Kehoe M, Dimic-Misic K, Pal L (2017) Rheology of nanocellulose-rich aqueous suspensions: a review. Bioresources 12(4):9556–9661

    Article  CAS  Google Scholar 

  63. ISO 5351:2010 Pulps — Determination of limiting viscosity number in cupri-ethylenediamine (CED) solution

    Google Scholar 

  64. ISO/TS 21346:2021 Nanotechnologies – Characterization of individualized cellulose nanofibril samples

    Google Scholar 

  65. ISO/TS 20477:2017 Nanotechnologies — Standard terms and their definition for cellulose nanomaterial

    Google Scholar 

  66. Isogai A (2013) Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. J Wood Sci 59:449–459

    Article  CAS  Google Scholar 

  67. Isogai A, Saito T, Fukuzimi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85

    Article  CAS  PubMed  Google Scholar 

  68. Iwamoto S, Nakagaito AN, Yano H, Nogi M (2005) Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys A Mater Sci Process 81:1109–1112

    Article  CAS  Google Scholar 

  69. Jeong SI, Lee SE, Yang H, Jin YH, Park CS, Park YS (2010) Toxicologic evaluation of bacterial synthesized cellulose in endothelial cells and animals. Mol Cellular Toxicol 6:373–380

    Article  CAS  Google Scholar 

  70. Jonoobi M, Harun J, Tahir PM, Zaini LH, Azry SS, Makinejad MD (2010) Characteristics of nanofibers extracted from kenaf core. Bioresources 5:2556–2566

    Google Scholar 

  71. Kangas H, Lahtinen P, Sneck A, Saariaho A-M, Laitinen O, Hellén E (2014) Characterization of fibrillated celluloses. A short review and evaluation of characteristics with a combination of methods. Nordic Pulp Paper Res J 29:129–143

    Article  CAS  Google Scholar 

  72. Kargarzadeh H, Mariano M, Gopakumar D, Ahmad I, Thomas S, Dufresne A, Huang J, Lin N (2018) Advances in cellulose nanomaterials. Cellulose 25:2151–2189

    Article  CAS  Google Scholar 

  73. Klemm D, Schumann D, Kramer F, Heßler N, Hornung M, Schmauder HP, Marsch S (2006) Nanocelluloses as innovative polymers in research and application. Polysaccharides II in Adv Polymer Sci 205:49–96

    Article  CAS  Google Scholar 

  74. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    Article  CAS  Google Scholar 

  75. Klemm D, Cranston ED, Fischer D, Gama FM, Kedzior SA, Kralisch D, Kramer F, Kondo T, Lindström T, Nietzsche S, Petzold-Welcke K, Rauchfuß F (2018) Nanocellulose as a natural source for groundbreaking applications in materials science: todays state. Mater Today 21(7):720–748

    Article  CAS  Google Scholar 

  76. Kovacs T, Naish V, O’Connor B, Blaise C, Gagné F, Hall L, Trudeau V, Martel P (2010) An ecotoxicological characterization of nanocrystalline cellulose (NCC). Nanotoxicology 4:255–270

    Article  CAS  PubMed  Google Scholar 

  77. Kruger Inc (2019) The FiloCell Advantage. Available at https://biomaterials.kruger.com/products/the-filocell-advantage/ [consulted 12.2019]

  78. Lasseuguette E, Roux D, Nishiyama Y (2008) Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose 15:425–433

    Article  CAS  Google Scholar 

  79. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose – its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764

    Article  CAS  PubMed  Google Scholar 

  80. Li J, Wei X, Wang Q, Chen J, Chang G, Kong L, Su J (2012) Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr Polym 90:1609–1613

    Article  CAS  PubMed  Google Scholar 

  81. Li Q, Raj P, Abbas Husain F, Varanasi S, Rainey T, Garnier G, Batchelor W (2016) Engineering cellulose nanofibre suspensions to control filtration resistance and sheet permeability. Cellulose 23:391–402

    Article  CAS  Google Scholar 

  82. Liimatainen H, Visanko M, Sirviö JA, Hormi OEO, Niinimaki J (2012) Enhancement of the nanofibrillation of wood cellulose through sequential periodate-chlorite oxidation. Biomacromolecules 13:1592–1597

    Article  CAS  PubMed  Google Scholar 

  83. Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325

    Article  CAS  Google Scholar 

  84. Lin N, Huang J, Chang PR, Feng J, Yu J (2011) Surface acetylation of cellulose nanocrystal and its reinforcing function in poly ( lactic acid ). Carbohydr Polym 83:1834–1842

    Article  CAS  Google Scholar 

  85. Lindström T, Naderi A, Wiberg A (2015) Large scale applications of Nanocellulosic materials – a comprehensive review. J Korea TAPPI 47:5–21

    Google Scholar 

  86. Lopes VR, Sanchez-Martine C, Strømme M, Ferraz N (2018) In vitro biological responses to nanofibrillated cellulose by human dermal, lung and immune cells: surface chemistry aspect. Part Fibre Toxicol 14:1

    Article  CAS  Google Scholar 

  87. Lourenço AF, Gamelas JAF, Nunes T, Amaral J, Mutjé P, Ferreira PJ (2017) Influence of TEMPO-oxidised cellulose nanofibrils on the properties of filler-containing papers. Cellulose 24(1):349–362

    Article  CAS  Google Scholar 

  88. Lourenço AF, Godinho D, Gamelas JAF, Sarmento P, Ferreira PJ (2019a) Carboxymethylated cellulose nanofibrils in papermaking: influence on filler retention and paper properties. Cellulose 26:3489–3502

    Article  CAS  Google Scholar 

  89. Lourenço AF, Gamelas JAF, Sarmento P, Ferreira PJ (2019b) Enzymatic nanocellulose in papermaking – the key role as filler flocculant and strengthening agent. Carbohydr Polym 224:115200

    Article  PubMed  CAS  Google Scholar 

  90. Lu P, Hsieh Y (2010) Preparation and properties of cellulose nanocrystals: rods , spheres , and network. Carbohydr Polym 82:329–336

    Article  CAS  Google Scholar 

  91. Mautner A, Maples HA, Sehaqui H, Zimmermann T, de Larraya UP, Mathew AP, Lai C, Li K, Bismarck A (2016) Nitrate removal from water using a nanopaper ion-exchanger. Environ Sci Water Res Technol 2:117–124

    Article  CAS  Google Scholar 

  92. Mikkonen KS, Tenkanen M (2012) Sustainable food-packaging materials based on future biorefinery products: Xylans and mannans. Trends Food Sci Technol 28:90–102

    Article  CAS  Google Scholar 

  93. Miller J (2018) Nanocellulose: producers, products, and applications. A Guide for End Users, Biobased Markets

    Google Scholar 

  94. Miller J (2019) Nanocellulose: Packaging Applications and Commercial Development. Presentation at International Conference on Nanotechnology for Renewable Materials, Chiba, Japan

    Google Scholar 

  95. Mohammadkazemi F, Azin M, Ashori A (2015) Production of bacterial cellulose using different carbon sources andculture media. Carbohydr Polym 117:518–523

    Article  CAS  PubMed  Google Scholar 

  96. Moon RJ, Martini A, Nairn J, Simonsenf J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  PubMed  Google Scholar 

  97. Morais JPS, Rosa MDF, Filho MDSM, Nascimento LD, do Nascimento DM, Cassales AR (2013) Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydr Polym 91:229–235

    Article  CAS  PubMed  Google Scholar 

  98. Moreira S, Silva NB, Almeida-Lima J, Rocha HA, Medeiros SR, Alves C Jr, Gama FM (2009) BC nanofibres: in vitro study of genotoxicity and cell proliferation. Toxicol Lett 189:235–241

    Article  CAS  PubMed  Google Scholar 

  99. Naderi A, Lindström T (2016) A comparative study of the rheological properties of three different nanofibrillated cellulose systems. Nordic Pulp Paper Res J 31(3):354–363

    Article  CAS  Google Scholar 

  100. Naderi A, Lindström T, Torbjörn T (2014) The state of carboxymethylated nanofibrils after homogenization-aided dilution from concentrated suspensions: a rheological perspective. Cellulose 21:2357–2368

    Article  CAS  Google Scholar 

  101. Nakagaito AN, Fujimura A, Sakai T, Hama Y, Yano H (2009) Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process. Compos Sci Technol 69:1293–1297

    Article  CAS  Google Scholar 

  102. Nogi BM, Iwamoto S, Nakagaito AN (2009) Optically transparent nanofiber paper. Adv Mater 21:1595–1598

    Article  CAS  Google Scholar 

  103. Nordli HR, Chinga-Carrasco G, Rokstad AM, Pukstad B (2016) Producing ultrapure wood cellulose nanofibrils and evaluating the cytotoxicity using human skin cells. Carbohydr Polym 150:65–73

    Article  CAS  PubMed  Google Scholar 

  104. Osong SH, Norgren S, Engstrand P (2016) Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose , and applications relating to papermaking: a review. Cellulose 23:93–123

    Article  CAS  Google Scholar 

  105. Pääkko M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941

    Article  PubMed  CAS  Google Scholar 

  106. Pahimanolis N, Salminen A, Penttilä PA, Korhonen JT, Johansson LS, Ruokolainen J, Serimaa R, Seppälä J (2013) Nanofibrillated cellulose/carboxymethyl cellulose composite with improved wet strength. Cellulose 20:1459–1468

    Article  CAS  Google Scholar 

  107. Peng Y, Gardner DJ, Han Y (2012) Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19:91–102

    Article  CAS  Google Scholar 

  108. Pertile RAN, Moreira S, da Costa RMG, Correia A, Guardao L, Gartner F, Vilanova M, Gama M (2012) Bacterial cellulose: long-term biocompatibility studies. J Biomat Sci 23:1339–1354

    Article  CAS  Google Scholar 

  109. Pitkänen M, Kangas H, Laitinen O, Sneck A, Lahtinen P, Peresin MS, Niinimäki J (2014) Characteristics and safety of nano-sized cellulose fibrils. Cellulose 21:3871–3886

    Article  CAS  Google Scholar 

  110. Plackett D. V., Letchford K., Jackso, J. K., Burt H. M. (2014) A review of nanocellulose as a novel vehicle for drug delivery. Nordic Pulp and Paper Research Journal 29: 105–118

    Google Scholar 

  111. Pommet M, Juntaro J, Heng JYY, Mantalaris A, Lee AF, Wilson K, Kalinka G, Shaffer MSP, Bismarck A (2008) Surface modification of natural fibers using bacteria: depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites. Biomacromolecules 9:1643–1651

    Article  CAS  PubMed  Google Scholar 

  112. Qua EH, Hornsby PR, Sharma HSS, Lyons G (2011) Preparation and characterisation of cellulose nanofibres. J Mater Sci 46:6029–6045

    Article  CAS  Google Scholar 

  113. Ribeiro RSA, Pohlmann BC, Calado V, Bojorge N, Pereira N (2019) Production of nanocellulose by enzymatic hydrolysis: trends and challenges. Eng Life Sci 19:279–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Rodionova G, Lenes M, Eriksen Ø, Gregersen Ø (2011) Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications. Cellulose 18:127–134

    Article  CAS  Google Scholar 

  115. Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis 1194 on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671–1677

    Article  CAS  PubMed  Google Scholar 

  116. Saini S, Falco CY, Belgacem MN, Bras J (2016) Surface cationized cellulose nanofibrils for the production of contact active antimicrobial surfaces. Carbohydr Polym 135:239–247

    Article  CAS  PubMed  Google Scholar 

  117. Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989

    Article  CAS  PubMed  Google Scholar 

  118. Saito T, Isogai A (2005) Ion-exchange behavior of carboxylate groups in fibrous cellulose oxidized by the TEMPO-mediated system. Carbohydr Polym 61:183–190

    Article  CAS  Google Scholar 

  119. Saito T, Isogai A (2006) Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPO-mediated oxidation. Colloids Surfaces A Physicochem Eng Asp 289:219–225

    Article  CAS  Google Scholar 

  120. Saito T, Isogai A (2007) Wet strength improvement of TEMPO-oxidized cellulose sheets prepared with cationic polymers. Ind Eng Chem Res 46:773–780

    Article  CAS  Google Scholar 

  121. Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10:1992–1996

    Article  CAS  PubMed  Google Scholar 

  122. Sánchez R, Espinosa E, Domínguez-Robles J, Mauricio Loaiza J, Rodríguez A (2016) Isolation and characterization of lignocellulose nanofibers from different wheat straw pulps. Int J Biol Macromol 92:102–1033

    Article  CAS  Google Scholar 

  123. Saska S, Scarel-Caminaga RM, Teixeira LN, Franchi LP, dos Santos RA, Gaspar AM, de Oliveira PT, Rosa AL, Takahashi CS, Messaddeq Y, Ribeiro SJ, Marchetto R (2012) Characterization and in vitro evaluation of bacterial cellulose membranes functionalized with osteogenic growth peptide for bone tissue engineering. J Mater Sci Mater Med 23:2253–2266

    Article  CAS  PubMed  Google Scholar 

  124. Scarel-Caminaga RM, Saska S, Franchi LP, Santos RA, Gaspar AMM, Capote TSO, Ribeiro SJL, Messaddeq Y, Marchetto R, Takahashi CS (2014) Nanocomposites based on bacterial cellulose in combination with osteogenic growth peptide for bone repair: cytotoxic, genotoxic and mutagenic evaluations. J Appl Biol Biotechnol 2:1–8

    CAS  Google Scholar 

  125. Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules 12:3638–3644

    Article  CAS  PubMed  Google Scholar 

  126. Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose Nanofibrils. Biomacromolecules 13:842–849

    Article  CAS  PubMed  Google Scholar 

  127. Shvedova AA, Kisin ER, Yanamala N, Farcas MT, Menas AL, Williams A, Fournier PM, Reynolds JS, Gutkin DW, Star A, Reiner RS, Halappanavar S, Kagan VE (2016) Gender differences in murine pulmonary responses elicited by cellulose nanocrystals. Part Fibre Toxicol 13:28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers (Basel) 2:728–765

    Article  CAS  Google Scholar 

  129. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  CAS  Google Scholar 

  130. Siró I, Plackett D, Hedenqvist M, Ankerfors M, Lindström T (2011) Highly transparent films from Carboxymethylated microfibrillated cellulose – the effect of multiple homogenization steps on key properties. J Appl Polym Sci 119:2652–2660

    Article  CAS  Google Scholar 

  131. Skočaj M (2019) Bacterial nanocellulose in papermaking. Cellulose 26:6477–6488

    Article  CAS  Google Scholar 

  132. Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18:1097–1111

    Article  CAS  Google Scholar 

  133. Stefaniak AB, Seehra MS, Fix NR, Leonard SS (2014) Lung biodurability and free radical production of cellulose nanomaterials. Inhal Toxicol 26(12):733–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Stenius P (2014) Nanocellulose technology – conclusions and perspectives. In. Proc. Recent advances in cellulose nanotechnology research – Production, characterization and applications. Seminar, PFI, Trondheim (Norway)

    Google Scholar 

  135. Stenstad P, Andresen M, Tanem BS, Stenius P (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15:35–45

    Article  CAS  Google Scholar 

  136. Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85

    Article  CAS  Google Scholar 

  137. Syverud K, Xhanari K, Chinga-Carrasco G, Yu Y, Stenius P (2011) Films made of cellulose nanofibrils : surface modification by adsorption of a cationic surfactant and characterization by computer-assisted electron microscopy. J Nanoparticle Res 13:773–782

    Article  CAS  Google Scholar 

  138. Taipale T, Österberg M, Nykänen A, Ruokolainen J, Laine J (2010) Effect of microfibrillated cellulose and fines on the drainage of Kraft pulp suspension and paper strength. Cellulose 17:1005–1020

    Article  CAS  Google Scholar 

  139. Tammelin T., Hippi U., Salminen A. (2013) Method for the preparation of nfc films on supports. WO patent 2013/060934 A2

    Google Scholar 

  140. Tanaka R, Saito T, Isogai A (2012) Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/NaClO2 systems in water at pH 4.8 or 6.8. Int J Biol Macromol 51:228–234

    Article  CAS  PubMed  Google Scholar 

  141. TAPPI standard proposal WI 3021. Standard terms and their definition for cellulose nanomaterials, draft. Available at: http://www.tappi.org/content/hide/draft3.pdf

    Google Scholar 

  142. Tarrés Q, Saguer E, Pèlach MA, Alcalà M, Delgado-Aguilar M, Mutjé P (2016) The feasibility of incorporating cellulose micro / nanofibers in papermaking processes : the relevance of enzymatic hydrolysis. Cellulose 23:1433–1445

    Article  CAS  Google Scholar 

  143. Tarrés Q, Pellicer N, Balea A, Merayo N, Negro C, Blanco A, Delgado-Aguilar M, Mutjé P (2017a) Lignocellulosic micro/nanofibers from wood sawdust applied to recycled fibers for the production of paper bags. Int J Biol Macromol 105:664–670

    Article  PubMed  CAS  Google Scholar 

  144. Tarrés Q, Ehman NV, Vallejos ME, Area MC, Delgado-Aguilar M, Mutjé P (2017b) Lignocellulosic nanofibers from triticale straw: the influence of hemicelluloses and lignin in their production and properties. Carbohydr Polym 163:20–27

    Article  PubMed  CAS  Google Scholar 

  145. Torvinen K, Sievänen J, Hjelt T, Hellén E (2012) Smooth and flexible filler-nanocellulose composite structure for printed electronics applications. Cellulose 19:821–829

    Article  CAS  Google Scholar 

  146. USDA (2014) Cellulose nanomaterials — a path towards commercialization. Workshop Report, USDA Forest Service, Washington D.C., USA

    Google Scholar 

  147. Varanasi S, Batchelor W (2014) Superior non-woven sheet forming characteristics of low-density cationic polymer-cellulose nanofibre colloids. Cellulose 21:3541–3550

    Article  CAS  Google Scholar 

  148. Vartiainen J, Pöhler T, Sirola K, Pylkkänen L, Alenius H, Hokkinen J, Tapper U, Lahtinen P, Kapanen A, Putkisto K, Hiekkataipale P, Eronen P, Ruokolainen J, Laukkanen A (2011) Health and environmental safety aspects of friction grinding and spray drying of microfibrillated cellulose. Cellulose 18:775–786

    Article  CAS  Google Scholar 

  149. Ventura C, Lourenço AF, Sousa-Uva A, Ferreira PJT, Silva MJ (2018) Evaluating the genotoxicity of cellulose Nanofibrils in a co-culture of human lung epithelial cells and monocyte-derived macrophages. Toxicol Lett 291:173–183

    Article  CAS  PubMed  Google Scholar 

  150. Voisin H, Bergström L, Liu P, Mathew A (2017) Nanocellulose-based materials for water purification. Nano 7(3):57

    Google Scholar 

  151. Wågberg L, Winter L, Ödberg L, Lindström T (1987) On the charge stoichiometry upon adsorption of a cationic polyelectrolyte on cellulosic materials. Colloids Surf 27:163–173

    Article  Google Scholar 

  152. Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795

    Article  PubMed  CAS  Google Scholar 

  153. Walecka JA (1956) An Investigation of Low Degree of Subsitution Carboxymethylcelluloses. Doctor’s Dissertation presented to The Institute of Paper Chemistry, Wisconsin

    Google Scholar 

  154. Wang D (2019) A critical review of cellulose-based nanomaterials for water purification in industrial processes. Cellulose 26(2):687–701

    Article  CAS  Google Scholar 

  155. Wang S, Cheng Q (2009) A novel process to isolate fibrils from cellulose fibers by high-intensity Ultrasonication , part 1 : process optimization. J Appl Polym Sci 113:1270–1275

    Article  CAS  Google Scholar 

  156. Wang B, Sain M (2007) Dispersion of soybean stock-based nanofiber in a plastic matrix. Polym Int 56:538–546

    Article  CAS  Google Scholar 

  157. Wang B, Sain M, Oksman K (2007) Study of structural morphology of hemp fiber from the micro to the nanoscale. Appl Compos Mater 14:89–103

    Article  CAS  Google Scholar 

  158. Wang H, Li D, Zhang R (2013) Preparation of ultralong cellulose nanofibers and optically transparent nanopapers derived from waste corrugated paper pulp. Bioresources 8:1374–1384

    Google Scholar 

  159. Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, Uryu M (1989) The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mater Sci 24:3141–3145

    Article  CAS  Google Scholar 

  160. Yanamala N, Farcas MT, Hatfield MK, Kisin ER, Kagan VE, Geraci CL, Shvedova AA (2014) In vivo evaluation of the pulmonary toxicity of cellulose nanocrystals: a renewable and sustainable nanomaterial of the future. ACS Sustain Chem Eng 2:1691–1698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Yu H, Qin Z, Liang B, Liu N, Zhou Z, Chen L (2013) Facile extraction 1305 of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem A 1:3938–3944

    Article  CAS  Google Scholar 

  162. Zhang H., Dou C., Pal L., Hubbe M. A. (2019) Review of Electrically Conductive Composites and Films. BioResources 14: 1–49.

    Google Scholar 

  163. Zhao M, Li J, Mano E, Song Z, Tschaen DM, Gravowski EJJ, Reider PJ (1999) Oxidation of primary alcohols to carboxylic acids with sodium chlorite catalyzed by TEMPO and bleach. J Org Chem 64:2564–2566

    Article  CAS  Google Scholar 

  164. Zhou L, Sun D, Hu L, Li Y, Yang J (2007) Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum. J Ind Microbiol Biotechnol 34:483–489

    Article  CAS  PubMed  Google Scholar 

  165. Zhou YM, Fu SY, Zheng LM, Zhan HY (2012) Effect of nanocellulose isolation techniques on the formation of reinforced poly(vinyl alcohol) nanocomposite films. Express Polym Lett 6:794–804

    Article  CAS  Google Scholar 

  166. Zhu H, Luo W, Ciesielki PN, Fang Z, Zhu JY, Henriksson G, Himmel ME, Hu L (2016) Wood-derived materials for green electronics, biological devices, and energy applications. Chem Rev 116:9305–9374

    Article  CAS  PubMed  Google Scholar 

  167. Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr Polym 79:1086–1093

    Article  CAS  Google Scholar 

  168. Zywicka A, Peitler D, Rakoczy R, Konopacki M, Kordas M, Fijałkowski K (2015) The effect of different agitation modes on bacterial cellulose synthesis by Gluconacetobacter Xylinus strains. Acta Scientiarum Polonorum Zootechnica 14(1):137–150

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge FCT Project ToxApp4NanoCELFI (PTDC/SAU-PUB/32587/2017), cofunded by ToxOmics – Center for Toxicogenomics and Human Health (UIDB/00009/2020;UIDP/00009/2020), CIEPQPF – Strategic Research Centre Project (UIDB/00102/2020), FCT PhD. Grant SFRH/BDE/108095/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo J. T. Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferreira, P.J.T., Lourenço, A.F. (2022). Nanocelluloses: Production, Characterization and Market. In: Louro, H., Silva, M.J. (eds) Nanotoxicology in Safety Assessment of Nanomaterials. Advances in Experimental Medicine and Biology, vol 1357. Springer, Cham. https://doi.org/10.1007/978-3-030-88071-2_6

Download citation

Publish with us

Policies and ethics