Skip to main content

A Review on Key Performance Indicators for Climate Change

  • Conference paper
  • First Online:
Advances and New Trends in Environmental Informatics (ENVIROINFO 2021)

Part of the book series: Progress in IS ((PROIS))

Included in the following conference series:

Abstract

Climate change is one of the biggest threats to humanity in the near future. Almost all different scenarios of climate change involve large-scale disasters and hazards. In order to define goals to cities, regions and countries in regards to mitigating climatic change, we first need to understand which the important key performance indicators (KPIs) are, how they can be measured and which values they take. Then, each country can calculate its performance based on these KPIs, setting realistic goals for better performance in the near future. This paper performs a large survey to identify and list 63 relevant KPIs, together with suggested units and metrics associated with them, divided in eight different thematic areas. It can be considered as an important contribution in the global efforts to understand climatic change, shaping policies and setting goals associated with it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    European Commission, Eco-innovation index. https://ec.europa.eu/environment/ecoap/indicators/index_en.

  2. 2.

    Visualizations of this project: https://superworld.cyens.org.cy/demo2.html.

References

  1. NASA Global Climate Change.: Vital signs of the planet. https://climate.nasa.gov/vital-signs/global-temperature/. Accessed 25 Dec 2019 (2018)

  2. Côté, I.M., Darling, E.S.: Rethinking ecosystem resilience in the face of climate change. PLoS Biol 8(7), e1000438 (2010)

    Google Scholar 

  3. Hristov, Ivo, Chirico, Antonio: The role of sustainability key performance indicators (kpis) in implementing sustainable strategies. Sustainability 11(20), 5742 (2019)

    Article  Google Scholar 

  4. European Environment Agency. Climate change, impacts and vulnerability in Europe 2016—an indicator-based report. EEA Report No. 1/2017 (2016)

    Google Scholar 

  5. Rogelj, J., Shindell, D., Jiang, K., Fifita, S., Forster, P., Ginzburg, V., Handa, C., Kheshgi, H., Kobayashi, S., Kriegler, E., et al.: Mitigation pathways compatible with 1.5 c in the context of sustainable development. In: Global warming of 1.5\({}^{\circ }\) C, pp. 93–174. Intergovernmental Panel on Climate Change (IPCC) (2018)

    Google Scholar 

  6. Burck, Jan, Hagen, Ursula, Höhne, Niklas, Nascimento, Leonardo, Bals, Christoph: Climate change performance index 2021. Germanwatch, Bonn (2020)

    Google Scholar 

  7. Jamous, N., Müller, K.: Environmental performance indicators. In: Organizations’ Environmental Performance Indicators, pp. 3–18. Springer (2013)

    Google Scholar 

  8. Angelakoglou, Komninos, Nikolopoulos, Nikos, Giourka, Paraskevi, Svensson, Inger-Lise., Tsarchopoulos, Panagiotis, Tryferidis, Athanasios, Tzovaras, Dimitrios: A methodological framework for the selection of key performance indicators to assess smart city solutions. Smart Cities 2(2), 269–306 (2019)

    Article  Google Scholar 

  9. Huovila, Aapo, Bosch, Peter, Airaksinen, Miimu: Comparative analysis of standardized indicators for smart sustainable cities: what indicators and standards to use and when? Cities 89, 141–153 (2019)

    Article  Google Scholar 

  10. Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., Van Diemen, R., et al.: Ipcc9: Climate change and land: an ipcc special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems (2019)

    Google Scholar 

  11. Eckstein, David, Künzel, Vera, Schäfer, Laura, Winges, Maik: Global climate risk index 2020. Germanwatch, Bonn (2019)

    Google Scholar 

  12. United Nations. Transforming our world: the 2030 Agenda for Sustainable Development (2015)

    Google Scholar 

  13. Pielke, R.A., Misdefining, Jr.: “climate change”: consequences for science and action. Environ. Sci. Policy 8(6), 548–561 (2005)

    Google Scholar 

  14. Houghton, Ed.: Climate change 1995: The science of climate change: contribution of working group I to the second assessment report of the Intergovernmental Panel on Climate Change, vol. 2. Cambridge University Press (1996)

    Google Scholar 

  15. Easterbrook, D.J.: Greenhouse gases. In: Evidence-Based Climate Science: Data Opposing CO2 Emissions as the Primary Source of Global Warming: Second Edition, pp. 163–173. Elsevier (2016)

    Google Scholar 

  16. Houghton, J.: Global Warming The Complete Briefing, 3rd edn. Cambridge University Press (2004)

    Google Scholar 

  17. El Zein, Ahmad L.: The effect of greenhouse gases on earth’s temperature. Int J Environ Monit Anal 3(2), 74 (2015)

    Google Scholar 

  18. Budi Kurniawan, S., Sheikh Abdullah, S.R., Imron, M.F., Ismail N.: Current state of marine plastic pollution and its technology for more eminent evidence: a review. J Clean Prod 278, 123537 (2021)

    Google Scholar 

  19. Billard, G., Boucher, J.: The challenges of measuring plastic pollution. Field Actions Sci Rep 2019 (Special Issue 19), 68–75 (2019)

    Google Scholar 

  20. Chadar, S., Keerti, C.: Solid waste pollution: a hazard to environment. Recent Adv Petrochem Sci2(3) (2017)

    Google Scholar 

  21. Hamer, G.: Solid waste treatment and disposal: effects on public health and environmental safety. Biotechnol Adv 22(1–2), 71–79 (12 2003)

    Google Scholar 

  22. Woldemar d’Ambrières. Plastics recycling worldwide: current overview and desirable changes. Technical Report Special Issue 19 (2019)

    Google Scholar 

  23. Popa, Cristina, Petrus, Mioara: Heavy metals impact at plants using photoacoustic spectroscopy technology with tunable CO2 laser in the quantification of gaseous molecules. Microchem J 134, 390–399 (2017)

    Article  Google Scholar 

  24. Inyinbor, A.A., Adebesin, B.O., Abimbola, O.P., Adelani-Akande, T.A., Adewumi, D.O., Oreofe, T.A.: Water pollution: effects, prevention, and climatic impact. In: Water Challenges of an Urbanizing World. InTech (3 2018)

    Google Scholar 

  25. Almond, R.E.A., Grooten, M., Petersen, T.: WWF Living Planet Report 2020. Technical Report 2 (2020)

    Google Scholar 

  26. World Health Organization. Drinking Water Fact Sheet (2019)

    Google Scholar 

  27. CDP. Cities 2020 Questionnaire - CDP Cities disclosure cycle 2020, 2020

    Google Scholar 

  28. Soto-Montes, Gloria, Herrera-Pantoja, Marina: Implications of climate change on water resource management in megacities in developing countries: Mexico city case study. Environ Manag Sustain Dev 5(1), 47 (2015)

    Article  Google Scholar 

  29. Stephenson, M.: Energy and climate change: an introduction to geological controls, interventions and mitigations. In: Energy and Climate Change: An Introduction to Geological Controls, Interventions and Mitigations, pp. 175–178. Elsevier (2018)

    Google Scholar 

  30. Ritchie, H., Roser, M.: Energy. Our World in Data (2020)

    Google Scholar 

  31. Kummu, M., de Moel, H., Porkka, M., Siebert, S., Varis, O., Ward, P.J.: Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and Fertiliser use. Sci Total Environ 438, 477–489 (2012)

    Google Scholar 

  32. FAO, IFAD, UNICEF, WFP, and WHO. The State of Food Security and Nutrition in the World 2020. Technical report (2020)

    Google Scholar 

  33. Banholzer, S., Kossin, J., Donner, S.: The impact of climate change on natural disasters. In: Reducing Disaster: Early Warning Systems for Climate Change, vol. 9789401785, pp. 21–49. Springer (2014)

    Google Scholar 

  34. Schoennagel, T., Balch, J.K., Brenkert-Smith, H., Dennison, P.E., Harvey, B.J., Krawchuk, M.A., Mietkiewicz, N., Morgan, P., Moritz, M.A., Rasker, R., Turner, M.G., Whitlock, C.: Adapt tomore wildfire in western North American forests as climate changes (2017)

    Google Scholar 

  35. Hore, K., Kelman, I., Mercer, J., Gaillard, J.C.: Climate Change and Disasters. In: Handbook of Disaster Research, pp. 145–159. Springer International Publishing (2018)

    Google Scholar 

  36. Rahtore, A., Jasrai, Y.T.: Biodiversity : importance and climate change impacts. Int J Sci Res Publ 3(3), 5 (2013)

    Google Scholar 

  37. Tim Newbold et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353(6296), 288–291 (7 2016)

    Google Scholar 

  38. Ritchie, H., Roser, M.: CO2 and Greenhouse Gas Emissions. In: Our World in Data (2020)

    Google Scholar 

  39. Nanaki, Evanthia A., Koroneos, Christopher J.: Climate change mitigation and deployment of electric vehicles in urban areas. Renew Energy 99, 1153–1160 (2016)

    Article  Google Scholar 

  40. American Public Transportation Association. Public Transportation Reduces Greenhouse Gases and Conserves Energy (2008)

    Google Scholar 

  41. Banister, David: Cities, mobility and climate change. Journal of Transport Geography 19(6), 1538–1546 (2011)

    Article  Google Scholar 

  42. Silva Junior, C.H.L., Pessôa, A.C.M., Carvalho, N.S., Reis, J.B.C., Anderson, L.O., Aragão, L.E.O.C.: The Brazilian Amazon deforestation rate in 2020 is the greatest of the decade. Nat Ecol Evol 5(2), 144–145 (2 2021)

    Google Scholar 

  43. Vieira, I.C.G., Toledo, P.M., Silva, J.M.C., Higuchi, H.: Deforestation and threats to the biodiversity of Amazonia. Braz J Biol 68(4 suppl):949–956 (11 2008)

    Google Scholar 

  44. Organisation for Economic Co-operation and Development. Agriculture and Climate Change: Towards Sustainable, Productive and Climate-Friendly Agricultural Systems (2016)

    Google Scholar 

  45. Selvaraju, R.: Climate risk assessment and management in agriculture. In Building resilience for adaptation to climate change in the agriculture sector, pp. 71–90 (2012)

    Google Scholar 

  46. European Environment Agency. Agriculture and climate change (2015)

    Google Scholar 

  47. Arnell, N.W., Lowe, J.A., Challinor, A.J., Osborn, T.J.: Global and regional impacts of climate change at different levels of global temperature increase. Climatic Change 155(3), 377–391 (2019)

    Article  Google Scholar 

  48. Mimura, N.: Sea-level rise caused by climate change and its implications for society (2013)

    Google Scholar 

  49. Burck, J., Ursula, H., Christoph, B., Niklas, H., Leonardo, N.: Climate Change Performance Index. Technical report, Germanwatch, Bonn (2020)

    Google Scholar 

  50. European Commission. 2030 Climate & Energy Framework (2018)

    Google Scholar 

  51. European Commission. Land use and forestry regulation for 2021–2030 (2020)

    Google Scholar 

  52. European Commission. Biodiversity strategy for 2030 (2021)

    Google Scholar 

  53. European Commission. Energy Efficiency Targets (2014)

    Google Scholar 

  54. IQAir. World Air Quality Report. 2020 World Air Quality Report, (August):1–35 (2020)

    Google Scholar 

  55. United Nations Environmental Programme (UNEP). Legal Limits on Single-Use Plastics and Microplastics. Technical report (2018)

    Google Scholar 

  56. Jambeck, J.R., Geyer, R., Wilcox, C., Siegler, T.R., Perryman, M., Andrady, A., Narayan, R., Lavender Law, K.: Plastic waste inputs from land into the ocean. Science 347(6223), 768–771 (2015)

    Google Scholar 

  57. The World Bank. What a Waste Global Database (2018)

    Google Scholar 

  58. FAO. AQUASTAT Core Database

    Google Scholar 

  59. Ritchie, H.: Energy Production and Consumption. In: Our World in Data (2019)

    Google Scholar 

  60. Ritchie, H., Roser, M.: Renewable Energy. In: Our World in Data (2020)

    Google Scholar 

  61. Kieffer, G., Couture, T.D.: Renewable Energy Target Setting. Technical Report (June 2015)

    Google Scholar 

  62. Commission, European: 2019 assessment of the progress made by Member States towards the national energy efficiency targets for 2020. Technical report, Brussels (2020)

    Google Scholar 

  63. United Nations Environment Programme. Food Waste Index Report 2021. Technical report (2021)

    Google Scholar 

  64. Global Footprint Network. Ecological Footprint per Person (2019)

    Google Scholar 

  65. David, E., Vera, K., Laura, S.: Global climate risk index 2021. Technical report, Germanwatch, Bonn (2021)

    Google Scholar 

  66. Organisation for Economic Co-operation and Development. Protected Areas. In: OECD.Stat

    Google Scholar 

  67. European Commission. Fishing Quotas (2021)

    Google Scholar 

  68. Ritchie, H.: Where in the world do people have the highest CO2 emissions from flying? In Our World in Data (2020)

    Google Scholar 

  69. Ritchie, H.: Deforestation and Forest Loss. In: Our World in Data

    Google Scholar 

  70. Ritchie, H.: Forest area. In: Our World in Data

    Google Scholar 

  71. Organisation for Economic Co-operation and Development. Greenhouse gas emissions

    Google Scholar 

  72. Hannah Ritchie and Max Roser. Land Use. In: Our World in Data (2019)

    Google Scholar 

  73. Hannah Ritchie and Max Roser. Air pollution. In: Our World in Data (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Kamilaris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schokker, J., Kamilaris, A., Karatsiolis, S. (2022). A Review on Key Performance Indicators for Climate Change. In: Wohlgemuth, V., Naumann, S., Behrens, G., Arndt, HK. (eds) Advances and New Trends in Environmental Informatics. ENVIROINFO 2021. Progress in IS. Springer, Cham. https://doi.org/10.1007/978-3-030-88063-7_17

Download citation

Publish with us

Policies and ethics