Skip to main content

A Novel Approach to Determining the Radius of the Neighborhood Required for the DBSCAN Algorithm

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12854))

Included in the following conference series:

  • 1001 Accesses

Abstract

Data clustering is one of the most important methods used to discover naturally occurring structures in datasets. One of the most popular clustering algorithms is the Density-Based Spatial Clustering of Applications with Noise (DBSCAN). This algorithm can discover clusters of arbitrary shapes in datasets and thus it has been widely applied in many different applications. However, the DBSCAN requires two input parameters, i.e. the radius of the neighborhood (eps) and the minimum number of points required to form a dense region (MinPts). The right choice of the two parameters is a fundamental issue. In this paper, a new method is proposed to determine the radius parameter. In this approach the distances between each element in the dataset and its k-th nearest neighbor are used, and then in these distances abrupt changes in values are identified. The performance of the new approach has been demonstrated for several different datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bilski, J., Smoląg, J.: Parallel architectures for learning the RTRN and Elman dynamic neural networks. IEEE Trans. Parallel Distrib. Syst. 26(9), 2561–2570 (2015)

    Article  Google Scholar 

  2. Bilski, J., Kowalczyk, B., Marchlewska, A., Zurada, J.M.: Local levenberg-marquardt algorithm for learning feedforward neural networks. J. Artif. Intell. Soft Comput. Res. 10(4), 299–316 (2020)

    Article  Google Scholar 

  3. Boonchoo, T., Ao, X., Liu, Y., Zhao, W., He, Q.: Grid-based DBSCAN: indexing and inference. Pattern Recogn. 90, 271–284 (2019)

    Article  Google Scholar 

  4. Bradley P., Fayyad U.: Refining initial points for k-means clustering. In: Proceedings of the Fifteenth International Conference on Knowledge Discovery and Data Mining, New York, AAAI Press, pp. 9–15 (1998)

    Google Scholar 

  5. Chen, Y., Tang, S., Bouguila, N., Wanga, C., Du, J., Li, H.: A fast clustering algorithm based on pruning unnecessary distance computations in DBSCAN for high-dimensional data. Pattern Recogn. 83, 375–387 (2018)

    Article  Google Scholar 

  6. Darong H., Peng W.: Grid-based dbscan algorithm with referential parameters. Phys. Procedia 24, Part B, 1166–1170 (2012)

    Google Scholar 

  7. Dziwiṅski, P., Bartczuk, Ł, Paszkowski, J.: A new auto adaptive fuzzy hybrid particle swarm optimization and genetic algorithm. J. Artif. Intell. Soft Comput. Res. 10(2), 95–111 (2020)

    Google Scholar 

  8. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceeding of 2nd International Conference on Knowledge Discovery and Data Mining, pp. 226–231 (1996)

    Google Scholar 

  9. Ferdaus, M., Anavatti, S.G., Garratt, M.A., Pratama, M.: Development of C-means clustering based adaptive fuzzy controller for a flapping wing micro air vehicle. J. Artif. Intell. Soft Comput. Res. 9(2), 99–109 (2019)

    Article  Google Scholar 

  10. Fränti, P., Rezaei, M., Zhao, Q.: Centroid index: cluster level similarity measure. Pattern Recogn. 47(9), 3034–3045 (2014)

    Article  Google Scholar 

  11. Gabryel, M.: Data analysis algorithm for click fraud recognition. Commun. Comput. Inf. Sci. 920, 437–446 (2018)

    Google Scholar 

  12. Gałkowski, T., Krzyak, A., Filutowicz, Z.: A new approach to detection of changes in multidimensional patterns. J. Artif. Intell. Soft Comput. Res. 10(2), 125–136 (2020)

    Google Scholar 

  13. Grycuk, R., Najgebauer, P., Kordos, M., Scherer, M., Marchlewska, A.: Fast image index for database management engines. J. Artif. Intell. Soft Comput. Res. 10(2), 113–123 (2020)

    Article  Google Scholar 

  14. Hruschka E.R., de Castro L.N., Campello R.J.: Evolutionary algorithms for clustering gene-expression data, In: Fourth IEEE International Conference on Data Mining, 2004, ICDM 2004, pp. 403–406. IEEE (2004)

    Google Scholar 

  15. Jain, A., Dubes, R.: Algorithms for clustering data. Prentice-Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  16. Karami, A., Johansson, R.: Choosing DBSCAN parameters automatically using differential evolution. Int. J. Comput. Appl. 91, 1–11 (2014)

    Google Scholar 

  17. Luchi, D., Rodrigues, A.L., Varejao, F.M.: Sampling approaches for applying DBSCAN to large datasets. Pattern Recogn. Lett. 117, 90–96 (2019)

    Article  Google Scholar 

  18. Meng X., van Dyk D.: The EM algorithm - An old folk-song sung to a fast new tune. J. Royal Stat. Soc. Series B (Methodological) 59(3), 511–567 (1997)

    Google Scholar 

  19. Murtagh, F.: A survey of recent advances in hierarchical clustering algorithms. Comput. J. 26(4), 354–359 (1983)

    Article  Google Scholar 

  20. Nowicki, R., Grzanek, K., Hayashi, Y.: Rough support vector machine for classification with interval and incomplete data. J. Artif. Intell. Soft Comput. Res. 10(1), 47–56 (2020)

    Article  Google Scholar 

  21. Patrikainen, A., Meila, M.: Comparing subspace clusterings. IEEE Trans. Knowl. Data Eng. 18(7), 902–916 (2006)

    Article  Google Scholar 

  22. Rohlf, F.: Single-link clustering algorithms. In: Krishnaiah, P.R., Kanal, L.N. (eds.), Handbook of Statistics, vol. 2, pp. 267–284 (1982)

    Google Scholar 

  23. Sameh, A.S., Asoke, K.N.: Development of assessment criteria for clustering algorithms. Pattern Anal. Appl. 12(1), 79–98 (2009)

    Article  MathSciNet  Google Scholar 

  24. Shah, G.H.: An improved dbscan, a density based clustering algorithm with parameter selection for high dimensional data sets. In: Nirma University International Engineering, (NUiCONE), pp. 1–6 (2012)

    Google Scholar 

  25. Sheikholeslam, G., Chatterjee, S., Zhang, A.: WaveCluster: a wavelet-based clustering approach for spatial data in very large databases. Int. J. Very Large Data Bases 8(3–4), 289–304 (2000)

    Article  Google Scholar 

  26. Shieh, H.-L.: Robust validity index for a modified subtractive clustering algorithm. Appl. Soft Comput. 22, 47–59 (2014)

    Article  Google Scholar 

  27. Starczewski, A.: A new validity index for crisp clusters. Pattern Anal. Appl. 20(3), 687–700 (2017)

    Article  MathSciNet  Google Scholar 

  28. Starczewski, A., Cader, A.: Determining the Eps parameter of the DBSCAN algorithm. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2019. LNCS (LNAI), vol. 11509, pp. 420–430. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20915-5_38

    Chapter  Google Scholar 

  29. Starczewski, J., Goetzen, P., Napoli, C.: Triangular fuzzy-rough set based fuzzification of fuzzy rule-based systems. J. Artif. Intell. Soft Comput. Res. 10(4), 271–285 (2020)

    Article  Google Scholar 

  30. Wang, W., Yang, J., Muntz, R.: STING: a statistical information grid approach to spatial data mining. In: Proceedings of the 23rd International Conference on Very Large Data Bases, VLDB 1997, pp. 186–195 (1997)

    Google Scholar 

  31. Viswanath, P., Suresh Babu, V.S.: Rough-dbscan: a fast hybrid density based clustering method for large data sets. Pattern Recogn. Lett. 30(16), 1477–1488 (2009)

    Article  Google Scholar 

  32. Zalik, K.R.: An efficient k-means clustering algorithm. Pattern Recogn. Lett. 29(9), 1385–1391 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Starczewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Starczewski, A. (2021). A Novel Approach to Determining the Radius of the Neighborhood Required for the DBSCAN Algorithm. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2021. Lecture Notes in Computer Science(), vol 12854. Springer, Cham. https://doi.org/10.1007/978-3-030-87986-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87986-0_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87985-3

  • Online ISBN: 978-3-030-87986-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics