Skip to main content

Presurgical Evaluation of Children with Tuberous Sclerosis Complex and Epilepsy

  • Chapter
  • First Online:
Neurocutaneous Disorders

Abstract

Between 80% and 90% of patients with tuberous sclerosis complex (TSC) will suffer from various types of epileptic seizures early in life, which is one of the most frequent clinical manifestations of this congenital neurocutaneous multiorgan disease. Cortical tubers are the hallmark for TSC-associated epilepsy, present in almost 90% of the affected population. These tubers were traditionally considered inoperable, but advanced imaging techniques, the use of invasive EEG monitoring, and encouraging published data in infants and children with TSC over the last two decades have made perspectives on epilepsy surgery more optimistic. This chapter describes the different aspects of intractable epilepsy in the context of TSC, the selection process of identifying eligible candidates for a curative surgery, and the methods to localize the epileptogenic zone, which is crucial in obtaining a favorable postoperative outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roach ES, Gomez MR, Northrup H. Tuberous sclerosis complex consensus conference: revised clinical diagnostic criteria. J Child Neurol. 1998;13:624–8.

    Article  CAS  PubMed  Google Scholar 

  2. Northrup H, Krueger DA. International tuberous sclerosis complex consensus group tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 international tuberous sclerosis complex consensus conference. Pediatr Neurol. 2013;49:243–54.

    Article  PubMed  PubMed Central  Google Scholar 

  3. de Vries P, Whittemore V, Leclezio L, et al. Tuberous sclerosis associated neuropsychiatric disorders (TAND) and the TAND checklist. Pediatr Neurol. 2015;52:25–35.

    Article  PubMed  Google Scholar 

  4. Kannan L, Vogrin S, Bailey C, et al. Centre of epileptogenic tubers generate and propagate seizures in tuberous sclerosis. Brain. 2016;139:2653–67.

    Article  PubMed  Google Scholar 

  5. Major P, Rakowski S, Simon MV, et al. Are cortical tubers epileptogenic? evidence from electrocorticography. Epilepsia. 2009;50:147–54.

    Article  PubMed  Google Scholar 

  6. Ma TS, Elliott RE, Ruppe V, et al. Electrocorticographic evidence of perituberal cortex epileptogenicity in tuberous sclerosis complex. J Neurosurg Pediatr. 2012;10:376–82.

    Article  PubMed  Google Scholar 

  7. Thiele EA. Managing and understanding epilepsy in tuberous sclerosis complex. Epilepsia. 2012;51(1):90–1.

    Google Scholar 

  8. O’Callaghan FJ, Harris T, Joinson C, et al. The relation of infantile spasms, tubers, and intelligence in tuberous sclerosis complex. Arch Dis Child. 2004;89:530–3.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Winterkorn EB, Pulsifer MB, Thiele EA. Cognitive prognosis of patients with tuberous sclerosis complex. Neurology. 2007;68:62–4.

    Article  PubMed  Google Scholar 

  10. Curatolo P, Moavero R, de Vries P. Neurological and neuropsychiatric aspects of tuberous sclerosis complex. Lancet Neurol. 2015;14:733–45.

    Article  PubMed  Google Scholar 

  11. Curatolo P, Jóźwiak S, Nabbout R. TSC consensus meeting for SEGA and epilepsy management (2012) management of epilepsy associated with tuberous sclerosis complex (TSC): clinical recommendations. Eur J Paediatr Neurol. 2013;16:582–6.

    Article  Google Scholar 

  12. Madhavan D, Schaffer S, Yankovsky A, et al. Surgical outcome in tuberous sclerosis complex: a multicenter survey. Epilepsia. 2007;48:1625–8.

    Article  PubMed  Google Scholar 

  13. Jansen FE, van Huffelem AC, Algra A, et al. Epilepsy surgery in tuberous sclerosis: a systematic review. Epilepsia. 2007;48:1477–84.

    Article  PubMed  Google Scholar 

  14. Krsek P, Jahodova A, Kyncl M, et al. Predictors of seizure-free outcome after epilepsy surgery for pediatric tuberous sclerosis complex. Epilepsia. 2013;54:1913–21.

    Article  PubMed  Google Scholar 

  15. Liang S, Zhang J, Yang Z, et al. Long-term outcomes of epilepsy surgery in tuberous sclerosis complex. J Neurol. 2017;264:1146–54.

    Article  PubMed  Google Scholar 

  16. Arya R, Tenney JR, Horn PS, et al. Long-term outcomes of resective epilepsy surgery after invasive presurgical evaluation in children with tuberous sclerosis complex and bilateral multiple lesions. J Neurosur Pediatr. 2015;15:26–33.

    Article  Google Scholar 

  17. Fallah A, Rodgers SD, Weil AG, et al. Resective epilepsy surgery for tuberous sclerosis in children: determining predictors of seizure outcomes in a multicenter retrospective cohort study. Neurosurgery. 2015;77:517–24.

    Article  PubMed  Google Scholar 

  18. Fohlen M, Taussig D, Ferrand-Sorbets S, et al. Refractory epilepsy in preschool children with tuberous sclerosis complex: early surgical treatment and outcome. Seizure. 2018;60:71–9.

    Article  PubMed  Google Scholar 

  19. Zhang K, Hu W-H, Zhang C, et al. Predictors of seizure freedom after surgical management of tuberous sclerosis complex: a systematic review and meta-analysis. Epilepsy Res. 2013;105:377–83.

    Article  PubMed  Google Scholar 

  20. Chipaux M, Dorfmüller G, Fohlen M, et al. Refractory spasms of focal onset-a potentially curable disease that should lead to rapid surgical evaluation. Seizure. 2017;51:163–70.

    Article  PubMed  Google Scholar 

  21. Lee Y-J, Lee JS, Kang H-C, et al. Outcomes of epilepsy surgery in childhood-onset epileptic encephalopathy. Brain Development. 2014;36:496–504.

    Article  PubMed  Google Scholar 

  22. Curatolo P, Nabbout R, Lagae L, et al. Management of epilepsy associated with tuberous sclerosis complex: updated clinical recommendations. Eur J Paediatr Neurol. 2018;22:738–48.

    Article  PubMed  Google Scholar 

  23. Koh S, Jayakar P, Dunoyer C, et al. Epilepsy surgery in children with tuberous sclerosis complex: presurgical evaluation and outcome. Epilepsia. 2000;41:1206–13.

    Article  CAS  PubMed  Google Scholar 

  24. Ostrowsky-Coste K, Neal A, Guenot M, et al. Resective surgery in tuberous sclerosis complex, from Penfield to 2018: a critical review. Rev Neurol (Paris). 2019;175:163–82.

    Article  CAS  Google Scholar 

  25. Loddenkemper T, Holland KD, Stanford LD, et al. Developmental outcome after epilepsy surgery in infancy. Pediatrics. 2007;119:930–5.

    Article  PubMed  Google Scholar 

  26. Specchio N, Pepi C, de Palma L, et al. Surgery for drug-resistant tuberous sclerosis complex-associated epilepsy: who, when, and what. Epileptic Disord. 2021;23:53–73.

    Article  PubMed  Google Scholar 

  27. Chu-Shore CJ, Major P, Montenegro M, et al. Cyst-like tubers are associated with TSC2 and epilepsy in tuberous sclerosis complex. Neurology. 2009;72:1165–9.

    Article  PubMed  Google Scholar 

  28. Gallagher A, Grant EP, Madan N, et al. MRI findings reveal three different types of tubers in patients with tuberous sclerosis complex. J Neurol. 2010;257:1373–81.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Engel J Jr, Henry TR, Risinger MW, et al. Presurgical evaluation for partial epilepsy: relative contributions of chronic depth-electrode recordings versus FDG-PET and scalp-sphenoidal ictal EEG. Neurology. 1990;40:1670–7.

    Article  PubMed  Google Scholar 

  30. Gaillard WD, White S, Malow B, et al. FDG-PET in children and adolescents with partial seizures: role in epilepsy surgery evaluation. Epilepsy Res. 1995;20:77–84.

    Article  CAS  PubMed  Google Scholar 

  31. Ollenberger GP, Byrne AJ, Berlangieri SU, et al. Assessment of the role of FDG PET in the diagnosis and management of children with refractory epilepsy. Eur J Nucl Med Mol Imaging. 2005;32:1311–6.

    Article  PubMed  Google Scholar 

  32. Salamon N, Kung J, Shaw SJ. FDG-PET/MRI coregistration improves detection of cortical dysplasia in patients with epilepsy. Neurology. 2008;71:1594–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chandra PS, Salamon N, Huang J, et al. FDG-PET/MRI Coregistration and diffusion-tensor imaging distinguish epileptogenic tubers and cortex in patients with tuberous sclerosis complex: a preliminary report. Epilepsia. 2006;47:1543–9.

    Article  PubMed  Google Scholar 

  34. Wu JY, Sutherling WW, Koh S, et al. Magnetic source imaging localizes epileptogenic zone in children with tuberous sclerosis complex. Neurology. 2006;66:1270–2.

    Article  CAS  PubMed  Google Scholar 

  35. De Tiege X, Lundqvist D, Beniczky S, et al. Current clinical magnetoencephalography practice across Europe: are we closer to use MEG as an established clinical tool? Seizure. 2017;50:53–9.

    Article  PubMed  Google Scholar 

  36. Wu JY, Salamon N, Kirsch HE, et al. Noninvasive testing, early surgery, and seizure freedom in tuberous sclerosis complex. Neurology. 2010;74:392–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chugani HT, Luat AF, Kumar A, et al. Alpha-[11C]-methyl-L-tryptophan–PET in 191 patients with tuberous sclerosis complex. Neurology. 2013;81:674–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Koh S, Jayakar P, Resnick T, et al. The localizing value of ictal SPECT in children with tuberous sclerosis complex and refractory partial epilepsy. Epileptic Disord. 1999;1(1):41–6.

    CAS  PubMed  Google Scholar 

  39. Brinkmann BH, O’Brien TJ, Mullan BP, et al. Subtraction ictal SPECT coregistered to MRI for seizure focus localization in partial epilepsy. Mayo Clin Proc. 2000;75:615–24.

    Article  CAS  PubMed  Google Scholar 

  40. Hyslop A, Duchowny M. Electrical stimulation mapping in children. Seizure. 2020;77:59–63.

    Article  PubMed  Google Scholar 

  41. Taussig D, Chipaux M, Fohlen M, et al. Invasive evaluation in children (SEEG vs subdural grids). Seizure. 2020;77:43–51.

    Article  PubMed  Google Scholar 

  42. Yang T, Hakimian S, Schwartz TH. Intraoperative electrocorticography (ECoG): indications, techniques, and utility in epilepsy surgery. Epileptic Disord. 2014;16:271–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Dorfmüller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dorfmüller, G., Fohlen, M. (2022). Presurgical Evaluation of Children with Tuberous Sclerosis Complex and Epilepsy. In: Panteliadis, C.P., Benjamin, R., Hagel, C. (eds) Neurocutaneous Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-87893-1_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87893-1_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87892-4

  • Online ISBN: 978-3-030-87893-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics