Skip to main content

Signal Processing and Analysis Techniques Applied in Nuclear Quadrupole Resonance

  • Chapter
  • First Online:
Signal Processing and Analysis Techniques for Nuclear Quadrupole Resonance Spectroscopy

Part of the book series: Signals and Communication Technology ((SCT))

  • 279 Accesses

Abstract

This chapter aims to be a literature review regarding the techniques applied for signal processing and analysis in nuclear quadrupole resonance detection applications. The chapter starts with a general classification, then it presents the pre- and post-processing techniques and, finally, the it discusses future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Reprinted from J. of the Franklin Inst., vol. 357, issue 17, C. Monea, A review of NQR signal processing and analysis techniques, Pages 13,085–13,124, Copyright 2020, with permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER].

References

  1. Monea, C.: A review of NQR signal processing and analysis techniques. J. Franklin Inst. 357(17), 13085–13124 (2020)

    Article  MathSciNet  Google Scholar 

  2. Monea, C.: Signal processing and analysis methods in nuclear quadrupole resonance spectroscopy. J. Electrical Eng. Electron. Control Comput. Sci. 4(2), 1–8 (2018)

    Google Scholar 

  3. Butt, N.R., Gudmundson, E., Jakobsson, A.: An Overview of NQR Signal Detection Algorithms, Magnetic Resonance Detection of Explosives and Illicit Materials, pp. 19–33 (2013)

    Google Scholar 

  4. Hemnani, P., Joshi, G., Rajarajan, A.K., Ravindranath, S.V.: 14N NQR spectrometer for explosive detection: a review. Int. Conf. Automat. Control Dyn. Optimizat. Tech. (2016)

    Google Scholar 

  5. Xinwang, Z.: A Low-power Compact Nuclear Quadrupole Resonance (NQR) Based Explosive Detection System. Ph.D thesis, University of Nebraska, Lincoln (2014)

    Google Scholar 

  6. Tagare, P.: Signal Averaging, Biomedical Digital Signal Processing, pp. 184–192. Prentice-Hall (1993)

    Google Scholar 

  7. NMR Analysis.: Sensitivity Enhancement for free? Internet: http://nmr-analysis.blogspot.com/2008/07/sensitivity-enhancement-for-free.html. 13 Aug. 2020

  8. Kyriakidou, G.: Medicine Authentication using Nuclear Quadrulope Resonance. Ph.D. thesis, King’s College London (2016)

    Google Scholar 

  9. Vaseghi, S.V.: Advanced Digital Signal Processing and Noise Reduction, Fourth edn. Wiley (2008)

    Google Scholar 

  10. Somasundaram, S.D., Althoefer, K., Smith, A.S., Seneviratne, L.D.: Detection of landmines using nuclear quadrupole resonance (NQR): Signal processing to aid classification. In: Climbing and Walking Robots, pp. 833–840 (2006)

    Google Scholar 

  11. Kronval, S., Kronval, T.: Detection of Illegal Narcotics Using NQR. Masters thesis, University of Lund (2012)

    Google Scholar 

  12. Gudmundson, E., Wirfalt, P., Jakobsson, A., Jansson, M.: An ESPRIT-based parameter estimator for spectroscopic data. IEEE Stat. Signal Process. Workshop (2012)

    Google Scholar 

  13. Jakobsson, A., Mossberg, M., Rowe, M.D., Smith, J.A.S.: Exploiting temperature dependency in the detection of NQR signals. IEEE Trans. Signal Process. 54(5), 1610–1616 (2006)

    Article  Google Scholar 

  14. Jakobsson, A., Mossberg, M., Rowe, M.D., Smith, J.A.S.: Frequency-selective detection of nuclear quadrupole resonance signals. IEEE Trans. Geosci. Remote Sensing 43(11), 2659–2665 (2005)

    Google Scholar 

  15. Somasundaram, S.D., Jakobsson, A., Gudmundson, E.: Exploiting spin echo decay in the detection of nuclear quadrupole resonance signals. IEEE Trans. Geosci. Remote Sensing 45(4), 925–933 (2007)

    Google Scholar 

  16. Somasundaram, S.D., Jakobsson, A., Gudmundson, E.: Robust nuclear quadrupole resonance signal detection allowing for amplitude uncertainties. IEEE Trans. Signal Process. 56(3), 887–894 (2008)

    Article  MathSciNet  Google Scholar 

  17. Somasundaram, S.D., Jakobsson, A., Smith, J.A.S.: Analysis of nuclear quadrupole resonance signals from mixtures. Signal Process. 88(1), 146–157 (2008)

    Article  Google Scholar 

  18. Butt, N., et al.: Robust detection of polymorphic NQR signals. In: 15th European Signal Processing Conference (EUSIPCO) (2007)

    Google Scholar 

  19. Somasundaram, S.D., et al.: Robust detection of stochastic nuclear quadrupole resonance signals. IEEE Trans. Signal Process. 56(9), 4221–4229 (2008)

    Article  MathSciNet  Google Scholar 

  20. Somasundaram, S.D., et al.: Detecting stochastic nuclear quadrupole resonance signals in the presence of strong radio frequency interference. In: IEEE International Conference on Acoustics, Speech and Signal Process (2008)

    Google Scholar 

  21. Somasundaram, S.D., Jakobsson, A., Butt, N.R.: Countering radio frequency interference in single-sensor quadrupole resonance. IEEE Geosci. Remote Sensing Lett. 6(1), 62–66 (2009)

    Article  Google Scholar 

  22. Rudberg, T., Jakobsson, A.: Robust detection of nuclear quadrupole resonance signals in a non-shielded environment. In: Proceedings of the 19th European Signal Processing Conference (EUSIPCO) (2011)

    Google Scholar 

  23. Svensson, A., Jakobsson, A.: Adaptive detection of a partly known signal corrupted by strong interference. IEEE Signal Process. Lett. 18(12), 729–732 (2011)

    Article  Google Scholar 

  24. Swärd, J., Jakobsson, A.: Canceling stationary interference signals exploiting secondary data. In: 22nd European Signal Processing Conference (EUSIPCO) (2014)

    Google Scholar 

  25. Shao, W., Barras, J., Althoefer, K., Kosmas, P.: Detecting NQR signals severely polluted by interference. Signal Proces 138, 256–264 (2017)

    Article  Google Scholar 

  26. Shao, W., Kosmas, P., Althoefer, K., Barras, J.: Canceling strong and complex interference in NQR-based landmine detection. In: IEEE International Conference on Information and Automation for Sustainability (2016)

    Google Scholar 

  27. Shao, W., Barras, J., Kosmas, P.: A novel wavelets method for cancelling time-varying interference in NQR signal detection. Signal Process. 154, 238–249 (2019)

    Article  Google Scholar 

  28. Hemnani, P., Rajarajan, A.K., Joshi, G., Ravindranath, S.V.G.: The building of pulsed NQR/NMR sSpectrometer. Int. J. Electri. Comput. Eng. 8(3), 1442–1450 (2018)

    Google Scholar 

  29. Hemnani, P., Rajarajan, A.K., Joshi, G., Ravindranath, S.V.G.: Detection of NQR signals using wavelet transform and adaptive filters. Int. J. Instrum. Tech. 2(1), 34–49 (2018)

    Google Scholar 

  30. Cardona, L.R.: Nuclear Quadrupole Resonance System for Landmine Detection in Antioquia. Ph.D. thesis, National University of Colombia (2017)

    Google Scholar 

  31. Shao, W., Barras, J., Kosmas, P.: Detection of extremely weak NQR signals using stochastic resonance and neural network theories. Signal Process. 142, 96–103 (2018)

    Article  Google Scholar 

  32. Schiano, J., Routhier, T., Blauch, A.J., Ginsberg, M.D.: Feedback OPTIMIZATION OF PULSE WIdth in the SORC sequence. J. Magn. Reson. 140, 84–90 (1999)

    Article  Google Scholar 

  33. Schiano, J., Blauch, A.J., Ginsberg, M.D.: Optimization of NQR pulse parameters using feedback control, Z. Naturforsch 55, 67–73 (2000)

    Google Scholar 

  34. Yang, T., et al.: NQR signal processing based on multi-stage wiener filter. Procedia Eng. 7, 229–234 (2010)

    Article  Google Scholar 

  35. Apostolos, J.T., Feng, J., Mouyos, W., McMahon, B.: Using phase matched filters for NQR detection of continuous Rabi transitions. Patent, US8660803B2 (2011)

    Google Scholar 

  36. Mozzhukhin, G.V., Kupriyanova, G.S., Mershiev, I.G., Molchanov, S.V.: Signal processing in NMR/NQR detection on the base of pattern signal. In: 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (2016)

    Google Scholar 

  37. Yingyi, T., Tantum, S.L., Collins, L.M.: Landmine detection with nuclear quadrupole resonance. IEEE International Symposium on Geoscience and Remote Sensing (2002)

    Google Scholar 

  38. Jiang, Y., Stoica, P., Li, J.: Array signal processing in the known waveform and steering vector case. IEEE Trans. Signal Process. 52(1), 23–35 (2004)

    Article  MathSciNet  Google Scholar 

  39. Tantum, S., et al.: Signal processing for NQR discrimination of buried landmines. In: SPIE Conference on Detection and Remediation Technologies for Mines and Minelike Targets IV, vol. 3710 (1999)

    Google Scholar 

  40. Stoica, P., Xiong, H., Xu, L., Li, J.: Adaptive beamforming for quadrupole resonance. Digital Signal Process. 17(3), 634–651 (2007)

    Article  Google Scholar 

  41. Xiong, H.: Robust Adaptive Methods and Their Applications in Quadrupole Resonance. Ph.D. thesis, University of Florida (2006)

    Google Scholar 

  42. Liu, G., Jiang, Y., Xiong, H., Li, J., Barrall, G.A.: Radio frequency interference suppression for landmine detection by quadrupole resonance. EURASIP J. Appl. Signal Process. 2006, 1–14 (2006)

    MATH  Google Scholar 

  43. Xiong, H., Li, J., Barrall, G.A.: Joint TNT and RDX detection via quadrupole resonance. IEEE Trans. Aerospace Electron. Syst. 43(4), 1282–1293 (2007)

    Google Scholar 

  44. Shao, W., Barras, J., Kosmas, P.: An advanced beamforming approach based on two-channel echo-train system to cancel interference within an NQR signal resonance spectrum. Signal Process. 154, 136–147 (2019)

    Article  Google Scholar 

  45. Jakobsson, A., Mossberg, M.: Using spatial diversity to detect narcotics and explosives using NQR signals. IEEE Trans. Signal Process. 55(9), 4721–4726 (2007)

    Article  MathSciNet  Google Scholar 

  46. Butt, N.R., Jakobsson, A., Somasundaram, S.D., Smith, J.A.S.: Robust multichannel detection of mixtures using nuclear quadrupole resonance. IEEE Trans. Signal Process. 56(10), 5042–5050 (2008)

    Article  MathSciNet  Google Scholar 

  47. Butt, N.R., Jakobsson, A.: Robust multi-sensor detection of polymorphic NQR signals. In: Conference on Record of the Forty-First Asilomar Conference on Signals, System and Computers (2007)

    Google Scholar 

  48. Butt, N.R., Jakobsson, A.: Efficient removal of noise and interference in multichannel quadrupole resonance. In: Conference on Record of the Forty Fifth Asilomar Conference on Signals, System and Computers (2011)

    Google Scholar 

  49. Piatti, T., Lei, S., Barras, J., Jakobsson, A.: Interference cancellation in two-channel nuclear quadrupole resonance measurements. IEEE Int. Conf. Acoustics Speech Signal Process. (2017)

    Google Scholar 

  50. Yingyi, T., Tantum, S.L., Collins, L.M.:, Kalman filtering for enhanced landmine detection using quadrupole resonance. IEEE Trans. Geosci. Remote Sensing 43(7), 1507–1516 (2005)

    Google Scholar 

  51. ScienceDirect.: Căutare articole despre machine learning. Internet: https://www.sciencedirect.com/search?qs=machine%20learning&show=25&sortBy=relevance. 13 Aug. 2020

  52. Póczos, B., Singh, A.L.: Introduction to machine learning CMU-10701 Deep Learning. Carnegie Mellon University. Internet: http://www.cs.cmu.edu/~aarti/Class/10701_Spring14/slides/DeepLearning.pdf. 4 Jan. 2019

  53. Lazebnik, L.: Convolutional neural network architectures: from LeNet to ResNet. University of Illinois. Internet: http://slazebni.cs.illinois.edu/spring17/lec01_cnn_architectures.pdf. 13 Aug. 2020

  54. Stfalcon.: Deep learning: definition, benefits, and challenges. Internet: https://stfalcon.com/en/blog/post/deep-learning-benefits-and-challenges. 4 Jan. 2019

  55. Liu, X., Li, R., Zhao, C., Wang, P.: Robust signal recognition algorithm based on machine learning in heterogeneous networks. J. Syst. Eng. Electron. 27(2), 333–342 (2016)

    Article  Google Scholar 

  56. Klukowski, P., et al.: NMRNet: a deep learning approach to automated peak picking of protein NMR spectra. Bioinform. 34(15), 2590–2597 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Monea .

Appendix

Appendix

4.1.1 Signal Processing and Analysis Techniques Classification

figure a

4.1.2 Signal Post-Processing and Analysis Techniques Development Timeline

figure b

4.1.3 Development of the Post-Processing Techniques

figure c

4.1.4 Distribution of the Post-Processing Techniques According to the Type of Detection [1]

figure d

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Monea, C., Bizon, N. (2022). Signal Processing and Analysis Techniques Applied in Nuclear Quadrupole Resonance. In: Signal Processing and Analysis Techniques for Nuclear Quadrupole Resonance Spectroscopy. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-87861-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87861-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87860-3

  • Online ISBN: 978-3-030-87861-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics