Skip to main content

Development of Matrix of Combined Force and Proximity Sensors for Use in Robotics

  • Conference paper
  • First Online:
Interactive Collaborative Robotics (ICR 2021)

Abstract

The paper presents the development of a matrix of combined force and proximity sensors of a capacitive type for use in robotics. The sensor has a simple structure, and is structurally composed of three layers, which makes it possible to manufacture the sensor with a small thickness. To produce the sensor, readily available materials and technologies are used. The developed interface circuit for signal processing of primary capacitive converters allows them to be combined into matrices of various configurations, where each converter is a matrix cell. The dimensions of the cells of the prototype matrix sensor used in the experiments is 12 × 12 mm, and its total thickness is 4.2 mm. In the experiments, the characteristics of the sample of the matrix of combined sensors were obtained by the approach of objects made of various materials, as well as the dependence of the output signal of the matrix sensor on the applied pressure force. The highest sensitivity to the proximity of the manufactured sensor array is observed in the range from 0 to 1.8 mm for both types of objects, while the sensitivity of the prototype to the approach of metal objects is on average greater than the sensitivity to the approach of objects made of non-conductive materials. The prototype of the matrix of combined sensors has a high sensitivity to the applied force in the area up to 10 N, while the matrix of sensors allows to unambiguously determine the force applied to the matrix cells up to 25 N. The developed solution can be used to control the gait of walking robots, as well as in manipulation systems to improve the process gripping and manipulating objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Erashov, A., Krestovnikov, K.: Algorithm for controlling manipulator with combined array of pressure and proximity sensors in gripper. In: 16th International Conference on Electromechanics and Robotics “Zavalishin’s Readings” (2021). (In press)

    Google Scholar 

  2. Ronzhin, A.L., Budkov, V.Y., Ronzhin, A.L.: User profile forming based on audiovisual situation analysis in smart meeting room. SPIIRAS Proc. 4(23), 482–494 (2012). (In Rus.). https://doi.org/10.15622/sp.23.28

    Article  Google Scholar 

  3. Gorobtsov, A.S., Andreev, A.E., Markov, A.E., Skorikov, A.V., Tarasov, P.S.: Features of solving the inverse dynamic method equations for the synthesis of stable walking robots controlled motion. SPIIRAS Proc. 18(1), 85–122 (2019). https://doi.org/10.15622/sp.18.1.85-122

    Article  Google Scholar 

  4. Ohmura, Y., Kuniyoshi, Y., Nagakubo, A.: Conformable and scalable tactile sensor skin for curved surfaces. In: Proceedings of International Conference on Robotics and Automation, pp. 1348–1353 (2006)

    Google Scholar 

  5. Kovalev, A., Pavliuk, N., Krestovnikov, K., Saveliev, A.: Generation of walking patterns for biped robots based on dynamics of 3D linear inverted pendulum. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds.) ICR 2019. LNCS (LNAI), vol. 11659, pp. 170–181. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26118-4_17

    Chapter  Google Scholar 

  6. Lumelsky, V.J., Shur, M.S., Wagner, S.: Sensitive skin. IEEE Sens. J. 1(1), 41–51 (2001)

    Article  Google Scholar 

  7. Khan, S., Lorenzelli, L., Dahiya, R.S.: Screen printed flexible pressure sensors skin. In: 25th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC), pp. 219–224. IEEE (2014). https://doi.org/10.1109/ASMC.2014.6847002

  8. Cheng, J., Sundholm, M., Zhou, B., Hirsch, M., Lukowicz, P.: Smart-surface: large scale textile pressure sensors arrays for activity recognition. Pervasive Mob. Comput. 30, 97–112 (2016)

    Article  Google Scholar 

  9. Srinivasan, P., Birchfield, D., Qian, G., Kidané, A.: A pressure sensing floor for interactive media applications. In: Proceedings of the 2005 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology, pp. 278–281. ACM (2005)

    Google Scholar 

  10. Wang, X., et al.: Self-powered high-resolution and pressure-sensitive triboelectric sensor matrix for real-time tactile mapping. Adv. Mater. 28(15), 2896–2903 (2016)

    Article  Google Scholar 

  11. Bürgi, L., Pfeiffer, R., Mücklich, M., Metzler, P., Kiy, M., Winnewisser, C.: Optical proximity and touch sensors based on monolithically integrated polymer photodiodes and polymer LEDs. Org. Electron. 7(2), 114–120 (2006). https://doi.org/10.1016/j.orgel.2005.12.002

    Article  Google Scholar 

  12. Fattori, M., Cantatore, E., Pauer, G., Agostinelli, T., Stadlober, B., Joanneum, H.G.: Flexible pressure and proximity sensor surfaces manufactured with organic materials. In: 2017 7th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI), pp. 53–58. IEEE (2017)

    Google Scholar 

  13. Zhang, B., et al.: Dual functional transparent film for proximity and pressure sensing. Nano Res. 7(10), 1488–1496 (2014). https://doi.org/10.1007/s12274-014-0510-3

    Article  Google Scholar 

  14. Liang, J., Wu, J., Huang, H., Xu, W., Li, B., Xi, F.: Soft sensitive skin for safety control of a nursing robot using proximity and tactile sensors. IEEE Sens. J. 1(1), 3822–3830 (2019). https://doi.org/10.1109/JSEN.2019.2959311

    Article  Google Scholar 

  15. Nguyen, T.D., et al.: Highly sensitive flexible proximity tactile array sensor by using carbon micro coils. Sens. Actuat. A 266, 166–177 (2017)

    Article  Google Scholar 

  16. Rocha, R., Lopes, P., de Almeida, A.T., Tavakoli, M., Majidi, C.: Soft- matter sensor for proximity, tactile and pressure detection. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3734–3738. IEEE (2017)

    Google Scholar 

  17. Goeger, D., Blankertz, M., Woern, H.: A tactile proximity sensor. In: SENSORS, pp. 589–594. IEEE (2010). https://doi.org/10.1109/ICSENS.2010.5690450

  18. Alagi, H., Navarro, S.E., Mende, M., Hein, B.: A versatile and modular capacitive tactile proximity sensor. In: 2016 IEEE Haptics Symposium (HAPTICS), pp. 290–296. IEEE (2016). https://doi.org/10.1109/HAPTICS.2016.7463192

  19. Mittendorfer, P., Cheng, G.: Humanoid multimodal tactile-sensing modules. IEEE Trans. Rob. 27(3), 401–410 (2011)

    Article  Google Scholar 

  20. Huang, Y., Fang, D., Wu, C., Wang, W., Guo, X., Liu, P.: A flexible touch-pressure sensor array with wireless transmission system for robotic skin. Rev. Sci. Instr. 87(6), 065007 (2016). https://doi.org/10.1063/1.4954199

    Article  Google Scholar 

  21. Krestovnikov, K., Cherskikh, E., Zimuldinov, E.: Combined capacitive pressure and proximity sensor for using in robotic systems. In: Ronzhin, A., Shishlakov, V. (eds.) Proceedings of 15th International Conference on Electromechanics and Robotics “Zavalishin’s Readings”. SIST, vol. 187, pp. 513–523. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-5580-0_42

    Chapter  Google Scholar 

  22. Krestovnikov, K., Erashov, A., Bykov, A.: Development of circuit solution and design of capacitive pressure sensor array for applied robotics. Robot. Tech. Cybern. 8(4), 296–307 (2020). https://doi.org/10.31776/RTCJ.8406

    Article  Google Scholar 

  23. Kozyr, P., Saveliev, A., Kuznetsov, L.: Determining distance to an object and type of its material based on data of capacitive sensor signal and machine learning techniques. In: 2021 International Siberian Conference on Control and Communications (SIBCON), pp. 1–5. IEEE (2021). https://doi.org/10.1109/SIBCON50419.2021.9438932

  24. Petrenko, V.I., Tebueva, F.B., Gurchinsky, M.M., Antonov, V.O., Pavlov, A.S.: Predictive assessment of operator’s hand trajectory with the copying type of control for solution of the inverse dynamic problem. SPIIRAS Proc. 18(1), 123–147 (2019). https://doi.org/10.15622/sp.18.1.123-147

    Article  Google Scholar 

  25. Medvedev, M.Y., Kostjukov, V.A., Pshikhopov, V.K.: Optimization of mobile robot movement on a plane with finite number of repeller sources. SPIIRAS Proc. 19(1), 43–78 (2020). https://doi.org/10.15622/sp.2020.19.1.2

    Article  Google Scholar 

  26. Al Mashhadany, Y.I.: Design and analysis of 7-DOF human-link manipulator based on hybrid intelligent controller. SPIIRAS Proc. 19(4), 774–802 (2020). https://doi.org/10.15622/sp.2020.19.4.3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksei Erashov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krestovnikov, K., Erashov, A., Bykov, A. (2021). Development of Matrix of Combined Force and Proximity Sensors for Use in Robotics. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds) Interactive Collaborative Robotics. ICR 2021. Lecture Notes in Computer Science(), vol 12998. Springer, Cham. https://doi.org/10.1007/978-3-030-87725-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87725-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87724-8

  • Online ISBN: 978-3-030-87725-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics