Skip to main content

Sequence Stratigraphy

  • Chapter
  • First Online:
Stratigraphy: A Modern Synthesis

Abstract

This chapter offers a succinct summary of modern concepts and terminology in the area of sequence stratigraphy. An introduction to the relationship between accommodation and sequence architecture includes discussions of the major bounding surfaces and systems tracts of a typical clastic sequence. Brief introductions are provided to sequence models developed for nonmarine, shallow-marine and deep-marine clastic sequences and for carbonate sequences. The chapter closes with a brief discussion of sequence hierarchies and driving mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, P. A., and Allen, J. R., 2013, Basin analysis: Principles and application to petroleum play assessment: Chichester: Wiley-Blackwell, 619 p.

    Google Scholar 

  • Anadón, P., Cabrera, L., Colombo, F., Marzo, M., and Riba, O, 1986, Syntectonic intraformational unconformities in alluvial fan deposits, eastern Ebro basin margins (NE Spain), in Allen, P. A., and Homewood, P., eds., Foreland basins: International Association of Sedimentologists Special Publication 8, p. 259–271.

    Google Scholar 

  • Arnott, R. W. C., 2010, Deep-marine sediments and sedimentary systems, in James, N. P., and Dalrymple, R. W., eds., Facies Models 4: GEOtext 6, Geological Association of Canada, St. John’s, Newfoundland, p. 295–322.

    Google Scholar 

  • Barrell, Joseph, 1917, Rhythms and the measurement of geologic time: Geological Society of America Bulletin, v. 28, p. 745–904.

    Google Scholar 

  • Bhattacharya, J., 1991, Regional to sub-regional facies architecture of river-dominated deltas, Upper Cretaceous Dunvegan Formation, Alberta subsurface, in Miall, A. D., and Tyler, N., eds., The three-dimensional facies architecture of terrigenous clastic sediments and its implications for hydrocarbon discovery and recovery, Society of Economic Paleontologists and Mineralogists, Concepts in Sedimentology and Paleontology, v. 3, p. 189–206.

    Google Scholar 

  • Blakey, R. C., and Middleton, L. T., 1983, Permian shoreline aeolian complexes in central Arizona; dune changes in response to cyclic sea level changes, in Brookfield, M. E., and Ahlbrandt, T. S., eds., Eolian sediments and processes: Elsevier, Amsterdam, p. 551–581.

    Google Scholar 

  • Blum, M. D., 1994, Genesis and architecture of incised valley fill sequences: a late Quaternary example from the Colorado River, Gulf Coastal Plain of Texas, in Weimer, P., and Posamentier, H. W., eds., Siliciclastic sequence stratigraphy: Recent developments and applications: American Association of Petroleum Geologists Memoir 58, p. 259–283.

    Google Scholar 

  • Bohacs, K. M., Neal, J. E., and Grabowski, G. J., Jr., 2002, Sequence stratigraphy in fine-grained rocks: Beyond the correlative conformity: 22nd Annual Gulf Coast Section SEPM Foundation Bob F. Perkins Research Conference, p. 321–347.

    Google Scholar 

  • Bohacs, K., and Suter, J., 1997, Sequence stratigraphic distribution of coaly rocks: fundamental controls and paralic examples: American Association of Petroleum Geologists Bulletin, v. 81, p. 1612–1639.

    Google Scholar 

  • Bridge, J. S. and Leeder, M. R., 1979, A simulation model of alluvial stratigraphy: Sedimentology, v. 26, p. 617–644.

    Google Scholar 

  • Brookfield, M. E., 1992, Eolian systems, in Walker, R. G. and James, N. P., eds., Facies models: response to sea-level change: Geological Association of Canada, Geotext 1, p. 143–156.

    Google Scholar 

  • Brookfield, M. E., and Silvestro, S., 2010, Eolian systems, in James, N. P., and Dalrymple, R. W., eds., Facies Models 4: GEOtext 6, Geological Association of Canada, St. John’s, Newfoundland, p. 139–166.

    Google Scholar 

  • Brown, L. F., Jr., and Fisher, W. L., 1977, Seismic-stratigraphic interpretation of depositional systems: examples from Brazilian rift and pull-apart basins, in Payton, C. E., ed., Seismic stratigraphy — applications to hydrocarbon exploration: American Association of Petroleum Geologists Memoir 26, p. 213–248.

    Google Scholar 

  • Burgess, P. M., 2016, The future of the sequence stratigraphy paradigm: dealing with a variable third dimension: Geology, v. 44, p. 335–336.

    Google Scholar 

  • Burgess, P. M., 2019, Phanerozoic Evolution of the Sedimentary Cover of the North American Craton, in Miall, A. D., ed., The Sedimentary Basins of the United States and Canada, Second edition: Sedimentary basins of the World, v. 5, K. J. Hsü, Series Editor, Elsevier Science, Amsterdam, p. 39–75.

    Google Scholar 

  • Burgess, P.M., and Hovius, N., 1998, Rates of delta progradation during highstands; consequences for timing of deposition in deep-marine systems: Geological Society, London, Journal, v. 155, p. 217–222.

    Google Scholar 

  • Carter, R. M., Abbott, S. T., Fulthorpe, C. S., Haywick, D. W., and Henderson, R. A., 1991, Application of global sea-level and sequence-stratigraphic models in southern hemisphere Neogene strata from New Zealand, in Macdonald, D. I. M., ed., 1991, Sedimentation, tectonics and eustasy: sea-level changes at active margins: International Association of Sedimentologists Special Publication 12, p. 41-65.

    Google Scholar 

  • Carvajal, C. R., and Steel, R. J., 2006, Thick turbidite successions from supply-dominated shelves during sea-level highstand: Geology, v. 34, p. 665–668.

    Google Scholar 

  • Catuneanu, O., 2006, Principles of sequence stratigraphy: Elsevier, Amsterdam, 375 p.

    Google Scholar 

  • Catuneanu, O., 2019a, Scale in sequence stratigraphy: Marine and Petroleum Geology, v. 106, p. 128–159.

    Google Scholar 

  • Catuneanu, O., 2019b, Model-independent sequence stratigraphy, Earth Sciene reviews, v. 188, p. 312–388.

    Google Scholar 

  • Catuneanu, O., 2020a, Sequence stratigraphy in the context of the ‘modeling revolution’ Marine and Petroleum Geology, v. 116, #104309, 19 p.

    Google Scholar 

  • Catuneanu, O., 2020b, Sequence stratigraphy of deep-water systems Marine and Petroleum Geology, v. 114, #104238, 13 p.

    Google Scholar 

  • Catuneanu, O., and Zecchin, M., 2016, Unique vs. non-unique stratal geometries: relevance to sequence stratigraphy: Marine and Petroleum Geology, v. 78, p.184–195.

    Google Scholar 

  • Catuneanu, O., and Zecchin, M., 2020, Parasequences: Allostratigaphic misfits in sequence stratigraphy: Earth Science Reviews, v. 208, #103289, 17 p.

    Google Scholar 

  • Catuneanu, O., Abreu, V., Bhattacharya, J. P., Blum, M. D., Dalrymple, R. W., Eriksson, P. G., Fielding, C. R., Fisher, W. L., Galloway, W. E., Gibling, M. R., Giles, K. A., Holbrook, J. M., Jordan, R., Kendall, C. G. St. C., Macurda, B., Martinsen, O. J., Miall, A. D., Neal, J. E., Nummedal, D., Pomar, L., Posamentier, H. W., Pratt, B. R,. Sarg, J. F., Shanley, K. W., Steel, R. J., Strasser, A., Tucker, M. E., and Winker, C., 2009, Toward the Standardization of Sequence Stratigraphy: Earth Science Reviews, v. 92, p. 1–33.

    Google Scholar 

  • Catuneanu, O., Bhattacharya, J. P., Blum, M. D., Dalrymple, R. W., Eriksson, P. G., Fielding, C. R., Fisher, W. L., Galloway, W. E., Gianolla, P., Gibling, M. R., Giles, K. A., Holbrook, J. M., Jordan, R., Kendall, C. G. St. C., Macurda, B., Martinsen, O. J., Miall, A. D., Nummedal, D., Posamentier, H. W., Pratt, B. R,. Shanley, K. W., Steel, R. J., Strasser, A., and Tucker, M. E., 2010, Sequence stratigraphy: common ground after three decades of development: First Break, v. 28, p. 21–34.

    Google Scholar 

  • Catuneanu, O., Galloway, W.E., Kendall, C.G.St.C., Miall, A.D., Posamentier, H.W., Strasser A., and Tucker M.E., 2011, Sequence Stratigraphy: Methodology and Nomenclature: Report to ISSC: Newsletters on Stratigraphy, v. 4 (3), p. 173–245.

    Google Scholar 

  • Christie-Blick, N., Mountain, G. S., and Miller, K. G., 1990, Seismic stratigraphy: record of sea-level change, in Revelle, R., ed., Sea-level change: National Research Council, Studies in Geophysics, Washington, National Academy Press, p. 116-140.

    Google Scholar 

  • Christie-Blick, N., Pekar, S. F., and Madof, A. S., 2007, Is there a role for sequence stratigraphy in chronostratigraphy? Stratigraphy, v. 4, p. 217–229.

    Google Scholar 

  • Clemmensen, L. B., and Hegner, J., 1991, Eolian sequence and erg dynamics: the Permian Corrie Sandstone, Scotland: Journal of Sedimentary Petrology, v. 61, p. 768–774.

    Google Scholar 

  • Colombera L, Mountney NP (2020) Accommodation and sediment-supply controls on clastic parasequences: a meta-analysis. Sedimentology 67:1667–1709

    Google Scholar 

  • Colombera, L., and Mountney, N. P., 2020, Accommodation and sediment-supply controls on clastic parasequences: a meta-analysis: Sedimentology, v. 67, p. 1667–1709.

    Google Scholar 

  • Covault, J. A., Normark, W. R., Romans, B. W., and Graham, S. A., 2007, Highstand fans in the California borderland: the overlooked deep-water depositional systems: Geology, v. 35, p. 783–786.

    Google Scholar 

  • Curtis, D. M., 1970, Miocene deltaic sedimentation, Louisiana Gulf Coast, in Morgan, J. P., ed., Deltaic sedimentation modern and ancient: Society of Economic Paleontologists and Mineralogists Special Publication 15, p. 293–308.

    Google Scholar 

  • Dalrymple, R. W., Boyd, R., and Zaitlin, B. A., eds., 1994, Incised-valley systems: origin and sedimentary sequences: SEPM (Society for Sedimentary Geology) Special Publication 51, 391 p.

    Google Scholar 

  • Dalrymple, R. W., 2010b, Introduction to siliciclastic facies models, in James, N. P., and Dalrymple, R. W., eds., Facies Models 4: GEOtext 6, Geological Association of Canada, St. John’s, Newfoundland, p. 59–72.

    Google Scholar 

  • Davies, N. S., and Shillito, A. P., 2018, Incomplete but intricately detailed: The inevitable preservation of true substrates in a time-deficient stratigraphic record: Geology, v. 46, p. 679-682.

    Google Scholar 

  • Davies, N. S., and Shillito, A. P., 2021, True substrates: the exceptional resolution and unexceptional preservation of deep-time snapshots on bedding surfaces: Sedimentology, in press.

    Google Scholar 

  • Dolan, J. F., 1989, Eustatic and tectonic controls on deposition of hybrid siliciclastic/carbonate basinal cycles: American Association of Petroleum Geologists Bulletin, v. 73, p. 1233–1246.

    Google Scholar 

  • Dunbar, G. B., Dickens, G. R. and Carter, R. M., 2000, Sediment flux across the Great Barrier reef to the Queensland Trough over the last 300 ky: Sedimentary Geology, v. 133, p. 49-92.

    Google Scholar 

  • Emery, D., and Myers, K. J., 1996, Sequence stratigraphy: Blackwell, Oxford, 297 p.

    Google Scholar 

  • Erlich, R. N., Longo, A. P., Jr., and Hyare, S., 1993, Response of carbonate platform margins to drowning: evidence of environmental collapse: in Loucks, R. G., and Sarg, J. F., Jr., eds., Carbonate sequence stratigraphy – recent developments and applications: American Association of Petroleum Geologists, memoir 57, p. 241–266.

    Google Scholar 

  • Fisher, W. L., and McGowen, J. H., 1967, Depositional systems in the Wilcox Group of Texas and their relationship to occurrence of oil and gas: Transactions of the Gulf Coast Association of Geological Societies, v. 17, p. 105–125.

    Google Scholar 

  • Frazier, D. E., 1974, Depositional episodes: their relationship to the Quaternary stratigraphic framework in the northwestern portion of the Gulf Basin: Bureau of Economic Geology, University of Texas, Geological Circular 74-1, 26 p.

    Google Scholar 

  • Galloway, W. E., 1989, Genetic stratigraphic sequences in basin analysis I: Architecture and genesis of flooding-surface bounded depositional units: American Association of Petroleum Geologists Bulletin, v. 73, p. 125–142.

    Google Scholar 

  • Galloway, W. E., and Brown, L. F., Jr., 1973, Depositional systems and shelf-slope relations on cratonic basin margin, uppermost Pennsylvanian of north-central Texas: American Association of Petroleum Geologists Bulletin, v. 57, p. 1185–1218.

    Google Scholar 

  • Haq, B. U., Hardenbol, J., and Vail, P. R., 1987, Chronology of fluctuating sea levels since the Triassic (250 million years ago to present): Science, v. 235, p. 1156–1167.

    Google Scholar 

  • Haq, B. U., Hardenbol, J., and Vail, P. R., 1988, Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change, in Wilgus, C. K., Hastings, B. S., Kendall, C. G. St. C., Posamentier, H. W., Ross, C. A., and Van Wagoner, J. C., eds., Sea-level Changes: an integrated approach: Society of Economic Paleontologists and Mineralogists Special Publication 42, p. 71–108.

    Google Scholar 

  • Heckel, P. H., 1986, Sea-level curve for Pennsylvanian eustatic marine transgressive-regressive depositional cycles along midcontinent outcrop belt, North America: Geology, v. 14, p. 330–334.

    Google Scholar 

  • Helland-Hansen, W., and Hampson, G. J., 2009, Trajector analysis: concepts and applications: Basin Research, v. 21, p. 454–483.

    Google Scholar 

  • Helland-Hansen, W., and Martinsen, O., 1996, Shoreline trajectories and sequences: description of variable depositional-dip scenarios: Journal of Sedimentary Research, v. 66, p. 670–688.

    Google Scholar 

  • Hilgen, F. J., Hinnov, L. A., Aziz, H. A., Abels, H. A., Batenburg, S., Bosmans, J. H. C., de Boer, B., Hüsings, S. K., Kuiper, K. F., and Lourens, L. J., 2015, Stratigraphic continuity and fragmentary sedimentation: the success of cyclostratigraphy as part of integrated stratigraphy in Smith, D. G., Bailey, R., J., Burgess, P., and Fraser, A., eds., Strata and time: Geological Society, London, Special Publication 404, p. 157–197.

    Google Scholar 

  • Holbrook, J. M., and Bhattacharya, J. P., 2012, Reappraisal of the sequence boundary in time and space: Case and considerations for an SU (subaerial unconformity) that is not a sediment bypass surface, a time barrier, or an unconformity: Earth Science Reviews, v 113, p. 271–302.

    Google Scholar 

  • Holbrook, J., Scott, R. W., and Oboh-Ikuenobe, F. E., 2006, Base-level buffers and buttresses: a model for upstream versus downstream control on fluvial geometry and architecture within sequences: Journal of Sedimentary Research, v. 76, p. 162–174.

    Google Scholar 

  • Hunt, D., and Gawthorpe, R. L., eds., 2000, Sedimentary response to forced regressions: Geological Society of London Special Publication 172, 383 p.

    Google Scholar 

  • Ito, M., and Masuda, F., 1988, Late Cenozoic deep-sea to fan-delta sedimentation in an arc-arc collision zone, central Honshu, Japan; sedimentary response to varying plate-tectonic regime, in Nemec, W., and Steel, R.J., eds., Fan deltas; sedimentology and tectonic settings: Glasgow, UK, Blackie and Son, p. 400–418.

    Google Scholar 

  • James, N. P., and Bourque, P.-A., 1992, Reefs and mounds, in Walker, R. G. and James, N. P., eds., Facies models: response to sea-level change: Geological Association of Canada, Geotext 1, p. 323–347.

    Google Scholar 

  • James, N. P., and Kendall, A. C., 1992, Introduction to carbonate and evaporite facies models, in Walker, R. G., and James, N. P., eds., Facies models: response to sea level change: Geological Association of Canada, Geotext 1, p. 265–275.

    Google Scholar 

  • James, N. P., Kendall, A. C., and Pufahl, P. K., 2010, Introduction to biological and biochemical facies models, in James, N. P., and Dalrymple, R. W., eds., Facies Models 4: GEOtext 6, Geological Association of Canada, St. John’s, Newfoundland, p. 323–340.

    Google Scholar 

  • Jervey, M. T., 1988, Quantitative geological modeling of siliciclastic rock sequences and their seismic expression, in Wilgus, C. K., Hastings, B. S., Kendall, C. G. St. C., Posamentier, H. W., Ross, C. A., and Van Wagoner, J. C., eds., Sea level Changes - an integrated approach: Society of Economic Paleontologists and Mineralogists Special Publication 42, p. 47–69.

    Google Scholar 

  • Jones, B., 2010, Warm-water neritic carbonates, in James, N. P., and Dalrymple, R. W., eds., Facies Models 4: GEOtext 6, Geological Association of Canada, St. John’s, Newfoundland, p. 341–369.

    Google Scholar 

  • Jones, B., and Desrochers, A., 1992, Shallow platform carbonates, in Walker, R. G., and James, N. P., eds., Facies models: response to sea level change: Geological Association of Canada, Geotext 1, p. 277–301.

    Google Scholar 

  • Kocurek, G. A., 1988, First-order and super bounding surfaces in eolian sequences - bounding surfaces revisited: Sedimentary Geology, v. 56, p. 193–206.

    Google Scholar 

  • Kocurek, G. A., 1996, Desert aeolian systems, in Reading, H. G., ed., Sedimentary environments, processes, facies, stratigraphy, third edition: Blackwell Science, Oxford, p. 125–153.

    Google Scholar 

  • Kocurek, G., and Havholm, K. G., 1993, Eolian sequence stratigraphy—a conceptual framework, in Weimer, P., and Posamentier, H. W., eds., Siliciclastic sequence stratigraphy: American Association of Petroleum Geologists Memoir 58, p. 393–409.

    Google Scholar 

  • Kocurek, G. A., Havholm, K. G., Deynoux, M., and Blakey, R. C., 1991, Amalgamated accumulations resulting from climatic and eustatic changes: Akchar Erg, Mauritania: Sedimentology, v. 38, p. 751–772.

    Google Scholar 

  • Korus, J. T., Kvale, E. P., Eriksson, K. A., and Joeckel, R. M., 2008, Compound paleovalleys fills in the Lower Pennyslvanian New River Formation, West Virginia, USA: Sedimentary Geology, v. 208, p. 15–26.

    Google Scholar 

  • Leckie, D. A., 1994, Canterbury Plains, New Zealand—implications for sequence stratigraphic models: American Association of Petroleum Geologists Bulletin, v. 78, p. 1240–1256.

    Google Scholar 

  • Li, Z., and Schieber, J., 2020, Application of sequence stratigraphic concepts to the Upper Cretaceous Tunuk Shale Member of the Mancos Shale formation, south-central Utah: parasequence styles in shelfal mudstone strata: Sedimentology, v. 67, p. 118–151.

    Google Scholar 

  • Loutit, T. S., Hardenbol, J., Vail, P. R., and Baum, G. R., 1988, Condensed sections: the key to age dating and correlation of continental margin sequences, in Wilgus, C. K., Hastings, B. S., Kendall, C. G. St. C., Posamentier, H. W., Ross, C. A., and Van Wagoner, J. C., eds., Sea-level Changes: an integrated approach: Society of Economic Paleontologists and Mineralogists Special Publication 42, p. 183–213.

    Google Scholar 

  • Madof, A. S., Harris, A. D., and Connell, S. D., 2016, nearshore along-strike variability: IS the concept of the systems tract unhinged? Geology, v. 44, p. 315–318.

    Google Scholar 

  • McCarthy, P. J., Faccini, U. F., and Plint, A. G., 1999, Evolution of an ancient coastal plain: palaeosols, interfluves and alluvial architecture in a sequence stratigraphic framework, Cenomanian Dunvegan Formation, NE British Columbia, Canada: Sedimentology, v. 46, p. 861–891.

    Google Scholar 

  • McMillen, K.M., and Winn, R.D., Jr., 1991, Seismic facies of shelf, slope, and submarine fan environments of the Lewis Shale, Upper Cretaceous, Wyoming, in Weimer, P., and Link, M.H., eds., Seismic facies and sedimentary processes of submarine fans and turbidite systems: New York, Springer-Verlag, p. 273–287.

    Google Scholar 

  • Miall, A. D., 1991, Stratigraphic sequences and their chronostratigraphic correlation: Journal of Sedimentary Petrology, v. 61, p. 497–505.

    Google Scholar 

  • Miall, A. D., 1995, Whither stratigraphy? Sedimentary Geology, v. 100, p. 5–20.

    Google Scholar 

  • Miall, A. D., 1996, The geology of fluvial deposits: sedimentary facies, basin analysis and petroleum geology: Springer-Verlag Inc., Heidelberg, 582 p.

    Google Scholar 

  • Miall, A. D., 1999, Principles of sedimentary basin analysis, Third edition: New York, N. Y.: Springer-Verlag Inc., 616 p.

    Google Scholar 

  • Miall, A. D., 2010, The geology of stratigraphic sequences, second edition: Springer-Verlag, Berlin, 522 p.

    Google Scholar 

  • Miall, A. D., 2014a, Fluvial depositional systems: Springer-Verlag, Berlin 316 p.

    Google Scholar 

  • Miall, A. D., 2014b, The emptiness of the stratigraphic record: A preliminary evaluation of missing time in the Mesaverde Group, Book Cliffs, Utah: Journal of Sedimentary Research, v. 84, p. 457–469.

    Google Scholar 

  • Miall, A. D., 2015, Updating uniformitarianism: stratigraphy as just a set of “frozen accidents”, in Smith, D. G., Bailey, R., J., Burgess, P., and Fraser, A., eds., Strata and time: Geological Society, London, Special Publication 404, p. 11–36.

    Google Scholar 

  • Miall, A. D., 2016, The valuation of unconformities: Earth Science Reviews, v. 163, p. 22–71.

    Google Scholar 

  • Miall, A. D., and Miall, C. E., 2001, Sequence stratigraphy as a scientific enterprise: the evolution and persistence of conflicting paradigms: Earth Science Reviews, v. 54, #4, p. 321–348.

    Google Scholar 

  • Miall, C. E., and Miall, A. D., 2002, The Exxon factor: the roles of academic and corporate science in the emergence and legitimation of a new global model of sequence stratigraphy: Sociological Quarterly, v. 43, p. 307–334.

    Google Scholar 

  • Miller, K. G., Wright, J. D., and Browning, J. V., 2005, Visions of ice sheets in a greenhouse world: Marine Geology, v. 217, p. 215–231.

    Google Scholar 

  • Mitchum, R. M., Jr., Vail, P. R., and Thompson, S. III, 1977a, Seismic stratigraphy and global changes of sea level, Part 2, The depositional sequence as a basic unit for stratigraphic analysis, in Payton, C. E., ed., Seismic stratigraphy—applications to hydrocarbon exploration: American Association of Petroleum Geologists Memoir 26, p. 53–62.

    Google Scholar 

  • Mitchum, R. M., Jr., Vail, P. R., and Sangree, J. B., 1977b, Seismic stratigraphy and global changes of sea level, Part six: Stratigraphic interpretation of seismic reflection patterns in depositional sequences, in Payton, C. E., ed., Seismic stratigraphy—applications to hydrocarbon exploration; American Association of Petroleum Geologists Memoir 26, p. 117–133.

    Google Scholar 

  • Mitchum, R. M., Jr., and Van Wagoner, J. C., 1991, High-frequency sequences and their stacking patterns: sequence-stratigraphic evidence of high-frequency eustatic cycles: Sedimentary Geology, v. 70, 131–160.

    Google Scholar 

  • Neal, J., and Abreu, V., 2009, Sequence stratigraphy hierarchy and the accommodation succession method: Geology, v. 37, p. 779–782.

    Google Scholar 

  • Neal, J. E., Abreu, V., Bohacs, K. M., Feldman, H. R., and Pederson, K. H., 2016, Accommodation succession (δA/δS) sequence stratigraphy: observational method, utility and insights into sequence boundary formation: Journal of the Geological Society, London, v. 173, p. 803–816.

    Google Scholar 

  • North American Commission on Stratigraphic Nomenclature (NACSN), 2005, North American Stratigraphic Code: American Association of Petroleum Geologists Bulletin, v. 89, p. 1547–1591.

    Google Scholar 

  • Nummedal, D., and Swift, D. J. P., 1987, Transgressive stratigraphy at sequence-bounding unconformities: some principles derived from Holocene and Cretaceous examples, in Nummedal, D., Pilkey, O. H., and Howard, J. D., eds., Sea-level fluctuation and coastal evolution; Society of Economic Paleontologists and Mineralogists Special Publication 41, p. 241–260.

    Google Scholar 

  • Nystuen, J. P., 1998, History and development of sequence stratigraphy, in Gradstein, F. M., Sandvik, K. O. and Milton, N. J., eds., Sequence stratigraphy — concepts and applications: Norwegian Petroleum Society Special Publication 8, p. 31–116.

    Google Scholar 

  • Paola, C., 2000, Quantitative models of sedimentary basin filling: Sedimentology, v. 47 (supplement 1) p. 121–178.

    Google Scholar 

  • Pattison, S. A. J., 2020, No evidence for an unconformity at the base of the lower Castlegate Sandstone in the Campanian Book Cliffs, Utah-Colorado, United States: Implications for sequence models: American Association of Petroleum Geologists Bulletin, v. 104, p. 595–628.

    Google Scholar 

  • Payton, C. E., ed., 1977, Seismic stratigraphy—applications to hydrocarbon exploration: American Association of Petroleum Geologists Memoir 26, 516 p.

    Google Scholar 

  • Pedersen, S. A. S., 2012, Glaciodynamic sequence stratigraphy, in Huuse, M., Redfern, J., LeHeron, D. P., Dixon, R. J., Moscariello, A., and Craig, J., eds., Glaciogenic reservoirs and hydrocarbon systems, Geological Society, London, Special Publication 368, p. 29–51.

    Google Scholar 

  • Pellegrini, C., Patruno, S., Helland-Hansen, W., Steel, W. J., and Trincardi, F., 2020, Clinforms and clinothems: Fundamental elements of basin infill: Basin Research, v. 32, p. 187–205.

    Google Scholar 

  • Piper, D.J.W., and Normark, W.R., 2001, Sandy fans; from Amazon to Hueneme and beyond: American Association of Petroleum Geologists Bulletin, v. 85, p. 1407–1438.

    Google Scholar 

  • Plint, A. G., 1988, Sharp-based shoreface sequences and “offshore bars” in the Cardium Formation of Alberta: their relationship to relative changes in sea level, in Wilgus, C. K., Hastings, B. S., Kendall, C. G. St. C., Posamentier, H. W., Ross, C. A., and Van Wagoner, J. C., eds., Sea-level Changes: an integrated approach: Society of Economic Paleontologists and Mineralogists Special Publication 42, p. 357–370.

    Google Scholar 

  • Plint, A. G., 1991, High-frequency relative sea-level oscillations in Upper Cretaceous shelf clastics of the Alberta foreland basin: possible evidence for a glacio-eustatic control? in Macdonald, D. I. M., ed., Sedimentation, tectonics and eustasy: sea-level changes at active margins: International Association of Sedimentologists Special Publication 12, p. 409–428.

    Google Scholar 

  • Plint, A. G., McCarthy, P. J., and Faccini, U. F., 2001, Nonmarine sequence stratigraphy: updip expression of sequence boundaries and systems tracts in a high-resolution framework: Cenomanian Dunvegan Formation, Alberta foreland basin, Canada: American Association of Petroleum Geologists Bulletin, v. 85, p. 1967–2001.

    Google Scholar 

  • Porebski, S. J., and Steel, R. J., 2003, Shelf-margin deltas: their stratigraphic significance and relation to deepwater sands: Earth-Science Reviews, v. 62 p. 283–326.

    Google Scholar 

  • Porebski, S.J., and Steel, R.J., 2006, Deltas and sea-level change: Journal of Sedimentary Research, v. 76, p. 390–403.

    Google Scholar 

  • Posamentier, H. W., and Allen, G. P., 1999, Siliciclastic sequence stratigraphy—concepts and applications: Society for Sedimentary Geology (SEPM), Concepts in sedimentology and paleontology 7, 210 p.

    Google Scholar 

  • Posamentier, H. W., and Vail, P. R., 1988, Eustatic controls on clastic deposition II—sequence and systems tract models, in Wilgus, C. K., Hastings, B. S., Kendall, C. G. St. C., Posamentier, H. W., Ross, C. A., and Van Wagoner, J. C., eds., Sea level Changes - an integrated approach: Society of Economic Paleontologists and Mineralogists Special Publication 42, p. 125–154.

    Google Scholar 

  • Posamentier, H. W., Jervey, M. T., and Vail, P. R., 1988, Eustatic controls on clastic deposition I—Conceptual framework, in Wilgus, C. K., Hastings, B. S., Kendall, C. G. St. C., Posamentier, H. W., Ross, C. A., and Van Wagoner, J. C., eds., Sea level Changes - an integrated approach: Society of Economic Paleontologists and Mineralogists Special Publication 42, p. 109–124.

    Google Scholar 

  • Posamentier, H. W., Allan, G. P., and James, D. P., 1992, High-resolution sequence stratigraphy – the East Coulee Delta, Alberta: Journal of Sedimentary Petrology, v. 62, p. 310–317.

    Google Scholar 

  • Posamentier, H. W., 2002, Ancient shelf ridges—a potentially significant component of the transgressive systems tract: case study from offshore northwest Java: American Association of Petroleum Geologists Bulletin, v. 86, p. 75–106.

    Google Scholar 

  • Pratt, B. R., 2010, Peritidal carbonates, in James, N. P., and Dalrymple, R. W., eds., Facies Models 4: GEOtext 6, Geological Association of Canada, St. John’s, Newfoundland, p. 401–420.

    Google Scholar 

  • Pratt, B. R., James, N. P., and Cowan, C. A., 1992, Peritidal carbonates, in Walker, R. G. and James, N. P., eds., Facies models: response to sea-level change: Geological Association of Canada, Geotext 1, p. 303–322.

    Google Scholar 

  • Ramsbottom, W. H. C., 1979, Rates of transgression and regression in the Carboniferous of NW Europe: Journal of the Geological Society, London, v. 136, p. 147–153.

    Google Scholar 

  • Reinson, G. E., 1992, Transgressive barrier island and estuarine systems, in Walker, R. G. and James, N. P., eds., Facies models: response to sea-level change: Geological Association of Canada, Geotext 1, p. 179–194.

    Google Scholar 

  • Riba, O., 1976, Syntectonic unconformities of the Alto Cardener, Spanish Pyrenees, a genetic interpretation: Sedimentary Geology, v. 15, p. 213–233.

    Google Scholar 

  • Rich, J. L., 1951, Three critical environments of deposition and criteria for recognition of rocks deposited in each of them: Geological Society of America Bulletin, v. 62, p. 1–20.

    Google Scholar 

  • Sageman, B. B., Myers, S. R., and Arthur, M. A., 2006, Orbital time scale and new C-isotope record for Cenomanian-Turonian boundary stratotype: Geology, v. 34, p. 125–128.

    Google Scholar 

  • Sanborn, K. L., Webster, J. M., Webb, G. E., Braga, J. C., Humblet, M., Nothdurft, L., Patterson, M. A., Dechnik, B., Warner, S., Graham, T., Murphy, R. J., Yokoyama, Y., Obrochta, S. P. Zhao, J., and Salas-Saavedra, M., 2020: A new model of Holocene reef initiation and growth in response to sea-level rise on the Southern Great Barrier Reef: Sedimentary Geology, v. 397, #105556, 18 p.

    Google Scholar 

  • Sangree, J. B., and Widmier, J. M., 1977, Seismic stratigraphy and global changes of sea level, part 9: Seismic interpretation of clastic depositional facies, in Payton, C. E., ed., Seismic stratigraphy — applications to hydrocarbon exploration: American Association of Petroleum Geologists Memoir 26, p. 165–184.

    Google Scholar 

  • Sarg, J. F., 1988, Carbonate sequence stratigraphy, in Wilgus, C. K., Hastings, B. S., Kendall, C. G. St. C., Posamentier, H. W., Ross, C. A., and Van Wagoner, J. C., eds., Sea level Changes - an integrated approach: Society of Economic Paleontologists and Mineralogists Special Publication 42, p. 155–181.

    Google Scholar 

  • Schlager, W., 1989, Drowning unconformities on carbonate platforms, in Crevello, P. D., Wilson, J. L., Sarg, J. F., and Read, J. F., eds., Controls on carbonate platforms and basin development: Society of Economic Paleontologists and Mineralogists Special Publication 44, p. 15–25.

    Google Scholar 

  • Schlager, W., 1992, Sedimentology and sequence stratigraphy of reefs and carbonate platforms: American Association of Petroleum Geologists Continuing Education Course Notes Series 34, 71 p.

    Google Scholar 

  • Schlager, W., 1993, Accommodation and supply—a dual control on stratigraphic sequences: Sedimentary Geology, v. 86, p. 111–136.

    Google Scholar 

  • Schlager, W., 2004, Fractal nature of stratigraphic sequences, Geology, v. 32, p. 185–188.

    Google Scholar 

  • Schlager, W., 2005, Carbonate sedimentology and sequence stratigraphy: SEPM Concepts in Sedimentology and Paleontology #8, 200p.

    Google Scholar 

  • Schumm, S. A., 1979, Geomorphic thresholds: the concept and its applications: Transactions of the Institute of British Geographers, v. 4, p. 485–515.

    Google Scholar 

  • Schumm, S. A., 1993, River response to baselevel change: implications for sequence stratigraphy: Journal of Geology, v. 101, p. 279–294.

    Google Scholar 

  • Shanley, K. W., and McCabe, P. J., 1994, Perspectives on the sequence stratigraphy of continental strata: American Association of Petroleum Geologists Bulletin, v. 78, p. 544–568.

    Google Scholar 

  • Simmons, M. D., Mller, K. G., Ray, D. C., Davies, A., van Buchem, F. S. P., and Gréselle, B., 2020, Phanerozoic eustasy, in Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., eds., Geologic Time Scale 2020, Elsevier, Amsterdam, p. 357–400.

    Google Scholar 

  • Sloss, L. L., 1963, Sequences in the cratonic interior of North America: Geological Society of America Bulletin, v. 74, p. 93–113.

    Google Scholar 

  • Sloss, L. L., 1972, Synchrony of Phanerozoic sedimentary-tectonic events of the North American craton and the Russian platform: 24th International Geological Congress, Montreal, Section 6, p. 24–32.

    Google Scholar 

  • Southgate, P. N., Kennard, J. M., Jackson, M. J., O'Brien, P. E., and Sexton, M. J., 1993, Reciprocal lowstand clastic and highstand carbonate sedimentation, subsurface Devonian reef complex, Canning Basin, Western Australia, in Loucks, R. G., and Sarg, J. F., eds., Carbonate sequence stratigraphy: American Association of Petroleum Geologists Memoir 57, p. 157–179.

    Google Scholar 

  • Strong, N., and Paola, C., 2008, Valleys that never were: time surfaces versus stratigraphic surfaces: Journal of Sedimentary Research, v. 78, p. 579–593.

    Google Scholar 

  • Talbot, M. R., 1985, Major bounding surfaces in aeolian sandstones—a climatic model: Sedimentology, v. 32, p. 257–265.

    Google Scholar 

  • Tipper, J. C., 2015, The importance of doing nothing: stasis in sedimentation systems and its stratigraphic effects: in Smith, D. G., Bailey, R., J., Burgess, P., and Fraser, A., eds., Strata and time: Probing the Gaps in Our Understanding: Geological Society, London, Special Publication 404, p. 105–122.

    Google Scholar 

  • Törnqvist, T. E., 1993, Holocene alternation of meandering and anastomosing fluvial systems in the Rhine-Meuse delta (central Netherlands) controlled by sea-level rise and subsoil erodibility: Journal of Sedimentary Petrology, v. 63, p. 683–693.

    Google Scholar 

  • Törnqvist, T. E., van Ree, M. H. M., and Faessen, E. L. J. H., 1993, Longitudinal facies architectural changes of a Middle Holocene anastomosing distributary system (Rhine-Meuse delta, central Netherlands): Sedimentary Geology, v. 85, p. 203–219.

    Google Scholar 

  • Vail, P. R., 1987, Seismic stratigraphy interpretation using sequence stratigraphy, Part 1: seismic stratigraphy interpretation procedure, in Bally, A. W., ed., Atlas of seismic stratigraphy: American Association of Petroleum Geologists Studies in Geology 27, v. 1, p. 1–10.

    Google Scholar 

  • Vail, P. R., Mitchum, R. M., Jr., Todd, R. G., Widmier, J. M., Thompson, S., III, Sangree, J. B., Bubb, J. N., and Hatlelid, W. G., 1977, Seismic stratigraphy and global changes of sea-level, in Payton, C. E., ed., Seismic stratigraphy - applications to hydrocarbon exploration: American Association of Petroleum Geologists Memoir 26, p. 49–212.

    Google Scholar 

  • Vandenberghe, J., 1993, Changing fluvial processes under changing periglacial conditions: Z. Geomorph, N.F., v. 88, p. 17–28.

    Google Scholar 

  • Vandenberghe, J., Kasse, C., Bohnke, S., and Kozarski, S., 1994, Climate-related river activity at the Weichselian-Holocene transition: a comparative study of the Warta and Maas rivers: Terra Nova, v. 6, p. 476–485.

    Google Scholar 

  • Van Wagoner, J. C., Mitchum, R. M., Jr., Posamentier, H. W., and Vail, P. R., 1987, Seismic stratigraphy interpretation using sequence stratigraphy, Part 2: key definitions of sequence stratigraphy, in Bally, A. W., ed., Atlas of seismic stratigraphy: American Association of Petroleum Geologists Studies in Geology 27, v. 1, p. 11–14.

    Google Scholar 

  • Van Wagoner, J. C., Mitchum, R. M., Campion, K. M. and Rahmanian, V. D. 1990, Siliciclastic sequence stratigraphy in well logs, cores, and outcrops: American Association of Petroleum Geologists Methods in Exploration Series 7, 55 p.

    Google Scholar 

  • Van Yperen, A. E., Holbrook, J. M., Poyatos-Moré, M., Myers, C., and Midtkandal, I., 2021, Low-accommodation and backwater effects on sequence stratigraphic surfaces and depositional architecture of fluvio-deltaic settings (Cretaceous Mesa Rica Sandstone, Dakota Group, USA): Basin Research, v. 33, p. 513–543.

    Google Scholar 

  • Varban, B. L. and Plint, A. G. 2008, Sequence stacking patterns in the Western Canada foredeep: influence of tectonics, sediment loading and eustasy on deposition of the Upper Cretaceous Kaskapau and Cardium Formations: Sedimentology, v. 55, p. 395–421.

    Google Scholar 

  • Veeken, 2007, Seismic stratigraphy, basin analysis and reservoir characterization: Elsevier, Amsterdam, Seismic Exploration, v. 37, 509 p.

    Google Scholar 

  • Walker, R. G., 1992, Facies, facies models and modern stratigraphic concepts, in Walker, R. G. and James, N. P., eds., Facies models: response to sea-level change: Geological Association of Canada, p. 1–14.

    Google Scholar 

  • Wanless, H. R., and Weller, J. M., 1932, Correlation and extent of Pennsylvanian cyclothems: Geological Society of America Bulletin, v. 43, p. 1003–1016.

    Google Scholar 

  • Weber, M.E., Wiedicke, M.H., Kudrass, H.R., Huebscher, C., and Erlenkeuser, H., 1997, Active growth of the Bengal Fan during sea-level rise and highstand: Geology, v. 25, p. 315–318.

    Google Scholar 

  • Wescott, W. A., 1993, Geomorphic thresholds and complex response of fluvial systems—some implications for sequence stratigraphy: American Association of Petroleum Geologists Bulletin, v. 77, p. 1208-1218.

    Google Scholar 

  • White, N., and Lovell, B., 1997, Measuring the pulse of a plume with the sedimentary record: Nature, v. 387, p. 888-891.

    Google Scholar 

  • Wilson, J. L., 1967, Cyclic and reciprocal sedimentation in Virgilian strata of southern New Mexico: Geological Society of America Bulletin, v. 78, p. 805-818.

    Google Scholar 

  • Wood, L. J., Ethridge, F. G., and Schumm, S. A., 1993, The effects of rate of base-level fluctuations on coastal plain, shelf and slope depositional systems: an experimental approach, in Posamentier, H. W., Summerhayes, C. P., Haq, B. U., and Allen, G. P., eds., Sequence stratigraphy and facies associations: International Association of Sedimentologists Special Publication 18, p. 43-53.

    Google Scholar 

  • Wright, V. P., and Marriott, S. B., 1993, The sequence stratigraphy of fluvial depositional systems: the role of floodplain sediment storage: Sedimentary Geology, v. 86, p. 203–210.

    Google Scholar 

  • Yoshida, S., Steel, R. S, and Dalrymple, R. W., 2007, Changes in depositional processes – an ingredient in a new generation of sequence stratigraphic models: Journal of Sedimentary Research, v. 77, p. 447–460.

    Google Scholar 

  • Zecchin, M., Catuneanu, O., and Caffau, M., 2019, Wave-ravinement surfaces: classification and key characteristics: Earth Science Reviews, v. 188, p. 210–239.

    Google Scholar 

  • Zhang, J., Burgess, P. M., Granjeon, D., and Steel, R., 2018, Can sediment supply variations create sequences? Insights from stratigraphic forward modelling: Basin Research, v. 31, p. 274-289.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miall, A.D. (2022). Sequence Stratigraphy. In: Stratigraphy: A Modern Synthesis. Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-87536-7_5

Download citation

Publish with us

Policies and ethics