Skip to main content

The Orbit Space and Basic Forms of a Proper Lie Groupoid

  • Conference paper
  • First Online:
Current Trends in Analysis, its Applications and Computation

Part of the book series: Trends in Mathematics ((RESPERSP))

Abstract

A classical result in differential geometry states that for a free and proper Lie group action, the quotient map to the orbit space induces an isomorphism between the de Rham complex of differential forms on the orbit space and the basic differential forms on the original manifold. In this paper, this result is generalized to the case of a proper Lie groupoid, in which the orbit space is equipped with the quotient diffeological structure. As an application of this, we obtain a de Rham theorem for the de Rham complex on the orbit space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The statement of this lemma was communicated to the author by Eugene Lerman; however, the proof is the author’s.

References

  1. J.C. Baez, A.E. Hoffnung, Convenient categories of smooth spaces. Trans. Am. Math. Soc. 363, 5789–5825 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Crainic, I. Struchiner, On the linearization theorem for proper Lie groupoids. Ann. Sci. École Norm. Sup (4), 46, 5 (2013)

    Google Scholar 

  3. M.L. del Hoyo, R.L. Fernandes, Riemannian metrics on Lie groupoids. J. Reine Angew. Math. 735, 143–173 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. B. Hoffman, R. Sjamaar, Stacky Hamiltonian actions and symplectic reduction. Int. Math. Res. Not. IMRN 20, 15209–15300 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Iglesias-Zemmour, Diffeology. Math. Surveys and Monographs (Amer. Math. Soc., 2012)

    Google Scholar 

  6. P. Iglesias-Zemmour, Y. Karshon, M. Zadka, Orbifolds as diffeologies. Trans. Am. Math. Soc. 362(6), 2811–2831 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Y. Karshon, J. Watts, Basic forms and orbit spaces: A diffeological approach. SIGMA Symmetry Integrability Geom. Methods Appl. 12(026), 19 p. (2016)

    Google Scholar 

  8. Y. Karshon, M. Zoghi, An effective orbifold groupoid is determined up to Morita equivalence by its underlying diffeological orbifold (preprint)

    Google Scholar 

  9. J.-L. Koszul, Sur certains groupes de transformations de Lie. Géométrie Différentielle, Colloques Internationaux du Centre National Recherche Scientifique (Strasbourg, 1953) (Centre National Recherche Scientifique, Paris, 1953), pp. 137–141

    Google Scholar 

  10. E. Lerman, Orbifolds as stacks? Enseign. Math. (2) 56(3-4), 315–363 (2010)

    Google Scholar 

  11. I. Moerdijk, J. Mrčun, Lie groupoids, sheaves and cohomology, Poisson geometry, deformation quantisation and group representations, 145–272, London Math. Soc. Lecture Note Ser., 323 (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  12. R. Palais, On the existence of slices for actions of non-compact Lie groups. Ann. Math. 73, 295–323 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  13. M.J. Pflaum, H. Posthuma, X. Tang, Geometry of orbit spaces of proper Lie groupoids. J. Reine Angew. Math. 694, 49–84 (2014)

    MathSciNet  MATH  Google Scholar 

  14. J. Watts, Diffeologies, Differential Spaces, and Symplectic Geometry. Ph.D. Thesis. University of Toronto, Canada (2012). http://arxiv.org/abs/1208.3634

  15. J. Watts, The differential structure of an orbifold. Rocky Mountain J. Math. 47, 289–327 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Watts, S. Wolbert, Diffeological coarse moduli spaces of stacks over manifolds (preprint). http://arxiv.org/abs/1406.1392

  17. A. Weinstein, Linearization problems for Lie algebroids and Lie groupoids. Lett. Math. Phys., 52, 93–102 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Weinstein, Linearization of regular proper groupoids. J. Inst. Math. Jussieu 1(3), 493–511 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. N.T. Zung, Proper groupoids and momentum maps: linearization, affinity and convexity. Ann. Sci. École Norm. Sup. (4) 39(5), 841–869 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordan Watts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Watts, J. (2022). The Orbit Space and Basic Forms of a Proper Lie Groupoid. In: Cerejeiras, P., Reissig, M., Sabadini, I., Toft, J. (eds) Current Trends in Analysis, its Applications and Computation. Trends in Mathematics(). Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-87502-2_52

Download citation

Publish with us

Policies and ethics