Skip to main content

Astrocyte Glutamate Transporter EAAT2 in Alzheimer Dementia

  • Chapter
  • First Online:
Glutamate and Neuropsychiatric Disorders
  • 966 Accesses

Abstract

Glutamate is an amino acid and also the major synaptic signaling molecule of neurons, essential in cognition, learning, and memory. Glutamate is neurotoxic. As soon as the glutamate signaling starts it is stopped in one millisecond by astrocytes, which take up and clear glutamate from the synapses, and prevent extended glutamate signaling, which can cause synapse loss and neuron cell death. Astrocytes express EAAT2 (excitatory amino acid transporter-2), the major glutamate transporter and 1% of brain protein. In Alzheimer dementia, brain has less EAAT2. In experimental Alzheimer mouse models, decreasing EAAT2 expression enhances dementia progression, and increasing EAAT2 expression slows dementia progression. These and other data indicate EAAT2 as a novel drug target in the treatment and prevention of Alzheimer dementia. In this chapter, after a brief revisit of Alzheimer research and clinical trials, synaptic glutamate signaling and EAAT2, I argue why EAAT2 drugs make therapeutic sense, and then describe a simple drug screening assay how to find them, by targeting the EAAT2 protein reconstituted in liposomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul HM, Sama MA, Furman JL, Mathis DM, Beckett TL, Weidner AM, Patel ES, Baig I, Murphy MP, LeVine H 3rd, Kraner SD, Norris CM (2009) Cognitive decline in Alzheimer’s disease is associated with selective changes in calcineurin/NFAT signaling. J Neurosci 29:12957–12969

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • ADI (n.d.) Dementia statistics. www.alz.co.uk/research/statistics

  • Akyuz N, Altman RB, Blanchard SC, Boudker O (2013) Transport dynamics in a glutamate transporter homologue. Nature 502:114–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alam MA, Datta PK (2019) Epigenetic regulation of excitatory amino acid transporter 2 in neurological disorders. Front Pharmacol 10:1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen NJ, Eroglu C (2017) Cell biology of astrocyte-synapse interactions. Neuron 96:697–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alonso-Nanclares L, Gonzalez-Soriano J, Rodriguez JR, DeFelipe J (2008) Gender differences in human cortical synaptic density. Proc Natl Acad Sci U S A 105:14615–14619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alzheimer A (1907) Ãœber eine eigenartige Erkrankung der Hirnrinde. Allg Z Psychiat 64:146–148

    Google Scholar 

  • Alzheimer A (1911) Ãœber eigenartige Krankheitsfalle des spateren Alters. Z Gesamte Neurol Psychiat 4:356–385

    Article  Google Scholar 

  • Alzheimer’s Association (2020) 2020 Alzheimer’s disease facts and figures. Alzheimers Dement 16(3):391–460. https://doi.org/10.1002/alz.12068

    Article  Google Scholar 

  • Anderson RM, Hadjichrysanthou C, Evans S, Wong MM (2017) Why do so many clinical trials of therapies for Alzheimer’s disease fail? Lancet 390:2327–2329

    Article  PubMed  Google Scholar 

  • Apell HJ, Bersch B (1987) Oxonol VI as an optical indicator for membrane potentials in lipid vesicles. Biochim Biophys Acta 903:480–494

    Article  CAS  PubMed  Google Scholar 

  • Apell HJ, Damnjanovic B (2016) Assaying P-type ATPases reconstituted in liposomes. Methods Mol Biol 1377:127–156

    Article  CAS  PubMed  Google Scholar 

  • Arboleda-Velasquez JF, Lopera F, O'Hare M, Delgado-Tirado S, Marino C, Chmielewska N, Saez-Torres KL, Amarnani D, Schultz AP, Sperling RA, Leyton-Cifuentes D, Chen K, Baena A, Aguillon D, Rios-Romenets S, Giraldo M, Guzmán-Vélez E, Norton DJ, Pardilla-Delgado E, Artola A, Sanchez JS, Acosta-Uribe J, Lalli M, Kosik KS, Huentelman MJ, Zetterberg H, Blennow K, Reiman RA, Luo J, Chen Y, Thiyyagura P, Su Y, Jun GR, Naymik M, Gai X, Bootwalla M, Ji J, Shen L, Miller JB, Kim LA, Tariot PN, Johnson KA, Reiman EM, Quiroz YT (2019) Resistance to autosomal dominant Alzheimer’s disease in an APOE3 Christchurch homozygote: a case report. Nat Med 25:1680–1683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayers-Ringler JR, Jia YF, Qiu YY, Choi DS (2016) Role of astrocytic glutamate transporter in alcohol use disorder. World J Psychiatry 6:31–42

    Article  PubMed  PubMed Central  Google Scholar 

  • Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, Jacob Filho W, Lent R, Herculano-Houzel S (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513:532–541

    Article  PubMed  Google Scholar 

  • Babiloni C, Blinowska K, Bonanni L, Cichocki A, De Haan W, Del Percio C, Dubois B, Escudero J, Fernández A, Frisoni G, Guntekin B, Hajos M, Hampel H, Ifeachor E, Kilborn K, Kumar S, Johnsen K, Johannsson M, Jeong J, LeBeau F, Lizio R, Lopes da Silva F, Maestú F, McGeown WJ, McKeith I, Moretti DV, Nobili F, Olichney J, Onofrj M, Palop JJ, Rowan M, Stocchi F, Struzik ZM, Tanila H, Teipel S, Taylor JP, Weiergräber M, Yener G, Young-Pearse T, Drinkenburg WH, Randall F (2020) What electrophysiology tells us about Alzheimer’s disease: a window into the synchronization and connectivity of brain neurons. Neurobiol Aging 85:58–73

    Article  PubMed  Google Scholar 

  • Baltaci SB, Mogulkoc R, Baltaci AK (2019) Molecular mechanisms of early and late LTP. Neurochem Res 44:281–296

    Article  CAS  PubMed  Google Scholar 

  • Banik A, Brown RE, Bamburg J, Lahiri DK, Khurana D, Friedland RP, Chen W, Ding Y, Mudher A, Padjen AL, Mukaetova-Ladinska E, Ihara M, Srivastava S, Padma Srivastava MV, Masters CL, Kalaria RN, Anand A (2015) Translation of pre-clinical studies into successful clinical trials for Alzheimer’s disease: what are the roadblocks and how can they be overcome? J Alzheimers Dis 47:815–843

    Article  PubMed  Google Scholar 

  • Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, Marcus DS, Cairns NJ, Xie X, Blazer TM, Holtzman DM, Santacruz A, Buckles V, Oliver A, Moulder K, Aisen PS, Ghetti B, Klunk WE, McDade E, Martins RN, Masters CL, Mayeux R, Ringman JM, Rossor MN, Schofield PR, Sperling RA, Salloway S, Morris JC, Dominantly Inherited Alzheimer Network (2012) Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 367:795–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bateman RJ, Benzinger TL, Berry S, Clifford DB, Duggan C, Fagan AM, Fanning K, Farlow MR, Hassenstab J, McDade EM, Millsa S, Plumier K, Quintanad M, Salloway SP, Santacruza A, Schneiderg LS, Wanga G, Xionga C, DIAN-TU Pharma Consortium for the Dominantly Inherited Alzheimer Network (2017) The DIAN-TU next generation Alzheimer’s prevention trial: adaptive design and disease progression model. Alzheimers Dement 13:8–19

    Article  PubMed  Google Scholar 

  • Batool M, Ahmad B, Choi S (2019) A structure-based drug discovery paradigm. Int J Mol Sci 20:2783

    Article  CAS  PubMed Central  Google Scholar 

  • Ben Halima S, Mishra S, Raja KMP, Willem M, Baici A, Simons K, Brüstle O, Koch P, Haass C, Caflisch A, Rajendran L (2016) Specific inhibition of β-secretase processing of the Alzheimer disease amyloid precursor protein. Cell Rep 14:2127–2141

    Article  CAS  PubMed  Google Scholar 

  • Beroun A, Mitra S, Michaluk P, Pijet B, Stefaniuk M, Kaczmarek L (2019) MMPs in learning and memory and neuropsychiatric disorders. Cell Mol Life Sci 76:3207–3228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertram L, Lill CM, Tanzi RE (2010) The genetics of Alzheimer disease: back to the future. Neuron 68:270–281

    Article  CAS  PubMed  Google Scholar 

  • Blacker CJ, Millischer V, Webb LM, Ho AMC, Schalling M, Free MA, Veldic M (2020) EAAT2 as a research target in bipolar disorder and unipolar depression: a systematic review. Mol Neuropsychiatry 5(Suppl 1):44–59

    PubMed  Google Scholar 

  • Blennow K, Bogdanovic N, Alafuzoff I, Ekman R, Davidsson P (1996) Synaptic pathology in Alzheimer’s disease: relation to severity of dementia, but not to senile plaques, neurofibrillary tangles, or the ApoE4 allele. J Neural Transm 103:603–618

    Article  CAS  PubMed  Google Scholar 

  • Bosch C, Martínez A, Masachs N, Teixeira CM, Fernaud I, Ulloa F, Pérez-Martínez E, Lois C, Comella JX, DeFelipe J, Merchán-Pérez A, Soriano E (2015) FIB/SEM technology and high-throughput 3D reconstruction of dendritic spines and synapses in GFP-labeled adult-gen erated neurons. Front Neuroanat 21:60

    Google Scholar 

  • Bronner F (2003) Extracellular and intracellular regulation of calcium homeostasis. Scientific World J 1:919–925

    Article  CAS  Google Scholar 

  • Brookmeyer R, Abdalla N, Kawas CH, Corrada MM (2018) Forecasting the prevalence of preclinical and clinical Alzheimer’s disease in the United States. Alzheimers Dement 14:121–129

    Article  PubMed  Google Scholar 

  • Busche MA, Konnerth A (2015) Neuronal hyperactivity--a key defect in Alzheimer’s disease? Bioassays 37:624–632

    Article  Google Scholar 

  • Bush AI, Martins RN, Rumble B, Moir R, Fuller S, Milward E, Currie J, Ames D, Weidemann A, Fischer P, Multhaup G, Beyreuther K, Masters CL (1990) The amyloid pre-cursor protein of Alzheimer’s disease is released by human platelets. J Biol Chem 265:15977–15983

    Article  CAS  PubMed  Google Scholar 

  • Chang KH, Chung CJ, Lin CL, Sung FC, Wu TN, Kao CH (2014) Increased risk of dementia in patients with osteoporosis: a population-based retrospective cohort analysis. Age 36:967–975

    Article  PubMed  Google Scholar 

  • Chu K, Lee ST, Sinn DI, Ko SY, Kim EH, Kim JM, Kim SJ, Park DK, Jung KH, Song EC, Lee SK, Kim M, Roh JK (2007) Pharmacological induction of ischemic tolerance by glutamate transporter-1 (EAAT2) upregulation. Stroke 38:177–182

    Article  CAS  PubMed  Google Scholar 

  • Chung EK, Chen LW, Chan YS, Yung KK (2008) Down regulation of glial glutamate transporters after dopamine denervation in the striatum of 6-hydroxydopamine-lesioned rats. J Comp Neurol 511:421–437

    Article  CAS  PubMed  Google Scholar 

  • Clapham DE (2007) Calcium signaling. Cell 131:1047–1058

    Article  CAS  PubMed  Google Scholar 

  • Clarke LE, Barres BA (2013) Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci 14:311–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clements JD, Lester RA, Tong G, Jahr CE, Westbrook GL (1992) The time course of glutamate in the synaptic cleft. Science 258:1498–1501

    Article  CAS  PubMed  Google Scholar 

  • Clemett D, Spencer CM (2000) Raloxifene: a review of its use in postmenopausal osteoporosis. Drugs 60:379–411

    Article  CAS  PubMed  Google Scholar 

  • Clifford DB, Ances BM (2013) HIV-associated neurocognitive disorder. Lancet Infect Dis 13:976–986

    Article  PubMed  PubMed Central  Google Scholar 

  • Colom-Cadena M, Spires-Jones T, Zetterberg H, Blennow K, Caggiano A, ST DK, Fillit H, Harrison JE, Schneider LS, Steeliness P, de Haan W, Grundman M, van Dyck CH, Izzo NJ, Catalano SM, Synaptic Health Endpoints Working Group (2020) The clinical promise of biomarkers of synapse damage or loss in Alzheimer’s disease. Alzheimers Res Ther 12:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Colton CK, Kong Q, Lai L, Zhu MX, Seyb KI, Cuny GD, Xian J, Glicksman MA, Lin CL (2010) Identification of translational activators of glial glutamate transporter EAAT2 through cell-based high-throughput screening: an approach to prevent excitotoxicity. J Biomol Screen 15:653–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Condomitti G, de Wit J (2018) Heparan sulfate proteoglycans as emerging players in synaptic specificity. Front Mol Neurosci 26:11–14

    Google Scholar 

  • Cudkowicz ME, Titus S, Kearney M, Yu H, Sherman A, Schoenfeld D, Hayden D, Shui A, Brooks B, Conwit R, Felsenstein D, Greenblatt DJ, Keroack M, Kissel JT, Miller R, Rosenfeld J, Rothstein JD, Simpson E, Tolkoff-Rubin N, Zinman L, Shefner JM, Ceftriaxone Study Investigators (2014) Safety and efficacy of ceftriaxone for amyotrophic lateral sclerosis: a multi-stage, randomised, double-blind, placebo-controlled trial. Lancet Neurol 13:1083–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cummings J, Aisen PS, DuBois B, Frölich L, Jack CR Jr, Jones RW, Morris JC, Raskin J, Dowsett SA, Scheltens P (2016) Drug development in Alzheimer’s disease: the path to 2025. Alzheimers Res Ther 8:39

    Article  PubMed  PubMed Central  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  CAS  PubMed  Google Scholar 

  • de la Torre JC (2014) Phase 3 trials of solanezumab and bapineuzumab for Alzheimer’s disease. N Engl J Med 370:1459–1460

    Article  PubMed  Google Scholar 

  • Deyts C, Clutter M, Pierce N, Chakrabarty P, Ladd TB, Goddi A, Rosario AM, Cruz P, Vetrivel K, Wagner SL, Thinakaran G, Golde TE, Parent AT (2019) APP-mediated signaling prevents memory decline in Alzheimer’s disease mouse model. Cell Rep 27:1345–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickerson BC, Salat DH, Greve DN, Chua EF, Rand-Giovannetti E, Rentz DM, Bertram L, Mullin K, Tanzi RE, Blacker D, Albert MS, Sterling RA (2005) Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology 65:404–411

    Article  CAS  PubMed  Google Scholar 

  • Diering GH, Huganir RL (2018) The AMPA receptor code of synaptic plasticity. Neuron 100:314–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drachman DA (2014) The amyloid hypothesis, time to move on: amyloid is the downstream result, not cause, of Alzheimer’s disease. Alzheimers Dement 10:372–380

    Article  PubMed  Google Scholar 

  • Dvorzhak A, Helassa N, Török K, Schmitz D, Grantyn R (2019) Single synapse indicators of impaired glutamate clearance derived from fast iGluu imaging of cortical afferents in the striatum of normal and Huntington (Q175) mice. J Neurosci 39(20):3970–3982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egan MF, Kost J, Voss T, Mukai Y, Aisen PS, Cummings JL, Tariot PN, Vellas B, van Dyck CH, Boada M, Zhang Y, Li W, Furtek C, Mahoney E, Harper Mozley L, Mo Y, Sur C, Michelson D (2019a) Randomized trial of verubecestat for prodromal Alzheimer’s disease. N Engl J Med 380:1408–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egan MF, Mukai Y, Boss T, Kost J, Stone J, Furtek C, Mahoney E, Cummings JL, Tariot PN, Aisen PS, Vellas B, Lines C, Michelson D (2019b) Further analyses of the safety of verubecestat in the phase 3 EPOCH trial of mild-to-moderate Alzheimer’s disease. Alzheimers Res Ther 11:68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Falcucci RM, Wertz R, Green JL, Mecca O, Salvino J, Fontana ACK (2019) Novel positive allosteric modulators of glutamate transport have neuroprotective properties in an in vitro excitotoxic model. ACS Chem Neurosci 10(8):3437–3453

    Article  CAS  PubMed  Google Scholar 

  • Fan SJ, Xian XH, Li L, Yao XG, Hu YY, Zhang M, Li WB (2018) Ceftriaxone improves cognitive function and upregulates GLT-1-related glutamate-glutamine cycle in APP/PS1 mice. J Alzheimers Dis 66:1731–1743

    Article  CAS  PubMed  Google Scholar 

  • Fang T, Khleifat AA, Meurgey JH, Jones A, Leigh PN, Bensimon G, Al-Chalabi A (2018) Stage at which riluzole treatment prolongs survival in patients with amyotrophic lateral sclerosis: a retrospective analysis of data from a dose-ranging tudy. Lancet Neurol 17:416–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontana AC (2015) Current approaches to enhance glutamate transporter function and expression. J Neurochem 134:982–1007

    Article  CAS  PubMed  Google Scholar 

  • Fontana ACK (2018) Drugs to alter extracellular concentration of glutamate: modulators of glutamate uptake systems. In: Parrot S, Denoroy L (eds) Biochemical approaches for glutamatergic neurotransmission. Neuromethods, vol 130. Springer

    Google Scholar 

  • Fontana ACK, Guizzo R, de Oliveira Beleboni R, e Silva ARM, Coimbra NC, Amara SG, dos Santos WF, Coutinho-Netto J (2003) Purification of a neuroprotective component of Parawixia bistriata spider venom that enhances glutamate uptake. Br J Pharmacol 139:1297–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontana ACK, de Oliveira Beleboni R, Wojewodzic MW, Dos Santos WF, Coutinho-Netto J, Grutle NJ, Watts SD, Danbolt NC, Amara SG (2007) Enhancing glutamate transport: mechanism of action of Parawixin1, a neuroprotective compound from Parawixia Bistriata spider venom. Mol Pharm 72:1228–1237

    Article  CAS  Google Scholar 

  • Förstl H, Levy R (1991) On certain peculiar diseases of old age. Hist Psychiatry 2:74–99

    Article  Google Scholar 

  • Franceschi C, Garagnani P, Morsiani C, Conte M, Santoro A, Grignlio A, Monti D, Capri M, Salvioli S (2018) The continuum of aging and age-related diseases: common mechanisms but different rates. Front Med 5:61

    Article  Google Scholar 

  • Froemke RC (2015) Plasticity of cortical excitatory-inhibitory balance. Annu Rev Neurosci 38:195–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuller JT, Cronin-Golomb A, Satchel JR, Dj N, Guzmán-Vélez E, Jacobs HIL, Hanseeuw B, Pardilla-Delgado E, Artola A, Baena A, Bocanegra Y, Kosik KS, Chen K, Tariot PN, Johnson K, Sperling RA, Reiman EM, Lopera F, Quiroz YT (2019) Biological and cognitive markers of presenilin1 E280A autosomal dominant Alzheimer’s disease: a comprehensive review of the Colombian kindred. J Prev Alzheimers Dis 6:112–120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Esparcia P, Diaz-Lucena D, Ainciburu M, Torrejón-Escribano B, Carmona M, Llorens F, Ferrer I (2018) Glutamate transporter GLT1 expression in Alzheimer disease and dementia with Lewy bodies. Front Aging Neurosci 10:122

    Article  PubMed  PubMed Central  Google Scholar 

  • Gebhardt FM, Mitrovic AD, Gilbert DF, Vandenberg RJ, Lynch JW, Dodd PR (2010) Exon-skipping splice variants of excitatory amino acid transporter-2 (EAAT2) form heteromeric complexes with full-length EAAT2. J Biol Chem 285:31313–31324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gegelashvili G, Bjerrum OJ (2019) Glutamate transport system as a key constituent of glutamosome: molecular pathology and pharmacological modulation in chronic pain. Neuropharmacology 161:107623

    Article  CAS  PubMed  Google Scholar 

  • Ghanizadeh A, Berk M (2015) Beta-lactam antibiotics as a possible novel therapy for managing epilepsy and autism, a case report and review of literature. Iran J Child Neurol 9:99–102

    PubMed  PubMed Central  Google Scholar 

  • Ghosh M, Lane M, Krizman E, Sattler R, Rothstein JD, Robinson MB (2016) The transcription factor Pax6 contributes to the induction of GLT-1 expression in astrocytes through an interaction with a distal enhancer element. J Neurochem 136:262–275

    Article  CAS  PubMed  Google Scholar 

  • Gisbert Schneider G (2018) Automating drug discovery. Nat Rev Drug Discov 17:97–113

    Article  PubMed  CAS  Google Scholar 

  • Golde TE (2016) Overcoming translational barriers impeding development of Alzheimer’s disease modifying therapies. J Neurochem 139(Suppl 2):224–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gosztyla ML, Brothers HM, Robinson SR (2018) Alzheimer’s amyloid-β is an antimicrobial peptide: a review of the evidence. J Alzheimers Dis 62:1495–1506

    Article  CAS  PubMed  Google Scholar 

  • Graeber MB (1999) No man alone: the rediscovery of Alois Alzheimer’s original cases. Brain Pathol 9:237–240

    Article  CAS  PubMed  Google Scholar 

  • Grewer C, Rauen T (2005) Electrogenic glutamate transporters in the CNS: molecular mechanism, pre-steady-state kinetics, and their impact on synaptic signaling. J Membr Biol 203:1–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamidi N, Nomad A, Sheikhkanloui Milan H, Salari AA, Amani M (2019) Effect of ceftriaxone on paired-pulse response and long-term potentiation of hippocampal dentate gyrus neurons in rats with Alzheimer-like disease. Life Sci 238:116969

    Article  CAS  PubMed  Google Scholar 

  • Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185

    Article  CAS  PubMed  Google Scholar 

  • Heaton RK, Clifford DB, Franklin DR Jr, Woods SP, Ake C, Vaida F, Ellis RJ, Letendre SL, Marcotte TD, Atkinson JH, Rivera-Mindt M, Vigil OR, Taylor MJ, Collier AC, Marra CM, Gelman BB, McArthur JC, Morgello S, Simpson DM, McCutchan JA, Abramson I, Gamst A, Fennema-Notestine C, Jernigan TL, Wong J, Grant I (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER study. Neurology 75:2087–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helassa N, Dürst CD, Coates C, Kerruth S, Arif U, Schulze C, Wiegert JS, Geeves M, Oerter TG, Török K (2018) Ultrafast glutamate sensors resolve high-frequency release at Schaffer collateral synapses. Proc Natl Acad Sci USA 115:5594–5599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heller JP, Rusakov DA (2015) Morphological plasticity of astroglia: understanding synaptic microenvironment. Glia 63:2133–2151

    Article  PubMed  PubMed Central  Google Scholar 

  • Henley D, Raghavan N, Sperling R, Aisen P, Raman R, Romano G (2019) Preliminary results of a trial of atabecestat in preclinical Alzheimer’s disease. N Engl J Med 380:1483–1485

    Article  PubMed  Google Scholar 

  • Herman MA, Jahr CE (2007) Extracellular glutamate concentration in hippocampal slice. J Neurosci 27:9736–9741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrup K (2015) The case for rejecting the amyloid cascade hypothesis. Nat Neurosci 18:794–799

    Article  CAS  PubMed  Google Scholar 

  • Hsieh MH, Meng WY, Liao WC, Weng JC, Li HH, Su HL, Lin CL, Hung CS, Ho YJ (2017) Ceftriaxone reverses deficits of behavior and neurogenesis in an MPTP-induced rat model of Parkinson’s disease dementia. Brain Res Bull 132:129–138

    Article  CAS  PubMed  Google Scholar 

  • Hubbard JA, Binder DK (2017) Targeting glutamate transporter-1 in neurological diseases. Oncotarget 8:22311–22312

    Article  PubMed  PubMed Central  Google Scholar 

  • Huerta I, McCullumsmith RE, Haroutunian V, Giménez-Amaya JM, Meador-Woodruff JH (2006) Expression of excitatory amino acid transporter interacting protein transcripts in the thalamus in schizophrenia. Synapse 59:394–402

    Article  CAS  PubMed  Google Scholar 

  • Itzhaki RF (2019) A turning point in Alzheimer’s disease: microbes matter. J Alzheimers Dis 72(4):977–980

    Article  CAS  PubMed  Google Scholar 

  • Jacob C, Koutsilieri E, Bartl J, Neuen-Jacob E, Arzberger T, Zander N, Ravid R, Roggendorf W, Riederer P, Grünblatt E (2007) Alterations in expression of glutamatergic transporters and receptors in sporadic Alzheimer’s disease. J Alzheimers Dis 11:97e116

    Article  Google Scholar 

  • Jacobs S, Cui Z, Feng R, Wang H, Wang D, Tsien JZ (2014) Molecular and genetic determinants of the NMDA receptor for superior learning and memory functions. PLoS One 9:e111

    Article  Google Scholar 

  • Jacobsen DE, Samson MM, Emmelot-Vonk MH, Verhaar HJ (2010) Raloxifene improves verbal memory in late postmenopausal women: a randomized, double-blind, placebo-controlled trial. Menopause 17:309–314

    Article  PubMed  Google Scholar 

  • Järemo P, Jejcic A, Jelic V, Shahnaz T, Oweling M, Winblad B, Behbahani H (2019) Erythrocyte amyloid beta peptide isoform distributions in Alzheimer and mild cognitive impairment. Curr Alzheimer Res 16(11):1050–1054

    Article  PubMed  CAS  Google Scholar 

  • Jia YF, Choi Y, Ayers-Ringler JR, Biernacka JM, Geske JR, Lindberg DR, McElroy SL, Frye MA, Choi DS, Veldic M (2017) Differential SLC1A2 promoter methylation in bipolar disorder with or without addiction. Front Cell Neurosci 11:217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Müller-Hill B (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325:733–736

    Article  CAS  PubMed  Google Scholar 

  • Karch CM, Goate AM (2015) Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry 77:43–51

    Article  CAS  PubMed  Google Scholar 

  • Karki P, Webb A, Zerguine A, Choi J, Son DS, Lee E (2014) Mechanism of raloxifene-induced upregulation of glutamate transporters in rat primary astrocytes. Glia 62:1270–1283

    Article  PubMed  PubMed Central  Google Scholar 

  • Karran E, De Strooper B (2016) The amyloid cascade hypothesis: are we poised for success or failure? J Neurochem 139(Suppl. 2):237–252

    Article  CAS  PubMed  Google Scholar 

  • Kavanaugh MP, Bendahan A, Zerangue N, Zhang Y, Kanner BI (1997) Mutation of an amino acid residue influencing potassium coupling in the glutamate transporter GLT-1 induces obligate exchange. J Bill Chem 272:1703–1708

    Article  CAS  Google Scholar 

  • Kim SY, Chao W, Choi SY, Volsky DJ (2003) Cloning and characterization of the 3′-untranslated region of the human excitatory amino acid transporter 2 transcript. J Neurochem 86:1458–1467

    Article  CAS  PubMed  Google Scholar 

  • Kong Q, Chang LC, Takahashi K, Liu Q, Schulte DA, Lai L, Ibabao B, Lin Y, Stouffer N, Mukhopadhyay CD, Xing X, Seyb KI, Cuny GD, Glicksman MA, Lin CL (2014) Small-molecule activator of glutamate transporter EAAT2 translation provides neuroprotection. J Clin Invest 124:1255–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kortagere S, Mortensen OV, Xia J, Lester W, Fang Y, Srikanth Y, Salvino JM, Fontana ACK (2017) Identification of novel allosteric modulators of glutamate transporter EAAT2. ACS Chem Neurosci 9:522–534

    Article  PubMed  CAS  Google Scholar 

  • Korte N, Izquierdo P, Hirunpattarasilp C, Mishra A, Jaunmuktane Z, Kyrargyri V, Pfeiffer T, Khennouf L, Madry C, Gong H, Richard-Loendt A, Huang W, Saito T, Saido TC, Brandner S, Sethi H, Attwell D (2019) Amyloid β oligomers constrict human capillaries in Alzheimer’s disease via signaling to pericytes. Science 365:eaav9518

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurkinen M (2017) The amyloid hypothesis is too good to be true. Alzheimers Dement Cogn Neurol. https://doi.org/10.15761/ADCN.1000106

  • Kurkinen M (2018) Alzheimer’s dementia drug discovery: targeting synaptic glutamate uptake. In: Conn F, Ram J (eds) Conn’s handbook of invertebrate models of aging, 2nd edn. Elsevier

    Google Scholar 

  • Lane CA, Hardy J, Schott JM (2018) Alzheimer’s disease. Eur J Neurol 25:59–70

    Article  CAS  PubMed  Google Scholar 

  • Laprairie RB, Petr GT, Sun Y, Fischer KD, Denovan-Wright EM, Rosenberg PA (2019) Huntington’s disease pattern of transcriptional dysregulation in the absence of mutant huntingtin is produced by knockout of neuronal GLT-1. Neurochem Int 123:85–94

    Article  CAS  PubMed  Google Scholar 

  • Lauriat TL, McInnes LA (2007) EAAT2 regulation and splicing: relevance to psychiatric and neurological disorders. Mol Psychiatry 12:1065–1078

    Article  CAS  PubMed  Google Scholar 

  • Lee SG, Su ZZ, Emdad L, Gupta P, Sarkar D, Borjabad A, Volsky DJ, Fisher PB (2008) Mechanism of ceftriaxone induction of excitatory amino acid transporter-2 expression and glutamate uptake in primary human astrocytes. J Biol Chem 283:13116–13123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SG, Kim K, Kegelman TP, Dash R, Das SK, Choi JK, Emdad L, Howlett EL, Jeon HY, Su ZZ, Yoo BK, Sarkar D, Kim SH, Kang DC, Fisher PB (2011) Oncogene AEG-1 promotes glioma-induced neurodegeneration by increasing glutamate excitotoxicity. Cancer Res 71:6514–6523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesuis SL, Kaplick PM, Lucas PJ, Krugers HJ (2019) Treatment with the glutamate modulator riluzole prevents early life stress-induced cognitive deficits and impairments in synaptic plasticity in APPswe/PS1dE9 mice. Neuropharmacology 150:175–183

    Article  CAS  PubMed  Google Scholar 

  • Leterrier C (2018) The axon initial segment: an updated viewpoint. J Neurosci 38:2135–2145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung TC, Lui CN, Chen LW, Yung WH, Chan YS, Yung KK (2012) Ceftriaxone ameliorates motor deficits and protects dopaminergic neurons in 6-hydroxydopamine-lesioned rats. ACS Chem Neurosci 3:22–30

    Article  CAS  PubMed  Google Scholar 

  • Lin CL, Kong Q, Cuny GD, Glicksman MA (2012) Glutamate transporter EAAT2: a new target for the treatment of neurodegenerative diseases. Future Med Chem 4:1689–1700

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Ding L, Rovere M, Wolfe MS, Selkoe DJ (2019) A cellular complex of BACE1 and γ-secretase sequentially generates Aβ from its full-length precursor. J Cell Biol 218:644–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez Lopez C, Tariot PN, Caputo A, Langbaum JB, Liu F, Riviere ME, Langlois C, Rouzade-Dominguez ML, Zalesak M, Hendrix H, Thomas RG, Viglietta V, Lenz R, Ryan JM, Graf A, Remain EM (2019) The Alzheimer’s prevention initiative generation program: study design of two randomized controlled trials for individuals at risk for clinical onset of Alzheimer’s disease. Alzheimers Dement 5:216–227

    Article  Google Scholar 

  • Lucas DR, Newhouse JP (1957) The toxic effect of sodium L-glutamate on the inner layers of the retina. Arch Ophthalmol 58:193–204

    Article  CAS  Google Scholar 

  • Lutgen V, Narasipura SD, Sharma A, Min S, Al-Harthi L (2016) β-Catenin signaling positively regulates glutamate uptake and metabolism in astrocytes. J Neuroinflammation 13:242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lynch MA (2004) Long-term potentiation and memory. Phys Rev 84:87–136

    CAS  Google Scholar 

  • Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5–21

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Lozada Z, Guillem AM, Robinson MB (2016) Transcriptional regulation of glutamate transporters: from extracellular signals to transcription factors. Adv Pharmacol 76:103–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masliah E, Hansen L, Alford M, Deteresa R, Mallory M (1996) Deficient glutamate transport is associated with neurodegeneration in Alzheimer’s disease. Ann Neurol 40:759e766

    Article  Google Scholar 

  • Matute C (2011) Therapeutic potential of kainate receptors. CNS Neurosci Ther 17:661–669

    Article  CAS  PubMed  Google Scholar 

  • McEntee WJ, Crook TH (1993) Glutamate: its role in learning, memory, and the aging brain. Psychopharmacol 111:391–401

    Article  CAS  Google Scholar 

  • McIlwain BC, Vandenberg RJ, Ryan MN (2015) Transport rates of a glutamate transporter homologue are influenced by the lipid bilayer. J Biol Chem 290:9780–9788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moen MD, Keating GM (2008) Raloxifene: a review of its use in the prevention of invasive breast cancer. Drugs 68:2059–2083

    Article  CAS  PubMed  Google Scholar 

  • Moir RD, Tanzi RE (2019) Low evolutionary selection pressure in senescence does not explain the persistence of Aβ in the vertebrate genome. Front Aging Neurosci 11:70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moir RD, Lathe R, Tanzi RE (2018) The antimicrobial protection hypothesis of Alzheimer’s disease. Alzheimers Dement 14:1602–1614

    Article  PubMed  Google Scholar 

  • Mönning U, König G, Prior R, Mechler H, Schreiter-Gasser U, Masters CL, Beyreuther K (1990) Synthesis and secretion of Alzheimer amyloid beta A4 precursor protein by stimulated human peripheral blood leucocytes. FEBS Lett 277:261–266

    Article  PubMed  Google Scholar 

  • Mookherjee P, Green PS, Watson GS, Marques MA, Tanaka K, Meeker KD, Meabon JS, Li N, Zhu P, Olson VG (2011) GLT-1 loss accelerates cognitive deficit onset in an Alzheimer’s disease animal model. J Alzheimers Dis 26:447–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris JC, Aisen PS, Bateman RJ, Benzinger TL, Cairns NJ, Fagan AM, Ghetti B, Goate AM, Holtzman DM, Klunk WE, McDade E, Marcus DS, Martins RN, Masters CL, Bayeux R, Oliver A, Quaid K, Ringman JM, Rossor MN, Salloway S, Schofield PR, Selsor NJ, Sperling RA, Weiner MW, Xiong C, Moulder KL, Buckles VD (2012) Developing an international network for Alzheimer research: the dominantly inherited Alzheimer Network. Clin Investig 2:975–984

    Article  CAS  Google Scholar 

  • Morris GP, Clark IA, Vissel B (2018) Questions concerning the role of amyloid-β in the definition, aetiology and diagnosis of Alzheimer’s disease. Acta Neuropathol 136:663–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullard A (2018) BACE failures lower AD expectations, again. Nat Rev Drug Discov 17:385

    PubMed  Google Scholar 

  • Müller U, Winter P, Graeber MB (2013) A presenilin 1 mutation in the first case of Alzheimer’s disease. Lancet Neural 12:129–130

    Article  Google Scholar 

  • Müller UC, Deller T, Korte M (2017) Not just amyloid: physiological functions of the amyloid precursor protein family. Nat Rev Neurosci 18:281–298

    Article  PubMed  CAS  Google Scholar 

  • Murphy-Royal C, Dupuis J, Groc L, Oliet SHR (2017) Astroglial glutamate transporters in the brain: regulating neurotransmitter homeostasis and synaptic transmission. J Neurosci Res 95:2140–2151

    Article  CAS  PubMed  Google Scholar 

  • Naaijen J, Bralten J, Poelmans G, IMAGE consortium, Glenn JC, Franke B, Buitelaar JK (2017) Glutamatergic and GABAergic gene sets in attention-deficit/hyperactivity disorder: association to overlapping traits in ADHD and autism. Transl Psychiatry 7:e999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nanitsos EK, Nguyen KTD, St’astný F, Balcar VJ (2005) Glutamatergic hypothesis of schizophrenia: involvement of Na+/K+-dependent glutamate transport. J Biomed Sci 12:975–984

    Article  CAS  PubMed  Google Scholar 

  • Ng D, Pitcher GM, Szilard RK, Sertié A, Kanisek M, Clapcote SJ, Lipina T, Kalia LV, Joo D, McKerlie C, Cortez M, Roder JC, Salter MW, McInnes RR (2009) Neto1 is a novel CUB-domain NMDA receptor-interacting protein required for synaptic plasticity and learning. PLoS Biol 7:e41

    Article  PubMed  Google Scholar 

  • Nikolaev A, McLaughlin T, O’Leary DD, Tessier-Lavigne M (2009) APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 457:981–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Donovan Sinead M, Sullivan R, McCullumsmith RE (2017) The role of glutamate transporters in the pathophysiology of neuropsychiatric disorders. NPJ Schizophr 3:32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oberheim NA, Takano T, Han X, He W, Lin JH, Wang F, Xu Q, Wyatt JD, Pilcher W, Ojemann JG, Ransom BR, Goldman SA, Nedergaard M (2009) Uniquely hominid features of adult human astrocytes. J Neurosci 29:3276–3287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olivares-Bañuelos TN, Chí-Castañeda D, Ortega A (2019) Glutamate transporters: gene expression regulation and signaling properties. Neuropharmacology 161:107550

    Article  PubMed  CAS  Google Scholar 

  • Olney JW (1969) Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science 164:719–721

    Article  CAS  PubMed  Google Scholar 

  • Pajarillo E, Rizor A, Lee J, Aschner M, Lee E (2019) The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: potential targets for neurotherapeutics. Neuropharmacology 161:107559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paoletti P, Bellone C, Zhou Q (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 14:383–400

    Article  CAS  PubMed  Google Scholar 

  • Papouin T, Dunphy J, Tolman M, Foley JC, Haydon PG (2017) Astrocytic control of synaptic function. Phil Trans R Soc B 372:20160154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park YK, Goda Y (2016) Integrins in synapse regulation. Nat Rev Neurosci 17:745–756

    Article  CAS  PubMed  Google Scholar 

  • Parkin GM, Udawela M, Gibbons A, Dean B (2018) Glutamate transporters, EAAT1 and EAAT2, are potentially important in the pathophysiology and treatment of schizophrenia and affective disorders. World J Psychiatry 8:51–63

    Article  PubMed  PubMed Central  Google Scholar 

  • Pereira AC, Gray JD, Kogan JF, Davidson RL, Rubin TG, Okamoto M, Morrison JH, McEwen BS (2017) Age and Alzheimer’s disease gene expression profiles reversed by the glutamate modulator riluzole. Mol Psychiatry 22:296–305

    Article  CAS  PubMed  Google Scholar 

  • Petr GT, Sun Y, Frederick NM, Zhou Y, Dhamne SC, Hameed MQ, Miranda C, Bedoya EA, Fischer KD, Armsen W, Wang J, Danbolt NC, Rotenberg A, Aoki CJ, Rosenberg PA (2015) Conditional deletion of the glutamate transporter GLT-1 reveals that astrocytic GLT-1 protects against fatal epilepsy while neuronal GLT-1 contributes significantly to glutamate uptake into synaptosomes. J Neurosci 35:5187–5201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potter MC, Figuera-Losada M, Rojas C, Slusher BS (2013) Targeting the glutamatergic system for the treatment of HIV-associated neurocognitive disorders. J Neuroimmune Pharm 8:594–607

    Article  Google Scholar 

  • Power C, Hui E, Vivithanaporn P, Acharjee S, Polyak M (2012) Delineating HIV-associated neurocognitive disorders using transgenic models: the neuropathogenic actions of Vpr. J Neuroimmune Pharmacol 7:319–331

    Article  PubMed  Google Scholar 

  • Qiu C, Kivipelto M, von Strauss E (2009) Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci 11:111–128

    Article  PubMed  PubMed Central  Google Scholar 

  • Quiroz YT, Budson AE, Celone K, Ruiz A, Newmark R, Castrillon G, Lopera F, Stern CE (2010) Hippocampal hyperactivation in presymptomatic familial Alzheimer’s disease. Ann Neurol 68:865–875

    Article  PubMed  PubMed Central  Google Scholar 

  • Rao P, Yallapu MM, Sari Y, Fisher PB, Kumar S (2015) Designing novel nanoformulations targeting glutamate yransporter excitatory amino acid transporter 2: implications in treating drug addiction. J Pers Nanomed 1:3–9

    PubMed  PubMed Central  Google Scholar 

  • Reiner A, Levitz J (2018) Glutamatergic signaling in the central nervous system: ionotropic and metabotropic receptors in concert. Neuron 98:1080–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritchie CW, Russ TC, Banerjee S, Barber B, Boaden A, Fox NC, Holmes C, Isaacs JD, Leroi I, Lovestone S, Norton M, O'Brien J, Pearson J, Perry R, Pickett J, Waldman AD, Wong WL, Rossor MN, Burns A (2017) The Edinburgh consensus: preparing for the advent of disease-modifying therapies for Alzheimer’s disease. Alzheimers Res Ther 9:85

    Article  PubMed  PubMed Central  Google Scholar 

  • Rivera S, García-González L, Khrestchatisky M, Baranger K (2019) Metalloproteinases and their tissue inhibitors in Alzheimer’s disease and other neurodegenerative disorders. Cell Mol Life Sci 76:3167–3191

    Article  CAS  PubMed  Google Scholar 

  • Roberts RC, Roche JK, McCullumsmith RE (2014) Localization of excitatory amino acid transporters EAAT1 and EAAT2 in human postmortem cortex: a light and electron microscopic study. Neuroscience 277:522–540

    Article  CAS  PubMed  Google Scholar 

  • Rojas DC (2014) The role of glutamate and its receptors in autism and the use of glutamate antagonists in treatment. J Neural Transom 121:891–905

    Article  CAS  Google Scholar 

  • Rosenberg PA, Aizenman E (1989) Hundred-fold increase in neuronal vulnerability to glutamate toxicity in astrocyte-poor cultures of rat cerebral cortex. Neurosci Lett 103:162–168

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg PA, Amin S, Leitner M (1992) Glutamate uptake disguises neurotoxic potency of glutamate agonists in cerebral cortex in dissociated cell culture. J Neurosci 12:56–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg RN, Lambracht-Washington D, Yu G, Xia W (2016) Genomics of Alzheimer disease: a review. JAMA Neurol 73:867–874

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenblum LT, Trotti D (2017) EAAT2 and the molecular signature of amyotrophic lateral sclerosis. Adv Neurobiol 16:117–136

    Article  PubMed  PubMed Central  Google Scholar 

  • Roses AD (1996) Apolipoprotein E alleles as risk factors in Alzheimer’s disease. Annu Rev Med 47:387–400

    Article  CAS  PubMed  Google Scholar 

  • Rothstein JD, Martin LJ, Kuncl RW (1992) Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. New Engl J Med 326:1464–1468

    Article  CAS  PubMed  Google Scholar 

  • Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, Jin L, Dykes Hoberg M, Vidensky S, Chung DS, Toan SV, Bruijn LI, Su ZZ, Gupta P, Fisher PB (2005) Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433:73–77

    Article  CAS  PubMed  Google Scholar 

  • Ruan Y, Miyagi A, Wang X, Chami M, Boudker O, Scheuring S (2017) Direct visualization of glutamate transporter elevator mechanism by high-speed AFM. Proc Natl Acad Sci U S A 114:1584–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rumbaugh JA, Li G, Rothstein J, Nath A (2007) Ceftriaxone protects against the neurotoxicity of human immunodeficiency virus proteins. J Neurovirol 13:168–172

    Article  CAS  PubMed  Google Scholar 

  • Rusnak F, Mertz P (2000) Calcineurin: form and function. Physiol Rev 80:1483–1521

    Article  CAS  PubMed  Google Scholar 

  • Ryman DC, Acosta-Baena N, Aisen PS, Bird T, Danek A, Fox NC, Goate A, Frommelt P, Ghetti B, Langbaum JB, Lopera F, Martins R, Masters C, Mayeux RP, McDade E, Moreno S, Reiman EM, Ringman JM, Salloway S, Schofield PR, Sperling R, Tariot PN, Xiong C, Morris JC, Bateman RJ, Dominantly Inherited Alzheimer Network (2014) Symptom onset in autosomal dominant Alzheimer disease: a systematic review and meta-analysis. Neurology 83:253–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheff SW, Price DA, Schmitt FA, Mufson EJ (2006) Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 27:1372–1384

    Article  CAS  PubMed  Google Scholar 

  • Schreiner B, Hedskog L, Wiehager B, Ankarcrona M (2015) Amyloid-β peptides are generated in mitochondria-associated endoplasmic reticulum membranes. J Alzheimers Dis 43:369–374

    Article  CAS  PubMed  Google Scholar 

  • Scimemi A, Beato M (2009) Determining the neurotransmitter concentration profile at active synapses. Mol Neurobiol 40:289–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott HA, Gebhardt FM, Mitrovic AD, Vandenberg RJ, Dodd PR (2011) Glutamate transporter variants reduce glutamate uptake in Alzheimer’s disease. Neurobiol Aging 32:553.e1–11

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8:595–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Kazim SF, Larson CS, Ramakrishnan A, Gray JD, McEwen BS, Rosenberg PA, Shen L, Pereira AC (2019) Divergent roles of astrocytic versus neuronal EAAT2 deficiency on cognition and overlap with aging and Alzheimer’s molecular signatures. Proc Natl Acid Sci USA 116:21800–21811

    Article  CAS  Google Scholar 

  • Smith AC, Scofeld MD, Kalivas PW (2016) The tetrapartite synapse: extracellular matrix remodeling contributes to corticoaccumbens plasticity underlying drug addiction. Brain Res 1628(Pt A):29–39

    Google Scholar 

  • Sohal VS, Rubenstein JLR (2019) Excitation-inhibition balance as a framework for investigating mechanisms in neuropsychiatric disorders. Mol Psychiatry 24:1248–1257

    Article  PubMed  PubMed Central  Google Scholar 

  • Souza DG, Almeida RF, Souza DO, Zimmer ER (2019) The astrocyte biochemistry. Semin Cell Dev Biol 95:142–150

    Article  CAS  PubMed  Google Scholar 

  • Strilic B, Yang L, Albarrán-Juárez J, Wachsmuth L, Han K, Müller UC, Pasparakis M, Offermanns S (2016) Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis. Nature 536:215–218

    Article  CAS  PubMed  Google Scholar 

  • Südhof TC (2013) Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron 80:675–690

    Article  PubMed  CAS  Google Scholar 

  • Südhof TC (2018) Towards an understanding of synapse formation. Neuron 100:276–293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun L, Zhou R, Yang G, Shi Y (2017) Analysis of 138 pathogenic mutations in presenilin-1 on the in vitro production of Aβ42 and Aβ40 peptides by γ-secretase. Proc Natl Acad Sci U S A 114(4):E476–E485

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Kong Q, Lin Y, Stouffer N, Schultz DA, Lai L, Liu Q, Chang LC, Dominguez S, Xing X, Cuny GD, Hodgetts KJ, Glicksman MA, Lin CL (2015a) Restored glial glutamate transporter EAAT2 function as a potential therapeutic approach for Alzheimer’s disease. J Exp Med 212:319–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Foster JB, Lin CL (2015b) Glutamate transporter EAAT2: regulation, function, and potential as a therapeutic target for neurological and psychiatric disease. Cell Mol Life Sci 72:3489–3506

    Article  CAS  PubMed  Google Scholar 

  • Tanzi RE (2013) A brief history of Alzheimer’s disease gene discovery. J Alzheimers Dis 33(Suppl 1):S5–S13

    PubMed  Google Scholar 

  • Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R et al (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:57

    Article  Google Scholar 

  • The New York Times (10 Feb 2020) An Alzheimer’s treatment fails: ‘we don’t have anything now’ by Gina Kolata. https://www.nytimes.com/2020/02/10/health/alzheimers-amyloid-drug.html?searchResultPosition=1

  • Tikhonova MA, Ho SC, Akopyan AA, Kolosova NG, Weng JC, Men WY, Lin CL, Amstislavskaya TG, Ho YJ (2017) Neuroprotective effects of ceftriaxone treatment on cognitive and neuronal degeneration in a rat model of accelerated senescence. Behav Brain Res 6:8–16

    Article  CAS  Google Scholar 

  • Toggas SM, Masliah E, Rockenstein EM, Rall GF, Abraham CR, Mucke L (1994) Central nervous system damage produced by expression of the HIV-1 coat protein gp120 in transgenic mice. Nature 367:188–193

    Article  CAS  PubMed  Google Scholar 

  • Toodayan N (2016) Professor Alois Alzheimer (1864-1915): lest we forget. J Clin Neurosci 31:47–55

    Article  PubMed  Google Scholar 

  • Underhill SM, Wheeler DS, Amara SG (2015) Differential regulation of two isoforms of the glial glutamate transporter EAAT2 by DLG1 and CaMKII. J Neurosci 35:5260–5270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Underwood J, Robertson KR, Winston A (2015) Could antiretroviralneurotoxicity play a role in the pathogenesis of cognitive impairment in treated HIV disease? AIDS 29:253–261

    Article  CAS  PubMed  Google Scholar 

  • Vallée A, Vallée JN, Guillevin R, Lecarpentier Y (2020) Riluzole: a therapeutic strategy in Alzheimer’s disease by targeting the WNT/β-catenin pathway. Aging 12:3095–3113

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Cauwenbergh C, Van Broeckhoven C, Sleepers K (2016) The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet Med 18:421–430

    Article  Google Scholar 

  • Van Nostrand WE (2016) The influence of the amyloid ß-protein and its precursor in modulating cerebral hemostasis. Biochim Biophys Acta 1862:1018–1026

    Article  PubMed  CAS  Google Scholar 

  • Van Nostrand WE, Wagner SL, Suzuki M, Choi BH, Farrow JS, Geddes JW, Cotman CW, Cunningham DD (1989) Protease nexin-II, a potent antichymotrypsin, shows identity to amyloid beta-protein precursor. Nature 341:546–549

    Article  PubMed  Google Scholar 

  • Vandenberg RJ, Ryan RN (2013) Mechanisms of glutamate transport. Physiol Rev 93:1621–1657

    Article  CAS  PubMed  Google Scholar 

  • Verkhratsky A, Nedergaard M (2018) Physiology of astroglia. Phys Rev 98:239–389

    CAS  Google Scholar 

  • Vivithanaporn P, Asahchop EL, Acharjee S, Baker GB, Power C (2016) HIV protease inhibitors disrupt astrocytic glutamate transporter function and neurobehavioral performance. AIDS 30:543–552

    Article  CAS  PubMed  Google Scholar 

  • Vyklicky V, Korinek M, Smejkalova T, Balik A, Krausova B, Kaniakova M, Lichnerova K, Cerny J, Krusek J, Dittert I, Horak M, Vyklicky L (2014) Structure, function, and pharmacology of NMDA receptor channels. Physiol Res 63(Suppl 1):S191–S203

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Pekarskaya O, Pencheikh M, Chao W, Gelbard HA, Ghorpade A, Rothstein J, Volsky DJ (2003) Reduced expression of glutamate transporter EAAT2 and impaired glutamate transport in human primary astrocytes exposed to HIV-1 or gp120. Virology 312:60–79

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Kelly GC, Tate WJ, Li YS, Lee M, Gutierrez J, Louis ED, Faust PL, Kuo SH (2016) Excitatory amino acid transporter expression in the essential tremor dentate nucleus and cerebellar cortex: a postmortem study. Parkinsonism Relat Discord 32:87–93

    Article  CAS  Google Scholar 

  • Watkins JC, Jane DE (2006) The glutamate story. Br J Pharmacol 147(Suppl 1):S100–S108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei L, Chen C, Ding L, Mo M, Zou J, Lu Z, Li H, Wu H, Dai Y, Xu P, Lu Z (2019) Wnt1 promotes EAAT2 expression and mediates the protective effects of astrocytes on dopaminergic cells in Parkinson’s disease. Neural Plast 2019:1247276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Whitehouse PJ, George D (2008) The myth of Alzheimer’s. St. Martin’s Press, New York

    Google Scholar 

  • Wisch JK, Roe CM, Babulal GM, Schindler SE, Fagan AM, Benzinger TL, Morris JC, Ances BM (2020) Resting state functional connectivity signature differentiates cognitively normal from individuals who convert to symptomatic Alzheimer’s disease. J Alzheimers Dis 74(4):1085–1095

    Article  PubMed  PubMed Central  Google Scholar 

  • WUSTL (10 Feb 2020) Investigational drugs didn’t slow memory loss, cognitive decline in rare, inherited Alzheimer’s, initial analysis indicates- Press release. Washington University School of Medicine in St. Louis. https://medicine.wustl.edu/news/alzheimers-diantu-trial-initial-results

  • Xie L (2019) γ-Secretase and its modulators: twenty years and beyond. Neurosci Lets 701:162–169

    Article  CAS  Google Scholar 

  • Xu W, Südhof TC (2013) A neural circuit for memory specificity and generalization. Science 339:1290–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu K, Olsen O, Tzvetkova-Robev D, Tessier-Lavigne M, Nikolov DB (2015) The crystal structure of DR6 in complex with the amyloid precursor protein provides insight into death receptor activation. Genes Dev 29:785–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu F, Davis J, Hoos M, Van Nostrand WE (2017) Mutation of the Kunitz-type proteinase inhibitor domain in the amyloid β-protein precursor abolishes its anti-thrombotic properties in vivo. Thromb Res 155:58–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaffe K, Krueger K, Cummings SR, Blackwell T, Henderson VW, Sarkar S, Ensrud K, Grady D (2005) Effect of raloxifene on prevention of dementia and cognitive impairment in older women: the multiple outcomes of raloxifene evaluation (MORE) randomized trial. Am J Psychiatry 162:683–690

    Article  PubMed  Google Scholar 

  • Yamaguchi T (2005) Neuronal Ca2+/calmodulin-dependent protein kinase II—discovery, progress in a quarter of a century, and perspective: implication for learning and memory. Biol Pharm Bull 28:1342–1354

    Article  Google Scholar 

  • Yang Z, Wang J, Yu C, Ping Xu P, Zhang J, Peng Y, Luo Z, Huang H, Zeng J, Xu Z (2018) Inhibition of p38 MAPK signaling regulates the expression of EAAT2 in the brains of epileptic rats. Front Neurol 9:925

    Article  PubMed  PubMed Central  Google Scholar 

  • Yernool D, Boudker O, Jin Y, Gouaux E (2004) Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431:811–818

    Article  CAS  PubMed  Google Scholar 

  • Yimer EM, Hishe HZ, Tuem KB (2019) Repurposing of the β-lactam antibiotic, ceftriaxone for neurological disorders: a review. Front Neurosci 13:236

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan XZ, Sun S, Tan CC, Yu JT, Tan L (2017) The role of ADAM10 in Alzheimer’s disease. J Alzheimers Dis 58:303–322

    Article  PubMed  Google Scholar 

  • Zhang Y, He X, Wu X, Lei M, Wei Z, Zhang X, Wen L, Xu P, Li S, Qu S (2017) Rapamycin upregulates glutamate transporter and IL-6 expression in astrocytes in a mouse model of Parkinson’s disease. Cell Death Dis 8:e2611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng K, Jensen TP, Savtchenko LP, Levitt JA, Suhling K, Rusakov DA (2017) Nanoscale diffusion in the synaptic cleft and beyond measured with time-resolved fluorescence anisotropy imaging. Sci Rep 7:42022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou R, Zhou H, Rui L, Xu J (2014) Bone loss and osteoporosis are associated with conversion from mild cognitive impairment to Alzheimer’s disease. Curr Alzheimer Res 11:706–713

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Liang J, Wang J, Fei Z, Qin G, Zhang D, Zhou J, Chen L (2019) Upregulation of astrocyte excitatory amino acid transporter 2 alleviates central sensitization in a rat model of chronic migraine. J Neurochem 24:e14944

    Google Scholar 

  • Zott B, Busche MA, Sperling RA, Konnerth A (2018) What happens with the circuit in Alzheimer’s disease in mice and humans? Annu Rev Neurosci 41:277–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zumkehr J, Rodriguez-Ortiz CJ, Cheng D, Kieu Z, Wai T, Hawkins C, Kilian J, Lim SL, Medeiros R, Kitazawa M (2015) Ceftriaxone ameliorates tau pathology and cognitive decline via restoration of glial glutamate transporter in a mouse model of Alzheimer’s disease. Neurobiol Aging 36:2260–2271

    Article  CAS  PubMed  Google Scholar 

Suggested Reading

  • Armada-Moreira A, Gomes JI, Pina CC, Savchak OK, Gonçalves-Ribeiro J, Rei N, Pinto S, Morais TP, Martins RS, Ribeiro FF, Sebastião AM, Crunelli V, Vaz SH (2020) Going the extra (synaptic) mile: excitotoxicity as the road toward neurodegenerative diseases. Front Cell Neurosci 14:90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conway ME (2020) Alzheimer’s disease: targeting the glutamatergic system. Biogerentology 21:257–274

    Article  CAS  Google Scholar 

  • Gleichman AJ, Carmichael ST (2020) Glia in neurodegeneration: drivers of disease or along for the ride. Neurobiol Dis 142:104957

    Article  PubMed  Google Scholar 

  • Manisha C, Selvaraj A, Iubie S, Moola Ioghee Nanjan C, Moola Ioghee N, Clement JP, Justin A (2020) Positive allosteric activation of glial EAAT-2 transporter protein: a novel strategy for Alzheimer’s disease. Med Hypotheses 142:109794

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I have no conflict of interest, actual or potential. I thank Hans-Jürgen Apell, Anton Scott Goustin, Anna Seelig, Anna Thuring, Jack de la Torre and David Woolls for comments and interest, and Risto Kurkinen for help with the Figures. Special thanks to Manuel Graeber for interesting comments, and the two Alzheimer’s papers, as well as showing me the plaques and tangles in the original brain slides of Auguste Deter and Johann F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markku Kurkinen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kurkinen, M. (2022). Astrocyte Glutamate Transporter EAAT2 in Alzheimer Dementia. In: Pavlovic, Z.M. (eds) Glutamate and Neuropsychiatric Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-87480-3_7

Download citation

Publish with us

Policies and ethics