Skip to main content

Glutamatergic Treatments for Parkinson’s Disease

  • Chapter
  • First Online:
Glutamate and Neuropsychiatric Disorders
  • 949 Accesses

Abstract

Parkinson’s disease is characterized by the degeneration of dopaminergic neurons of the substantia nigra pars compacta (SNpc) projecting to the striatum and resulting motor and non-motor symptoms. The current knowledge demonstrates that the activity of glutamatergic signals from the cortex to the striatum is strictly regulated during the progression of the disease and indicates that modulation of synaptic transmission at the glutamatergic synapse represents a major target to rescue the altered neurotransmission. Molecular and functional alterations of glutamate receptors in experimental models of Parkinson’s disease as well as in patients have been demonstrated and several studies have been performed by using receptor antagonists/modulators. In particular, compounds targeting N-methyl-d-aspartate-type (NMDA) glutamate receptors and specific subtypes of metabotropic glutamate receptors (mGluR) have been tested both in preclinical and clinical studies. At present, amantadine, a low-affinity non-competitive NMDA receptor antagonist, represents a recommended add-on agent to decrease the dyskinetic motor complications of the dopaminergic therapy.

The chapter will describe advances in basic research, preclinical and clinical studies in the attempt of identifying innovative strategies for the modulation of glutamate receptors in Parkinson’s disease. Overall, these results indicate that modulation of the glutamatergic system remains one of the promising pharmacological strategies in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amalric M (2015) Targeting metabotropic glutamate receptors (mGluRs) in Parkinson’s disease. Curr Opin Pharmacol 20:29–34

    Article  CAS  PubMed  Google Scholar 

  • Ba M, Kong M, Yang H, Ma G, Lu G, Chen S, Liu Z (2006) Changes in subcellular distribution and phosphorylation of GluR1 in lesioned striatum of 6-hydroxydopamine-lesioned and l-DOPA-treated rats. Neurochem Res 31(11):1337–1347

    Article  CAS  PubMed  Google Scholar 

  • Baufreton J, Milekovic T, Li Q, McGuire S, Moraud EM, Porras G, Sun S, Ko WKD, Chazalon M, Morin S, Normand E, Farjot G, Milet A, Pype J, Pioli E, Courtine G, Bessière B, Bezard E (2018) Inhaling xenon ameliorates l-dopa-induced dyskinesia in experimental parkinsonism. Mov Disord 33(10):1632–1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennouar KE, Uberti MA, Melon C, Bacolod MD, Jimenez HN, Cajina M, Kerkerian-Le Goff L, Doller D, Gubellini P (2013) Synergy between L-DOPA and a novel positive allosteric modulator of metabotropic glutamate receptor 4: implications for Parkinson’s disease treatment and dyskinesia. Neuropharmacology 66:158–169

    Article  CAS  PubMed  Google Scholar 

  • Berg D, Godau J, Trenkwalder C, Eggert K, Csoti I, Storch A, Huber H, Morelli-Canelo M, Stamelou M, Ries V, Wolz M, Schnei-der C, Di Paolo T, Gasparini F, Hariry S, Vandemeulebroecke M, Abi-Saab W, Cooke K, Johns D, Gomez-Mancilla B (2011) AFQ056 treatment of levodopa-induced dyskinesias: results of 2 randomized controlled trials. Mov Disord 26(7):1243–1250

    Article  PubMed  Google Scholar 

  • Bette S, Shpiner DS, Singer C, Moore H (2018) Safinamide in the management of patients with Parkinson’s disease not stabilized on levodopa: a review of the current clinical evidence. Ther Clin Risk Manag 14:1737–1745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beurrier C, Lopez S, Révy D, Selvam C, Goudet C, Lhérondel M, Gubellini P, Kerkerian-LeGoff L, Acher F, Pin JP, Amalric M (2009) Electrophysiological and behavioral evidence that modulation of metabotropic glutamate receptor 4 with a new agonist reverses experimental parkinsonism. FASEB J 23(10):3619–3628

    Article  CAS  PubMed  Google Scholar 

  • Bezard E, Pioli EY, Li Q, Girard F, Mutel V, Keywood C, Tison F, Rascol O, Poli SM (2014) The mGluR5 negative allosteric mod- ulator dipraglurant reduces dyskinesia in the MPTP macaque model. Mov Disord 29(8):1074–1079

    Article  CAS  PubMed  Google Scholar 

  • Bloomfield C, O’Donnell P, French SJ, Totterdell S (2007) Cholinergic neurons of the adult rat striatum are immunoreactive for glutamatergic N-methyl-d-aspartate 2D but not N-methyl-d-aspartate 2C receptor subunits. Neuroscience 150(3):639–646

    Article  CAS  PubMed  Google Scholar 

  • Bogenpohl J, Galvan A, Hu X, Wichmann T, Smith Y (2013) Metabotropic glutamate receptor 4 in the basal ganglia of parkinsonian monkeys: ultrastructural localization and electrophysiological effects of activation in the striatopallidal complex. Neuropharmacology 66:242–252

    Article  CAS  PubMed  Google Scholar 

  • Borgohain R, Szasz J, Stanzione P, Meshram C, Bhatt MH, Chirilineau D, Stocchi F, Lucini V, Giuliani R, Forrest E, Rice P, Anand R, Study 018 Investigators (2014) Two-year, randomized, controlled study of safinamide as add-on to levodopa in mid to late Parkinson’s disease. Mov Disord 29(10):1273–1280

    Article  CAS  PubMed  Google Scholar 

  • Cahill E, Pascoli V, Trifilieff P, Savoldi D, Kappès V, Lüscher C, Caboche J, Vanhoutte P (2014) D1R/GluN1 complexes in the striatum integrate dopamine and glutamate signalling to control synaptic plasticity and cocaine-induced responses. Mol Psychiatry 19(12):1295–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cepeda C, Levine MS (1998) Dopamine and N-methyl-D-aspartate receptor interactions in the neostriatum. Dev Neurosci 20:1–18

    Article  CAS  PubMed  Google Scholar 

  • Cepeda C, Buchwald NA, Levine MS (1993) Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. Proc Natl Acad Sci USA 90:9576–9580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charvin D, Di Paolo T, Bezard E, Gregoire L, Takano A, Duvey G, Pioli E, Halldin C, Medori R, Conquet F (2018) An mGlu4-positive allosteric modulator alleviates parkinsonism in primates. Mov Disord 33(10):1619–1631

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Yang W, Li X, Li X, Yang H, Xu Z, Yu S (2015) α-Synuclein- induced internalization of NMDA receptors in hippocampal neurons is associated with reduced inward current and Ca(2+) influx upon NMDA stimulation. Neuroscience 300:297–306

    Article  CAS  PubMed  Google Scholar 

  • Cheng F, Li X, Li Y, Wang C, Wang T, Liu G, Baskys A, Uéda K, Chan P, Yu S (2011) α-Synuclein promotes clathrin-mediated NMDA receptor endocytosis and attenuates NMDA-induced dopaminergic cell death. J Neurochem 119(4):815–825

    Article  CAS  PubMed  Google Scholar 

  • Conn PJ, Battaglia G, Marino MJ, Nicoletti F (2005) Metabotropic glutamate receptors in the basal ganglia motor circuit. Nat Rev Neurosci 6:787–798. https://doi.org/10.1038/nrn1763

    Article  CAS  PubMed  Google Scholar 

  • Crupi R, Impellizzeri D, Cuzzocrea S (2019) Role of metabotropic glutamate receptors in neurological disorders. Front Mol Neurosci 12:2

    Article  CAS  Google Scholar 

  • Deleu D, Northway MG, Hanssens Y (2002) Clinical pharmacokinetic and pharmacodynamic properties of drugs used in the treatment of Parkinson’s disease. Clin Pharmacokinet 41(4):261–309

    Article  CAS  PubMed  Google Scholar 

  • Ding JB, Guzman JN, Peterson JD, Goldberg JA, Surmeier DJ (2010) Thalamic gating of corticostriatal signaling by cholinergic interneurons. Neuron 67:294–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diógenes MJ, Dias RB, Rombo DM, Vicente Miranda H, Maiolino F, Guerreiro P, Näsström T, Franquelim HG, Oliveira LM, Castanho MA, Lannfelt L, Bergström J, Ingelsson M, Quintas A, Sebastião AM, Lopes LV, Outeiro TF (2012) Extracellular alpha-synuclein oligomers modulate synaptic transmission and impair LTP via NMDA-receptor activation. J Neurosci 32(34):11750–11762

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dunah AW, Standaert DG (2001) Dopamine D1 receptor-dependent trafficking of striatal NMDA glutamate receptors to the postsynaptic membrane. J Neurosci 21(15):5546–5558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunah AW, Wang Y, Yasuda RP, Kameyama K, Huganir RL, Wolfe BB, Standaert DG (2000) Alterations in subunit expression, composition, and phosphorylation of striatal N-methyl-D-aspartate glutamate receptors in a rat 6-hydroxydopamine model of Parkinson’s disease. Mol Pharmacol 57:342–352

    CAS  PubMed  Google Scholar 

  • Dunah AW, Sirianni AC, Fienberg AA, Bastia E, Schwarzschild MA, Standaert DG (2004) Dopamine D1-dependent trafficking of striatal N- methyl-D-aspartate glutamate receptors requires Fyn protein tyrosine kinase but not DARPP-32. Mol Pharmacol 65:121–129

    Article  CAS  PubMed  Google Scholar 

  • Durante V, de Iure A, Loffredo V, Vaikath N, De Risi M, Paciotti S, Quiroga-Varela A, Chiasserini D, Mellone M, Mazzocchetti P, Calabrese V, Campanelli F, Mechelli A, Di Filippo M, Ghiglieri V, Picconi B, El-Agnaf OM, De Leonibus E, Gardoni F, Tozzi A, Calabresi P (2019) Alpha-synuclein targets GluN2A NMDA receptor subunit causing striatal synaptic dysfunction and visuospatial memory alteration. Brain 142(5):1365–1385

    Article  PubMed  Google Scholar 

  • Eggert K, Squillacote D, Barone P, Dodel R, Katzenschlager R, Emre M, Lees AJ, Rascol O, Poewe W, Tolosa E, Trenkwalder C, Onofrj M, Stocchi F, Nappi G, Kostic V, Potic J, Ruzicka E, Oertel W, German Competence Network on Parkinson’s Disease (2010) Safety and efficacy of perampanel in advanced Parkinson’s disease: a randomized, placebo-controlled study. Mov Disord 25(7):896–905

    Article  PubMed  Google Scholar 

  • Engers DW, Blobaum AL, Gogliotti RD, Cheung YY, Salovich JM, Garcia-Barrantes PM, Daniels JS, Morrison R, Jones CK, Soars MG, Zhuo X, Hurley J, Macor JE, Bronson JJ, Conn PJ, Lindsley CW, Niswender CM, Hopkins CR (2016) Discovery, synthesis, and preclinical characterization of N-(3-Chloro-4-fluorophenyl)-1H-pyrazolo[4,3-b]pyridin-3-amine (VU0418506), a novel positive allosteric modulator of the metabotropic glutamate receptor 4 (mGlu4). ACS Chem Neurosci 7(9):1192–1200

    Article  CAS  PubMed  Google Scholar 

  • Errico F, Bonito-Oliva A, Bagetta V, Vitucci D, Romano R, Zianni E, Napolitano F, Marinucci S, Di Luca M, Calabresi P, Fisone G, Carta M, Picconi B, Gardoni F, Usiello A (2011) Higher free D-aspartate and N-methyl-d-aspartate levels prevent striatal depotentiation and anticipate l-DOPA-induced dyskinesia. Exp Neurol 232(2):240–250

    Article  CAS  PubMed  Google Scholar 

  • Feng ZJ, Zhang X, Chergui K (2014) Allosteric modulation of NMDA receptors alters neurotransmission in the striatum of a mouse model of Parkinson’s disease. Exp Neurol 255:154–160

    Article  CAS  PubMed  Google Scholar 

  • Ferreira DG, Temido-Ferreira M, Miranda HV, Batalha VL, Coelho JE, Szegö ÉM, Marques-Morgado I, Vaz SH, Rhee JS, Schmitz M, Zerr I, Lopes LV, Outeiro TF (2017) α-synuclein interacts with PrPC to induce cognitive impairment through mGluR5 and NMDAR2B. Nat Neurosci 20(11):1569–1579

    Article  CAS  PubMed  Google Scholar 

  • Fieblinger T, Sebastianutto I, Alcacer C, Bimpisidis Z, Maslava N, Sandberg S, Engblom D, Cenci MA (2014) Mechanisms of dopamine D1 receptor-mediated ERK1/2 activation in the par- kinsonian striatum and their modulation by metabotropic glutamate receptor type 5. J Neurosci 34(13):4728–4740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fiorentini C, Gardoni F, Spano P, Di Luca M, Missale C (2003) Regulation of dopamine D1 receptor trafficking and desensitization by oligomerization with glutamate N-methyl-D-aspartate receptors. J Biol Chem 278(22):20196–20202

    Article  CAS  PubMed  Google Scholar 

  • Frouni I, Hamadjida A, Kwan C, Bédard D, Nafade V, Gaudette F, Nuara SG, Gourdon JC, Beaudry F, Huot P (2019) Activation of mGlu2/3 receptors, a novel therapeutic approach to alleviate dyskinesia and psychosis in experimental parkinsonism. Neuropharmacology 158:107725

    Article  CAS  PubMed  Google Scholar 

  • Gao C, Sun X, Wolf ME (2006) Activation of D1 dopamine receptors increases surface expression of AMPA receptors and facilitates their synaptic incorporation in cultured hippocampal neurons. J Neurochem 98:1664–1677

    Article  CAS  PubMed  Google Scholar 

  • Gardoni F, Di Luca M (2015) Targeting glutamatergic synapses in Parkinson’s disease. Curr Opin Pharmacol 20:24–28

    Article  CAS  PubMed  Google Scholar 

  • Gardoni F, Picconi B, Ghiglieri V, Polli F, Bagetta V, Bernardi G, Cattabeni F, Di Luca M, Calabresi P (2006) A critical interaction between NR2B and MAGUK in L-DOPA induced dyskinesia. J Neurosci 26:2914–2922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardoni F, Sgobio C, Pendolino V, Calabresi P, Di Luca M, Picconi B (2012) Targeting NR2A-containing NMDA receptors reduces L-DOPA-induced dyskinesias. Neurobiol Aging 33(9):2138–2144

    Article  CAS  PubMed  Google Scholar 

  • Gardoni F, Morari M, Kulisevsky J, Brugnoli A, Novello S, Pisanò CA, Caccia C, Mellone M, Melloni E, Padoani G, Sosti V, Vailati S, Keywood C (2018) Safinamide modulates striatal glutamatergic signaling in a rat model of Levodopa-Induced Dyskinesia. J Pharmacol Exp Ther 367(3):442–451

    Article  CAS  PubMed  Google Scholar 

  • Grégoire L, Morin N, Ouattara B, Gasparini F, Bilbe G, Johns D, Vranesic I, Sahasranaman S, Gomez-Mancilla B, Di Paolo T (2011) The acute antiparkinsonian and antidyskinetic effect of AFQ056, a novel metabotropic glutamate receptor type 5 antagonist, in l-DOPA-treated parkinsonian monkeys. Parkinsonism Relat Disord 17(4):270–276

    Article  PubMed  Google Scholar 

  • Gubellini P, Pisani A, Centonze D, Bernardi G, Calabresi P (2004) Metabotropic glutamate receptors and striatal synaptic plasticity: implications for neurological diseases. Prog Neurobiol 74(5):271–300

    Article  CAS  PubMed  Google Scholar 

  • Håkansson K, Galdi S, Hendrick J, Snyder G, Greengard P, Fisone G (2006) Regulation of phosphorylation of the GluR1 AMPA receptor by dopamine D2 receptors. J Neurochem 96:482–488

    Article  PubMed  CAS  Google Scholar 

  • Hallett PJ, Dunah AW, Ravenscroft P, Zhou S, Bezard E, Crossman AR, Brotchie JM, Standaert DG (2005) Alterations of striatal NMDA receptor subunits associated with the development of dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. Neuropharmacol 48:503–516

    Article  CAS  Google Scholar 

  • Hallett PJ, Spoelgen R, Hyman BT, Standaert DG, Dunah AW (2006) Dopamine D1 activation potentiates striatal NMDA receptors by tyrosine phosphorylation-dependent subunit trafficking. J Neurosci 26:4690–4700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamadjida A, Sid-Otmane L, Kwan C, Frouni I, Nafade V, Bédard D, Gagnon D, Wallman MJ, Rouillard C, Parent A, Parent M, Huot P (2020) The highly-selective mGlu2 receptor positive allosteric modulator, LY-487,379 alleviates L-DOPA-induced dyskinesia in the 6-OHDA-lesioned rat model of Parkinson’s disease. Eur J Neurosci. 2020 Jan 14. [Epub ahead of print]

    Google Scholar 

  • Hamza TH, Chen H, Hill-Burns EM, Rhodes SL, Montimurro J, Kay DM, Tenesa A, Kusel VI, Sheehan P, Eaaswarkhanth M, Yearout D, Samii A, Roberts JW, Agarwal P, Bordelon Y, Park Y, Wang L, Gao J, Vance JM, Kendler KS, Bacanu SA, Scott WK, Ritz B, Nutt J, Factor SA, Zabetian CP, Payami H (2011) Genome-wide gene-environment study identifies glutamate receptor gene GRIN2A as a Parkinson’s disease modifier gene via interaction with coffee. PLoS Genetics 7:e1002237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11(10):682–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haseneder R, Kratzer S, Kochs E, Höfelmann D, Auberson Y, Eder M, Rammes G (2009) The xenon-mediated antagonism against the NMDA receptor is non-selective for receptors containing either NR2A or NR2B subunits in the mouse amygdala. Eur J Pharmacol 619(1-3):33–37

    Article  CAS  PubMed  Google Scholar 

  • Heng MY, Detloff PJ, Wang PL, Tsien JZ, Albin RL (2009) In vivo evidence for NMDA receptor-mediated excitotoxicity in a murine genetic model of Huntington disease. J Neurosci 29:3200–3205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henley JM, Wilkinson KA (2016) Synaptic AMPA receptor composition in development, plasticity and disease. Nat Rev Neurosci 17(6):337–350

    Article  CAS  PubMed  Google Scholar 

  • Hubsher G, Haider M, Okun MS (2012) Amantadine: the journey from fighting flu to treating Parkinson disease. Neurology 78(14):1096–1099

    Article  CAS  PubMed  Google Scholar 

  • Huganir RL, Nicoll RA (2013) AMPARs and synaptic plasticity: the last 25 years. Neuron 80(3):704–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iderberg H, Maslava N, Thompson AD, Bubser M, Niswender CM, Hopkins CR, Lindsley CW, Conn PJ, Jones CK, Cenci MA (2015) Pharmacological stimulation of metabotropic gluta- mate receptor type 4 in a rat model of Parkinson’s disease and l-DOPA-induced dyskinesia: comparison between a positive allosteric modulator and an orthosteric agonist. Neuropharmacology 95:121–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jocoy EL, André VM, Cummings DM, Rao SP, Wu N, Ramsey AJ, Caron MG, Cepeda C, Levine MS (2011) Dissecting the contribution of individual receptor subunits to the enhancement of N-methyl-d-aspartate currents by dopamine D1 receptor activation in striatum. Front Syst Neurosci 5:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston TH, Fox SH, McIldowie MJ, Piggott MJ, Brotchie JM (2010) Reduction of l-DOPA-induced dyskinesia by the selective metabotropic glutamate receptor 5 antagonist 3-[(2-methyl- 1,3-thiazol-4-yl)ethynyl]pyridine in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned macaque model of Parkinson’s disease. J Pharmacol Exp Ther 333(3):865–873

    Article  CAS  PubMed  Google Scholar 

  • Kobylecki C, Cenci MA, Crossman AR, Ravenscroft P (2010) Calcium-permeable AMPA receptors are involved in the induction and expression of l-DOPA-induced dyskinesia in Parkinson’s disease. J Neurochem 114(2):499–511

    Article  CAS  PubMed  Google Scholar 

  • Kobylecki C, Hill MP, Crossman AR, Ravenscroft P (2011) Synergistic antidyskinetic effects of topiramate and amantadine in animal models of Parkinson’s disease. Mov Disord 26(13):2354–2363

    Article  PubMed  Google Scholar 

  • Kobylecki C, Burn DJ, Kass-Iliyya L, Kellett MW, Crossman AR, Sil-verdale MA (2014) Randomized clinical trial of topiramate for levodopa-induced dyskinesia in Parkinson’s disease. Parkinsonism Relat Disord 20(4):452–455

    Article  PubMed  Google Scholar 

  • Konitsiotis S, Blanchet PJ, Verhagen L, Lamers E, Chase TN (2000) AMPA receptor blockade improves levodopa-induced dyskinesia in MPTP monkeys. Neurology 54(8):1589–1595

    Article  CAS  PubMed  Google Scholar 

  • Kruusmägi M, Kumar S, Zelenin S, Brismar H, Aperia A, Scott L (2009) Functional differences between D(1) and D(5) revealed by high resolution imaging on live neurons. Neuroscience 164:463–469

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Hauser RA, Mostillo J, Dronamraju N, Graf A, Merschhemke M, Kenney C (2016) Mavoglurant (AFQ056) in combination with increased levodopa dosages in Parkinson’s disease patients. Int J Neurosci 126(1):20–24

    Article  CAS  PubMed  Google Scholar 

  • Kung VWS, Hassam R, Morton AJ, Jones S (2007) Dopamine- dependent long term potentiation in the dorsal striatum is reduced in the R6/2 mouse model of Huntington’s disease. Neuroscience 146:1571–1580

    Article  CAS  PubMed  Google Scholar 

  • Ladepeche L, Dupuis JP, Bouchet D, Doudnikoff E, Yang L, Campagne Y, Bézard E, Hosy E, Groc L (2013a) Single-molecule imaging of the functional crosstalk between surface NMDA and dopamine D1 receptors. Proc Natl Acad Sci USA 110:18005–18010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ladepeche L, Yang L, Bouchet D, Groc L (2013b) Regulation of dopamine D1 receptor dynamics within the postsynaptic density of hippocampal glutamate synapses. PLoS One 8:e74512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapper SR, Bolam JP (1992) Input from the frontal cortex and the parafascicular nucleus to cholinergic interneurons in the dorsal striatum of the rat. Neuroscience 51:533–545

    Article  CAS  PubMed  Google Scholar 

  • Le Poul E, Boléa C, Girard F, Poli S, Charvin D, Campo B, Bortoli J, Bessif A, Luo B, Koser AJ, Hodge LM, Smith KM, DiLella AG, Liverton N, Hess F, Browne SE, Reynolds IJ (2012) A potent and selective metabotropic glutamate receptor 4 positive allosteric modulator improves movement in rodent models of Parkinson’s disease. J Pharmacol Exp Ther 343(1):167–177

    Article  PubMed  CAS  Google Scholar 

  • Lee FJ, Xue S, Pei L, Vukusic B, Chéry N, Wang Y, Wang YT, Niznik HB, Yu XM, Liu F (2002) Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor. Cell 111(2):219–230

    Article  CAS  PubMed  Google Scholar 

  • Lees A, Fahn S, Eggert KM, Jankovic J, Lang A, Micheli F, Moura-dian MM, Oertel WH, Olanow CW, Poewe W, Rascol O, Tolosa E, Squillacote D, Kumar D (2012) Perampanel, an AMPA antagonist, found to have no benefit in reducing “off” time in Parkinson’s disease. Mov Disord 27(2):284–288

    Article  CAS  PubMed  Google Scholar 

  • Levandis G, Bazzini E, Armentero MT, Nappi G, Blandini F (2008) Systemic administration of an mGluR5 antagonist, but not unilateral subthalamic lesion, counteracts l-DOPA-induced dyskinesias in a rodent model of Parkinson’s disease. Neurobiol Dis 29(1):161–168

    Article  CAS  PubMed  Google Scholar 

  • Levine MS, Li Z, Cepeda C, Cromwell HC, Altemus KL (1996) Neuromodulatory actions of dopamine on synaptically-evoked neostriatal responses in slices. Synapse 24:65–78

    Article  CAS  PubMed  Google Scholar 

  • Liu XY, Chu XP, Mao LM, Wang M, Lan HX, Li MH, Zhang GC, Parelkar NK, Fibuch EE, Haines M, Neve KA, Liu F, Xiong ZG, Wang JQ (2006) Modulation of D2R-NR2B interactions in response to cocaine. Neuron 52:897–909

    Article  CAS  PubMed  Google Scholar 

  • Lopez S, Bonito-Oliva A, Pallottino S, Acher F, Fisone G (2011) Activation of metabotropic glutamate 4 receptors decreases l-DOPA-induced dyskinesia in a mouse model of Parkinson’s disease. J Parkinsons Dis 1(4):339–346

    Article  CAS  PubMed  Google Scholar 

  • Loschmann PA, De Groote C, Smith L, Wullner U, Fischer G, Kemp JA, Jenner P, Klockgether T (2004) Antiparkinsonian activity of Ro 25-6981, a NR2B subunit specific NMDA receptor antagonist, in animal models of Parkinson’s disease. Exp Neurol 187:86–93

    Article  CAS  PubMed  Google Scholar 

  • Marin C, Jiménez A, Bonastre M, Vila M, Agid Y, Hirsch EC, Tolosa E (2001) LY293558, an AMPA glutamate receptor antagonist, prevents and reverses levodopa-induced motor alterations in Parkinsonian rats. Synapse 42(1):40–47

    Article  CAS  PubMed  Google Scholar 

  • Mellone M, Gardoni F (2018) Glutamatergic mechanisms in L-DOPA-induced dyskinesia and therapeutic implications. J Neural Transm (Vienna) 125(8):1225–1236

    Article  CAS  Google Scholar 

  • Mellone M, Stanic J, Hernandez LF, Iglesias E, Zianni E, Longhi A, Prigent A, Picconi B, Calabresi P, Hirsch EC, Obeso JA, Di Luca M, Gardoni F (2015) NMDA receptor GluN2A/GluN2B subunit ratio as synaptic trait of levodopa-induced dyskinesias: from experimental models to patients. Front Cell Neurosci 6(9):245. https://doi.org/10.3389/fncel.2015.00245

    Article  CAS  Google Scholar 

  • Metman LV, Del Dotto P, LePoole K, Konitsiotis S, Fang J, Chase TN (1999) Amantadine for levodopa-induced dyskinesias: a 1-year follow-up study. Arch Neurol 56:1383–1386

    Article  CAS  PubMed  Google Scholar 

  • Morari M, Brugnoli A, Pisanò CA, Novello S, Caccia C, Melloni E, Padoani G, Vailati S, Sardina M (2018) Safinamide differentially modulates in vivo glutamate and GABA release in the Rat Hippocampus and Basal Ganglia. J Pharmacol Exp Ther 364(2):198–206

    Article  CAS  PubMed  Google Scholar 

  • Morin N, Grégoire L, Gomez-Mancilla B, Gasparini F, Di Paolo T (2010) Effect of the metabotropic glutamate receptor type 5 antagonists MPEP and MTEP in parkinsonian monkeys. Neuropharmacology 58(7):981–986

    Article  CAS  PubMed  Google Scholar 

  • Morissette M, Dridi M, Calon F, Hadj Tahar A, Meltzer LT, Bedard PJ, Di Paolo T (2006) Prevention of dyskinesia by an NMDA receptor antagonist in MPTP monkeys: effect on adenosine A2A receptors. Synapse 60:239–250

    Article  CAS  PubMed  Google Scholar 

  • Müller T, Foley P (2017) Clinical pharmacokinetics and pharmacodynamics of safinamide. Clin Pharmacokinet 56(3):251–261

    Article  PubMed  CAS  Google Scholar 

  • Nash JE, Fox SH, Henry B, Hill MP, Peggs D, McGuire S, Maneuf Y, Hille C, Brotchie JM, Crossman AR (2000) Antiparkinsonian actions of ifenprodil in the MPTP-lesioned marmoset model of Parkinson’s disease. Exp Neurol 165:136–142

    Article  CAS  PubMed  Google Scholar 

  • Nash JE, Ravenscroft P, McGuire S, Crossman AR, Menniti FS, Brotchie JM (2004) The NR2B-selective NMDA receptor antagonist CP-101,606 exacerbates L-DOPA-induced dyskinesia and provides mild potentiation of anti-parkinsonian effects of L-DOPA in the MPTP lesioned marmoset model of Parkinson’s disease. Exp Neurol 188:471–479

    Article  CAS  PubMed  Google Scholar 

  • Nash JE, Johnston TH, Collingridge GL, Garner CC, Brotchie JM (2005) Subcellular redistribution of the synapse-associated proteins PSD-95 and SAP97 in animal models of Parkinson’s disease and L-DOPA-induced dyskinesia. FASEB J 19(6):583–585

    Article  CAS  PubMed  Google Scholar 

  • Navarria L, Zaltieri M, Longhena F, Spillantini MG, Missale C, Spano P, Bellucci A (2015) Alpha-synuclein modulates NR2B-containing NMDA receptors and decreases their levels after rotenone exposure. Neurochem Int 85-86:14–23

    Article  CAS  PubMed  Google Scholar 

  • Niswender CM, Johnson KA, Weaver CD, Jones CK, Xiang Z, Luo Q, Rodriguez AL, Marlo JE, de Paulis T, Thompson AD, Days EL, Nalywajko T, Austin CA, Williams MB, Ayala JE, Williams R, Lindsley CW, Conn PJ (2008) Discovery, characterization, and antiparkinsonian effect of novel positive allosteric modulators of metabotropic glutamate receptor 4. Mol Pharmacol 74(5):1345–1358

    Article  CAS  PubMed  Google Scholar 

  • Niswender CM, Jones CK, Lin X, Bubser M, Thompson Gray A, Blobaum AL, Engers DW, Rodriguez AL, Loch MT, Daniels JS, Lindsley CW, Hopkins CR, Javitch JA, Conn PJ (2016) Development and antiparkinsonian activity of VU0418506, a selective positive allosteric modulator of metabotropic glutamate receptor 4 homomers without activity at mGlu2/4 heteromers. ACS Chem Neurosci 7(9):1201–1211

    Article  CAS  PubMed  Google Scholar 

  • Nutt JG, Gunzler SA, Kirchhoff T, Hogarth P, Weaver JL, Krams M, Jamerson B, Menniti FS, Landen JW (2008) Effects of a NR2B selective NMDA glutamate antagonist, CP-101,606, on dyskinesia and Parkinsonism. Mov Disord 23:1860–1866

    Article  PubMed  PubMed Central  Google Scholar 

  • Oh JD, Russell DS, Vaughan CL, Chase TN (1998) Enhanced tyrosine phosphorylation of striatal NMDA receptor subunits: effect of dopaminergic denervation and l-DOPA administration. Brain Res 813(1):150–159

    Article  CAS  PubMed  Google Scholar 

  • Ory-Magne F, Corvol JC, Azulay JP, Bonnet AM, Brefel-Courbon C, Damier P, Dellapina E, Destee A, Durif F, Galitzky M, Lebouvier T, Meissner W, Thalamas C, Tison F, Salis A, Sommet A, Viallet F, Vidailhet M, Rascol O, Network NS-PC (2014) Withdrawing amantadine in dyskinetic patients with Parkinson disease: the AMANDYSK trial. Neurology 82:300–307

    Article  CAS  PubMed  Google Scholar 

  • Ouattara B, Gasparini F, Morissette M, Grégoire L, Samadi P, Gomez-Mancilla B, Di Paolo T (2010) Effect of l-DOPA on metabotropic glutamate receptor 5 in the brain of parkinsonian monkeys. J Neurochem 113(3):715–724

    Article  CAS  PubMed  Google Scholar 

  • Paillé V, Picconi B, Bagetta V, Ghiglieri V, Sgobio C, Di Filippo M, Viscomi MT, Giampà C, Fusco FR, Gardoni F, Bernardi G, Greengard P, Di Luca M, Calabresi P (2010) Distinct levels of dopamine denervation differentially alter striatal synaptic plasticity and NMDA receptor subunit composition. J Neurosci 30:14182–14193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paoletti P, Vila I, Rifé M, Lizcano JM, Alberch J, Ginés S (2008) Dopaminergic and glutamatergic signaling crosstalk in Huntington’s disease neurodegeneration: the role of p25/cyclin-dependent kinase 5. J Neurosci 28:10090–10101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paoletti P, Bellone C, Zhou Q (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 14(6):383–400

    Article  CAS  PubMed  Google Scholar 

  • Pei L, Lee FJ, Moszczynska A, Vukusic B, Liu F (2004) Regulation of dopamine D1 receptor function by physical interaction with the NMDA receptors. J Neurosci 24(5):1149–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Lloret S, Rascol O (2018) Efficacy and safety of amantadine for the treatment of L-DOPA-induced dyskinesia. J Neural Transm 125(8):1237–1250

    Article  CAS  PubMed  Google Scholar 

  • Picconi B, Gardoni F, Centonze D, Mauceri D, Cenci MA, Bernardi G, Calabresi P, Di Luca M (2004) Abnormal Ca2+-calmodulin-dependent protein kinase II function mediates synaptic and motor deficits in experimental parkinsonism. J Neurosci 24:5283–5291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag AE, Lang AE (2017) Parkinson disease. Nat Rev Dis Primers 3:17013

    Article  PubMed  Google Scholar 

  • Porras G, Berthet A, Dehay B, Li Q, Ladepeche L, Normand E, Dovero S, Martinez A, Doudnikoff E, Martin-Négrier ML, Chuan Q, Bloch B, Choquet D, Boué-Grabot E, Groc L, Bezard E (2012) PSD-95 expression controls L-DOPA dyskinesia through dopamine D1 receptor trafficking. J Clin Invest 122(11):3977–3989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price CJ, Kim P, Raymond LA (1999) D1 dopamine receptor-induced cyclic AMP-dependent protein kinase phosphorylation and potentiation of striatal glutamate receptors. J Neurochem 73:2441–2446

    Article  CAS  PubMed  Google Scholar 

  • Quintana A, Melon C, Kerkerian-Le Goff L, Salin P, Savasta M, Sgambato-Faure V (2010) Forelimb dyskinesia mediated by high-frequency stimulation of the subthalamic nucleus is linked to rapid activation of the NR2B subunit of N-methyl-d-aspartate receptors. Eur J Neurosci 32(3):423–434

    Article  PubMed  Google Scholar 

  • Rouse ST, Marino MJ, Bradley SR, Awad H, Wittmann M, Conn PJ (2000) Distribution and roles of metabotropic glutamate recep- tors in the basal ganglia motor circuit: implications for treatment of Parkinson’s disease and related disorders. Pharmacol Ther 88(3):427–435

    Article  CAS  PubMed  Google Scholar 

  • Ryan TJ, Kopanitsa MV, Indersmitten T, Nithianantharajah J, Afinowi NO, Pettit C, Stanford LE, Sprengel R, Saksida LM, Bussey TJ, O'Dell TJ, Grant SG, Komiyama NH (2013) Evolution of GluN2A/B cytoplasmic domains diversified vertebrate synaptic plasticity and behavior. Nat Neurosci 16:25–32

    Article  CAS  PubMed  Google Scholar 

  • Rylander D, Recchia A, Mela F, Dekundy A, Danysz W, Cenci MA (2009) Pharmacological modulation of glutamate transmission in a rat model of L-DOPA-induced dyskinesia: effects on motor behavior and striatal nuclear signaling. J Pharmacol Exp Ther 330:227–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rylander D, Iderberg H, Li Q, Dekundy A, Zhang J, Li H, Baishen R, Danysz W, Bezard E, Cenci MA (2010) A mGluR5 antagonist under clinical development improves l-DOPA-induced dyskinesia in parkinsonian rats and monkeys. Neurobiol Dis 39(3):352–361

    Article  CAS  PubMed  Google Scholar 

  • Samadi P, Grégoire L, Morissette M, Calon F, Hadj Tahar A, Dridi M, Belanger N, Meltzer LT, Bédard PJ, Di Paolo T (2008) mGluR5 metabotropic glutamate receptors and dyskinesias in MPTP monkeys. Neurobiol Aging 29(7):1040–1051

    Article  CAS  PubMed  Google Scholar 

  • Santini E, Valjent E, Usiello A, Carta M, Borgkvist A, Girault JA, Hervé D, Greengard P, Fisone G (2007) Critical involvement of cAMP/DARPP-32 and extracellular signal-regulated protein kinase signaling in l-DOPA-induced dyskinesia. J Neurosci 27(26):6995–7005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santini E, Sgambato-Faure V, Li Q, Savasta M, Dovero S, Fisone G, Bezard E (2010) Distinct changes in cAMP and extracellular signal-regulated protein kinase signalling in l-DOPA-induced dyskinesia. PLoS One 5(8):e12322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanz-Clemente A, Nicoll RA, Roche KW (2013) Diversity in NMDA receptor composition: many regulators, many consequences. Neuroscientist 19(1):62–75. https://doi.org/10.1177/1073858411435129

    Article  CAS  PubMed  Google Scholar 

  • Schapira AH, Fox SH, Hauser RA, Jankovic J, Jost WH, Kenney C, Kulisevsky J, Pahwa R, Poewe W, Anand R (2017) Assessment of safety and efficacy of Safinamide as a Levodopa adjunct in patients with Parkinson disease and motor fluctuations: a randomized clinical trial. JAMA Neurol 74(2):216–224

    Article  PubMed  Google Scholar 

  • Scott L, Zelenin S, Malmersjö S, Kowalewski JM, Markus EZ, Nairn AC, Greengard P, Brismar H, Aperia A (2006) Allosteric changes of the NMDA receptor trap diffusible dopamine 1 receptors in spines. Proc Natl Acad Sci USA 103(3):762–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silverdale MA, Kobylecki C, Hallett PJ, Li Q, Dunah AW, Ravenscroft P, Bezard E, Brotchie JM (2010) Synaptic recruitment of AMPA glutamate receptor subunits in levodopa-induced dyskinesia in the MPTP-lesioned nonhuman primate. Synapse 64(2):177–180

    Article  CAS  PubMed  Google Scholar 

  • Simon DK, Wu C, Tilley BC, Lohmann K, Klein C, Payami H, Wills AM, Aminoff MJ, Bainbridge J, Dewey R, Hauser RA, Schaake S, Schneider JS, Sharma S, Singer C, Tanner CM, Truong D, Wei P, Wong PS, Yang T (2017) Caffeine, creatine, GRIN2A and Parkinson’s disease progression. J Neurol Sci 375:355–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder GL, Allen PB, Fienberg AA, Valle CG, Huganir RL, Nairn AC, Greengard P (2000) Regulation of phosphorylation of the GluR1 AMPA receptor in the neostriatum by dopamine and psychostimulants in vivo. J Neurosci 20:4480–4488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song L, Zhang Z, Hu R, Cheng J, Li L, Fan Q, Wu N, Gan J, Zhou M, Liu Z (2016) Targeting the D1-N-methyl-d-aspartate receptor complex reduces l-DOPA-induced dyskinesia in 6-hydroxydopamine-lesioned Parkinson’s rats. Drug Des Devel Ther 10:547–555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388(6645):839–840

    Article  CAS  PubMed  Google Scholar 

  • Stanic J, Mellone M, Napolitano F, Racca C, Zianni E, Minocci D, Ghiglieri V, Thiolat ML, Li Q, Longhi A, De Rosa A, Picconi B, Bezard E, Calabresi P, Di Luca M, Usiello A, Gardoni F (2017) Rabphilin 3A: a novel target for the treatment of levodopa-induced dyskinesias. Neurobiol Dis 108:54–64

    Article  CAS  PubMed  Google Scholar 

  • Tang T-S, Chen X, Liu J, Bezprozvanny I (2007) Dopaminergic signaling and striatal neurodegeneration in Huntington’s disease. J Neurosci 27:7899–7910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas A, Iacono D, Luciano AL, Armellino K, Di Iorio A, Onofrj M (2004) Duration of amantadine benefit on dyskinesia of severe Parkinson’s disease. J Neurol Neurosurg Psychiatry 75:141–143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tison F, Keywood C, Wakefield M, Durif F, Corvol JC, Eggert K, Lew M, Isaacson S, Bezard E, Poli SM, Goetz CG, Trenkwalder C, Rascol O (2016) A Phase 2A trial of the novel mGluR5-negative allosteric modulator dipraglurant for levodopa-induced dyskinesia in Parkinson’s disease. Mov Disord 31(9):1373–1380

    Article  CAS  PubMed  Google Scholar 

  • Tozzi A, de Iure A, Bagetta V, Tantucci M, Durante V, Quiroga-Varela A, Costa C, Di Filippo M, Ghiglieri V, Latagliata EC, Wegrzynowicz M, Decressac M, Giampà C, Dalley JW, Xia J, Gardoni F, Mellone M, El-Agnaf OM, Ardah MT, Puglisi-Allegra S, Björklund A, Spillantini MG, Picconi B, Calabresi P (2016) Alpha-Synuclein produces early behavioral alterations via striatal cholinergic synaptic dysfunction by interacting with GluN2D N-Methyl-D-Aspartate receptor Subunit. Biol Psychiatry 79(5):402–414

    Article  CAS  PubMed  Google Scholar 

  • Trenkwalder C, Stocchi F, Poewe W, Dronamraju N, Kenney C, Shah A, von Raison F, Graf A (2016) Mavoglurant in Parkinson’s patients with l-Dopa-induced dyskinesias: two randomized phase 2 studies. Mov Disord 31(7):1054–1058

    Article  CAS  PubMed  Google Scholar 

  • Valenti O, Marino MJ, Wittmann M, Lis E, DiLella AG, Kinney GG, Conn PJ (2003) Group III metabotropic glutamate receptor- mediated modulation of the striatopallidal synapse. J Neurosci 23(18):7218–7226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valenti O, Mannaioni G, Seabrook GR, Conn PJ, Marino MJ (2005) Group III metabotropic glutamate-receptor-mediated modulation of excitatory transmission in rodent substantia nigra pars compacta dopamine neurons. J Pharmacol Exp Ther 313(3):1296–1304

    Article  CAS  PubMed  Google Scholar 

  • Vastagh C, Gardoni F, Bagetta V, Stanic J, Zianni E, Giampà C, Picconi B, Calabresi P, Di Luca M (2012) N-methyl-D-aspartate (NMDA) receptor composition modulates dendritic spine morphology in striatal medium spiny neurons. J Biol Chem 287:18103–18114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verhagen Metman L, Del Dotto P, van den Munckhof P, Fang J, Mouradian MM, Chase TN (1998) Amantadine as treatment for dyskinesias and motor fluctuations in Parkinson’s disease. Neurology 50:1323–1326

    Article  CAS  PubMed  Google Scholar 

  • Wang WW, Zhang XR, Zhang ZR, Wang XS, Chen J, Chen SY, Xie CL (2018) Effects of mGluR5 antagonists on Parkinson’s patients with L-Dopa-Induced Dyskinesia: a systematic review and meta-analysis of randomized controlled trials. Front Aging Neurosci 10:262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wessell RH, Ahmed SM, Menniti FS, Dunbar GL, Chase TN, Oh JD (2004) NR2B selective NMDA receptor antagonist CP-101,606 prevents levodopa-induced motor response alterations in hemiparkinsonian rats. Neuropharmacol 47:184–194

    Article  CAS  Google Scholar 

  • Wolf E, Seppi K, Katzenschlager R, Hochschorner G, Ransmayr G, Schwingenschuh P, Ott E, Kloiber I, Haubenberger D, Auff E, Poewe W (2010) Long-term antidyskinetic efficacy of amantadine in Parkinson’s disease. Mov Disord 25:1357–1363

    Article  PubMed  Google Scholar 

  • Wong YC, Krainc D (2017) α-synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies. Nat Med 23(2):1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Chergui K (2015) Dopamine depletion of the striatum causes a cell-type specific reorganization of GluN2B- and GluN2D-containing NMDA receptors. Neuropharmacology 92:108–115

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Feng ZJ, Chergui K (2014) Allosteric modulation of GluN2C/GluN2D-containing NMDA receptors bidirectionally modulates dopamine release: implication for Parkinson’s disease. Br J Pharmacol 171(16):3938–3945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Suggested Reading

  • Obeso JA, Stamelou M, Goetz CG, Poewe W, Lang AE, Weintraub D, Burn D, Halliday GM, Bezard E, Przedborski S, Lehericy S, Brooks DJ, Rothwell JC, Hallett M, DeLong MR, Marras C, Tanner CM, Ross GW, Langston JW, Klein C, Bonifati V, Jankovic J, Lozano AM, Deuschl G, Bergman H, Tolosa E, Rodriguez-Violante M, Fahn S, Postuma RB, Berg D, Marek K, Standaert DG, Surmeier DJ, Olanow CW, Kordower JH, Calabresi P, Schapira AHV, Stoessl AJ (2017) Past, present, and future of Parkinson’s disease: A special essay on the 200th Anniversary of the Shaking Palsy. Mov Disord 32(9):1264–1310

    Google Scholar 

  • Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag AE, Lang AE (2017) Parkinson disease. Nat Rev Dis Primers 3:17013

    Google Scholar 

  • Sebastianutto I, Cenci MA (2018) mGlu receptors in the treatment of Parkinson’s disease and L-DOPA-induced dyskinesia. Curr Opin Pharmacol 38:81–89

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Gardoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gardoni, F. (2022). Glutamatergic Treatments for Parkinson’s Disease. In: Pavlovic, Z.M. (eds) Glutamate and Neuropsychiatric Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-87480-3_10

Download citation

Publish with us

Policies and ethics