Skip to main content

Modeling Limited Attention in Opinion Dynamics by Topological Interactions

  • Conference paper
  • First Online:
Network Games, Control and Optimization (NETGCOOP 2021)

Abstract

This work explores models of opinion dynamics with opinion-dependent connectivity. Our starting point is that individuals have limited capabilities to engage in interactions with their peers. Motivated by this observation, we propose an opinion dynamics model such that interactions take place with a limited number of peers: we refer to these interactions as topological, as opposed to metric interactions that are postulated in classical bounded-confidence models.

Supported in part by MITI CNRS via 80 PRIME grant DOOM and by ANR via project HANDY, number ANR-18-CE40-0010.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angeli, D., Manfredi, S.: A Petri net approach to consensus in networks with joint-agent interactions. Automatica 110, 108466 (2019)

    Article  MathSciNet  Google Scholar 

  2. Aydoğdu, A., et al.: Interaction network, state space, and control in social dynamics. In: Bellomo, N., Degond, P., Tadmor, E. (eds.) Active Particles, Volume 1. MSSET, pp. 99–140. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49996-3_3

    Chapter  Google Scholar 

  3. Aydoğdu, A., et al.: Modeling birds on wires. J. Theor. Biol. 415, 102–112 (2017)

    Article  MathSciNet  Google Scholar 

  4. Balister, P., Bollobás, B., Sarkar, A., Walters, M.: Connectivity of random k-nearest-neighbour graphs. Adv. Appl. Probab. 37(1), 1–24 (2005)

    Article  MathSciNet  Google Scholar 

  5. Ballerini, M.: Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proc. Natl. Acad. Sci. 105(4), 1232–1237 (2008)

    Article  Google Scholar 

  6. Blanchet, A., Degond, P.: Topological interactions in a Boltzmann-type framework. J. Stat. Phys. 163(1), 41–60 (2016). https://doi.org/10.1007/s10955-016-1471-6

    Article  MathSciNet  MATH  Google Scholar 

  7. Blondel, V.D., Hendrickx, J.M., Tsitsiklis, J.N.: On Krause’s multi-agent consensus model with state-dependent connectivity. IEEE Trans. Autom. Control 54(11), 2586–2597 (2009)

    Article  MathSciNet  Google Scholar 

  8. Blondel, V.D., Hendrickx, J.M., Tsitsiklis, J.N.: Continuous-time average-preserving opinion dynamics with opinion-dependent communications. SIAM J. Control. Optim. 48(8), 5214–5240 (2010)

    Article  MathSciNet  Google Scholar 

  9. Canuto, C., Fagnani, F., Tilli, P.: An Eulerian approach to the analysis of Krause’s consensus models. SIAM J. Control. Optim. 50(1), 243–265 (2012)

    Article  MathSciNet  Google Scholar 

  10. Ceragioli, F., Frasca, P.: Continuous and discontinuous opinion dynamics with bounded confidence. Nonlinear Anal. Appl. B 13(3), 1239–1251 (2012)

    Article  MathSciNet  Google Scholar 

  11. Ceragioli, F., Frasca, P.: Discontinuities, generalized solutions, and (dis)agreement in opinion dynamics. In: Tarbouriech, S., Girard, A., Hetel, L. (eds.) Control Subject to Computational and Communication Constraints: Current Challenges. LNCS, vol. 475, pp. 287–309. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-78449-6_14

    Chapter  Google Scholar 

  12. Chazelle, B., Wang, C.: Inertial Hegselmann-Krause systems. IEEE Trans. Autom. Control 62(8), 3905–3913 (2017)

    Article  MathSciNet  Google Scholar 

  13. Chen, C., Chen, G., Guo, L.: On the minimum number of neighbors needed for consensus of flocks. Control Theory Technol. 15(4), 327–339 (2017). https://doi.org/10.1007/s11768-017-7097-7

    Article  MathSciNet  Google Scholar 

  14. Chen, G., Su, W., Mei, W., Bullo, F.: Convergence properties of the heterogeneous Deffuant-Weisbuch model. Automatica 114, 108825 (2020)

    Article  MathSciNet  Google Scholar 

  15. Cristiani, E., Frasca, P., Piccoli, B.: Effects of anisotropic interactions on the structure of animal groups. J. Math. Biol. 62(4), 569–588 (2011). https://doi.org/10.1007/s00285-010-0347-7

    Article  MathSciNet  MATH  Google Scholar 

  16. Deffuant, G., Neau, D., Amblard, F., Weisbuch, G.: Mixing beliefs among interacting agents. Adv. Complex Syst. 03(01n04), 87–98 (2000)

    Article  Google Scholar 

  17. Degond, P., Pulvirenti, M.: Propagation of chaos for topological interactions. Ann. Appl. Probab. 29(4), 2594–2612 (2019)

    Article  MathSciNet  Google Scholar 

  18. Dunbar, R.: Neocortex size as a constraint on group size in primates. J. Hum. Evol. 22(6), 469–493 (1992)

    Article  Google Scholar 

  19. Fagnani, F., Frasca, P.: Introduction to Averaging Dynamics over Networks. Lecture Notes in Control and Information Sciences, Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-68022-4

    Book  MATH  Google Scholar 

  20. Giardina, I.: Collective behavior in animal groups: theoretical models and empirical studies. HFSP J. 2(4), 205–219 (2008). pMID: 19404431

    Article  Google Scholar 

  21. Gonçalves, B., Perra, N., Vespignani, A.: Modeling users’ activity on Twitter networks: validation of Dunbar’s number. PloS ONE 6(8), e22656 (2011)

    Article  Google Scholar 

  22. Krause, U.: A discrete nonlinear and non-autonomous model of consensus formation. In: Communications in Difference Equations, pp. 227–236 (2000)

    Google Scholar 

  23. Lazer, D.: The rise of the social algorithm. Science 348(6239), 1090–1091 (2015)

    Article  MathSciNet  Google Scholar 

  24. Martin, S.: Multi-agent flocking under topological interactions. Syst. Control Lett. 69, 53–61 (2014)

    Article  MathSciNet  Google Scholar 

  25. Mirtabatabaei, A., Bullo, F.: Opinion dynamics in heterogeneous networks: convergence conjectures and theorems. SIAM J. Control. Optim. 50(5), 2763–2785 (2012)

    Article  MathSciNet  Google Scholar 

  26. Proskurnikov, A., Tempo, R.: A tutorial on modeling and analysis of dynamic social networks. Part II. Ann. Rev. Control 45, 166–190 (2018)

    Article  MathSciNet  Google Scholar 

  27. Proskurnikov, A.V., Tempo, R.: A tutorial on modeling and analysis of dynamic social networks. Part I. Ann. Rev. Control 43, 65–79 (2017)

    Article  Google Scholar 

  28. Rossi, W.S., Frasca, P.: Asynchronous opinion dynamics on the \(k\)-nearest-neighbors graph. In: IEEE Conference on Decision and Control, pp. 3648–3653 (2018)

    Google Scholar 

  29. Rossi, W.S., Frasca, P.: Opinion dynamics with topological gossiping: asynchronous updates under limited attention. IEEE Control Syst. Lett. 4(3), 566–571 (2020)

    Article  MathSciNet  Google Scholar 

  30. Sethi, R.: Evolutionary stability and social norms. J. Econ. Behav. Organ. 29(1), 113–140 (1996)

    Article  MathSciNet  Google Scholar 

  31. Shvydkoy, R., Tadmor, E.: Topological models for emergent dynamics with short-range interactions. arXiv preprint (2018)

    Google Scholar 

  32. Simmel, G.: The persistence of social groups. Am. J. Sociol. 3(5), 662–698 (1898)

    Article  Google Scholar 

  33. Van de Waal, E., Borgeaud, C., Whiten, A.: Potent social learning and conformity shape a wild primate’s foraging decisions. Science 340(6131), 483–485 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Emiliano Cristiani, Julien Hendrickx, Samuel Martin, Benedetto Piccoli and Tommaso Venturini for fruitful discussions that, along the years, have shaped their point of view on the topic of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Frasca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ceragioli, F., Frasca, P., Rossi, W.S. (2021). Modeling Limited Attention in Opinion Dynamics by Topological Interactions. In: Lasaulce, S., Mertikopoulos, P., Orda, A. (eds) Network Games, Control and Optimization. NETGCOOP 2021. Communications in Computer and Information Science, vol 1354. Springer, Cham. https://doi.org/10.1007/978-3-030-87473-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87473-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87472-8

  • Online ISBN: 978-3-030-87473-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics